CSE 351 Section 9
Spring 2010

Virtual Memory



Overview

Announcements
e Lab 7 (Memory Allocation) due date pushed back to next
Thursday, June 3rd
e HW 8 (Linking, Cache, Virtual Memory, Garbage Collection)
due on Wednesday, June 2nd, at beginning of lecture.

Today's Agenda
e Lab 7 questions
e Virtual Memory Review
o Practice Problem 9.4 from book
e Garbage Collection



Additional Lab 7 Tips

e Don't worry about splitting or utilization/performance at
first, get it to pass shortl-bal. rep first.
e Your performance scores will vary on attu, don't worry.
o We'll use a controlled environment for grading.
e Enable debugging support in your mdriver program
o Change "CFLAGS= -g -Wall" in Makefile
e You don't have to disassemble anymore.
o You can step over whole lines of source code with
step/next instead of stepi/nexti
e You need to update TAG_USED and
TAG_PRECEDING_USED when you allocate and free.



Lab 7 Correction: BlockInfo

Allocated blocks don't necessarily have a footer (boundary tag)

Allocated Free

block block
Size alf Size alf
prev
Payload next
Padding :
Size alf




Memory Hierarchy

~4 MIB ~“4 GB ~“500 GB
L1
I-cache
szl . Main
32 KB uniie Memo
cache ry
CPU ]| Reg L1
D-cache
Throughput: 16 B/cycle 8 B/cycle 2 B/cycle 1 B/30 cycles .
Latency: 3 cycles 14 cycles 100 cycles millions D I S k

Miss penalty (latency): 30x

Miss penalty (latency): 10,000x




Virtual Memory: Protect & Manage

0 Address 0

Virtual . Physical
Address VP 1 translation Address
Space for VP2 ~—>{ PP2 Space
Process 1: (DRAM)
N-1
e.g. -
BEET (15

Virtual ° > PP8
Address VP 1
Space for VP2
Process 2:

N-1 M-1




Virtual Memory: Addressing

m Addressing

= 14-bit virtual addresses
= 12-bit physical address
= Page size = 64 bytes

13 12 11 10 9 8

b VPN

Virtual Page Number

11 10 9 8

VPO

v

« PPN

Physical Page Number

PPO

Physical Page Offset




Virtual Memory: Pages and Faults

Exception
= S = e - =) Page fault handler
! 4
|
' o U
|
CPU Chi l -
P o PTEA R Vlctlgagi’
CPU L > MMU | PTE Cache/ )
Disk
o o Memory
< New page

6




Virtual Memory: Page Table

Page table

base register
(PTBR)

Page table address
for process

Valid bit = 0:

Virtual address

Virtual page number (VPN)

Virtual page offset (VPO)

Page table
Valid Physical page number (PPN)

page not in memory €
(page fault)

A 4

h 4

Physical page number (PPN)

Physical page offset (PPO)

Physical address




Virtual Memory: Page Table Entries

Virtual address

PTEO

PTE 7

Physical memory

Physical page (DRAM)
number or 7T
Valid disk address PP O
0 I / VP 2
nu
—— VP 7
1 ./—4 VP 4 PP 3
1
0 e
1 x\/
S i
0 null s ¢ Virtual memory
0 % \\\ (diSk)
- ] TN VP 1
Memory resident "~( Se VP 2
page table RN S
(DRAM) o VP 3
‘\\ VP 4
VP 6
VP 7




Virtual Memory: TLB

Translation lookaside buffer speeds up access to page table.

CPU Chip

TLB
©
® PTE
VPN L
o O
VA PTEA
CPU >  MMU > Cache/
PA s| Memory
] o
Data




Virtual Memory: TLB Example

m 16 entries

m 4-way associative

“ TLBT > TLBI —
13 12 11 10 9 8 6 S 4 3 1 0
< VPN > VPO >
Set Tag PPN | Valid | Tag PPN | Valid | Tag PPN | Valid | Tag PPN | Valid

0 03 - 0 09 oD 1 00 - 0 07 02 1
1 03 2D 1 02 - 0 04 - 0 0A - 0
2 02 - 0 08 - 0 06 - 0 03 - 0
3 07 - 0 03 oD 1 0A 34 1 02 - 0




Virtual Memory: Practice Problem 9.4

Page 798 in your textbook.
Using memory state on page 796, or handout from lecture.

Virtual Address: ox3d7

A. Virtual address format? (14 bits)

B. Address translation: VPN, TLBI, TLBT, Hit?, Fault?, PPN
C. Physical address format? (12 bits)

D. Physical memory: BO, CI, CT, Hit?, Byte returned



Garbage Collection Review

Automatic memory management via garbage collection
provides many benefits to programmers:

e no explicit memory leaks

¢ no dangling or double-freed pointers




Garbage Collecting Analogy

Imagine that you share a fridge with your roommates.
Asking people to label their food and throwing out unlabeled
food is similar to the mark-and-sweep algorithm.




Garbage Collecting Puzzle 1

1. How can we still leak memory in a garbage-collected
language like Java?




Garbage Collecting Puzzle 2

2. Suppose we keep a reference counter with every object.

We increment the counter every time a new pointer references
the object.

We decrement the counter every time
an existing pointer goes away

(either from stack frame or

garbage collection).

When a reference counter reaches zero,
we free the object.

Will this garbage collection algorithm work?



Garbage Collecting Solutions

1. We can still write our programs
poorly which keep lots of global
variables or long-lived data
structures around.

2. Reference counting won't detect a

pointer cycle. O O \O



Good luck!

Lab 7: due next Thursday, 11:59pm
Homework 8: due next Wednesday, beginning of lecture

E-mail cse351-tas@cs if you have questions



