CSE 351, Spring 2010
Lab 7: Writing a Dynamic Storage Allocator
Due: Thursday May 27, 11:.59PM

1 Instructions

In this lab you will be writing a dynamic storage allocator fo programs, i.e., your own version of the
mal | oc andf r ee routines.

Start by extracting pr oj ect s/ i nstr/ 10sp/ cse351/1 abs/I ab7.t ar to a (protected) directory
in which you plan to do your work:

tar xvf /projects/instr/10sp/cse351/|abs/|ab7.tar

This will cause a number of files to be unpacked into the dimyct The only file you will be modifying
and handing in issm c¢c. Thendri ver. ¢ program is a driver program that allows you to evaluate the
performance of your solution. Use the commarake to generate the driver code and run it with the
command / mdri ver -V.(The- Vflag displays helpful summary information.)

1.1 Submitting Your Work

When you have completed the lab, you will hand in only one fil@ (c), which contains your solution. To
turninmm ¢, runnake submit onatt u. For this lab, you can work anywhere there’s a C compiler and
meke, but make sure your allocator works aht u, where we’ll be testing it, and submit there as well.

2 How to Work on the Lab

Your dynamic storage allocator will consist of the follogithree functions (and several helper functions),
which are declared ifm h and defined immm c.

i nt mm_init(void);
voi d+ mm mal | oc(size_t size);
void mmfree(void* ptr);

The mm c file we have given you partially implements an allocator gsam explicit free list. Your job
is to complete this implementation by filling ootmural | oc and mmf r ee. The three main memory
management functions should work as follows:

e Mmi ni t (provided): Before callingrmnal | oc or mmf r ee, the application program (i.e., the
trace-driven driver program that you will use to evaluatarymnplementation) callsmmi ni t to
perform any necessary initializations, such as allocdtiegnitial heap area. The return value is -1 if
there was a problem in performing the initialization, O othise.

e mmmal | oc: Thennmumal | oc routine returns a pointer to an allocated block payload déast
Si ze bytes. 6i ze_t is atype for describing sizes; it's basically ansi gned integer.) The entire
allocated block should lie within the heap region and showdt overlap with any other allocated
chunk.

We will compare your implementation to the versionnal | oc supplied in the standard C library
(I'i bc). Since thd i bc malloc always returns payload pointers that are aligned bgt8s, your
malloc implementation should do likewise and always re@yte aligned pointers.

e mmfree: Thenmf r ee routine frees the block pointed to Ipt r . It returns nothing. This rou-
tine is only guaranteed to work when the passed poirgéer J was returned by an earlier call to
nmmal | oc and has not yet been freed.

These semantics match the the semantics of the corresgomalil ocandf r ee routines inl i bc. Type
man mal | oc to the shell for complete documentation.

3 Supporting Code

We define &Bl ockl nf o struct designed to be used as a node in a doubly-linked é&xpée list, and the
following functions for manipulating free lists.

e Bl ockl nfo* searchFreeLi st (int reqSi ze) returns a block of at least the requested size
if one exists (andNULL otherwise).

e voi d insertFreeBl ock(Bl ockl nfo*x bl ockl nf 0) inserts the given block in the free list
in LIFO manner.

e voi d renmpveFr eeBl ock(Bl ockl nf ox bl ockl nf o) removes the given block from the free
list.

e Helper functions for implementing list functions:

— Bl ockl nf o* get FreeLi st Head() returns a pointer to the first block in the free list.

— voi d get FreelLi st Head(Bl ockl nf ox newHead) takes a pointer to a block and sets
the head of the free list to point to the block referenced leypibinter.

In addition, we implementmi ni t and provide two helper functions implementing importantgaf the
allocator:

e voi d request MoreSpace(int incr) enlarges the heap byncr bytes (if enough memory
is available on the machine to do so).

e voi d coal esceFreeBl ock(Bl ockl nfo*x ol dBl ock) coalesces any other free blocks ad-
jacent in memory t@l dBl ock into a single new large block and updates the free list adogid

Finally, we use a number of C Preprocessor macros to exteacinon pieces of code (constants, annoy-
ing casts/pointer manipulation) that might be prone toreriach is documented in the code. You are
welcome to use macros as well, though the ones already edtlidmm c are the only ones we used in
our sample solution, so it's possible without more. For miafe on macros, check the GCC manual at
http://gcc. gnu. org/onlinedocs/cpp/ Macros. htm .

3.1 Memory System

Themenl i b. ¢ package simulates the memory system for your dynamic meallmgator. In your allo-
cator, you can call the following functions (if you use theyided code for an explicit free list, most uses
of the memory system calls are already covered).

e voi d* memsbr k(i nt incr):Expandsthe heap byncr bytes, where ncr is a positive non-
zero integer and returns a pointer to the first byte of the paellbcated heap area. The semantics are
identical to the Unixsbr k function, except thatremsbr k accepts only a positive non-zero integer
argument. (Ruman sbr k if you want to learn more about what this does in Unix.)

e voi d» memheap. o() : Returns a pointer to the first byte in the heap.
e voi d» memheap_hi () : Returns a pointer to the last byte in the heap.
e sizet memheapsi ze() : Returns the current size of the heap in bytes.

e sizet mempagesi ze() : Returns the system’s page size in bytes (4K on Linux systems

4 The Trace-driven Driver Program

The driver programdr i ver . c inthel ab7. t ar distribution tests younm ¢ package for correctness,
space utilization, and throughput. The driver program r#ialed by a set ofrace filesthat are included in
thel ab7. t ar distribution. Each trace file contains a sequence of akaoat free directions that instruct
the driver to call yourmmural | ocandmmf r ee routines in some sequence. The driver and the trace files
are the same ones we will use when we grade your subrmtted file.

The drivermdr i ver accepts the following command line arguments:

e -t <tracedir>: Look for the default trace files in directotyr acedi r instead of the default
directory defined ironfi g. h.

e -f <tracefil e>: Use one particularr acef i | e for testing instead of the default set of trace-
files.

- h: Print a summary of the command line arguments.
¢ -1 : Run and measurei bc malloc in addition to the student’'s malloc package.
e - Vv: Verbose output. Print a performance breakdown for eacefite in a compact table.

e - V. More verbose output. Prints additional diagnostic infation as each trace file is processed.
Useful during debugging for determining which trace fileasising your malloc package to fail.

5 Programming Rules

¢ You should not change any of the interfacesnn c.

¢ You should not invoke any memory-management related jozalls or system calls. This excludes
the use ofmal | oc, cal | oc,free,real | oc, sbrk, brk or any variants of these calls in your
code. (You may use all the functionsnimm i b. c, of course.)

e You are not allowed to define any globalsirat i ¢ compound data structures such as arrays, structs,
trees, or lists in younm c program. Youare allowed to declare global scalar variables such as
integers, floats, and pointersimn c, but try to keep these to a minimum. (It is possible to congplet
the implementation of the explicit free list without addiagy global variables.)

e For consistency with theal | oc implementation il i bc, which returns blocks aligned on 8-byte
boundaries, your allocator must always return pointers dha aligned to 8-byte boundaries. The
driver will enforce this requirement for you.

6 Evaluation
Your grade will be calculated out of a total of 60 points asoiek:

e Correctness (45 points)¥ou will receive 5 points for each test performed by the dregram that
your solution passes. (9 tests)

e Style (10 points).

— Your code should use as few global variables as possiblalfydeone!).
— Your code should be as clear and concise as possible.

— Since some of the unstructured pointer manipulation initet@ allocators can be confusing,
short inline comments on steps of the allocation algoritlanesalso recommended. (These will
also help us give you partial credit if you have a partiallyrkiog implementation.)

— Each function should have a header comment that describatsitveltoes and how it does it.

¢ Performance (5 pointsPerformance represents a small portion of your grade. Waaskeconcerned
about the correctness of your implementation. For the margtgpcorrect implementation will yield
reasonable performance. Two performance metrics will led ts evaluate your solution:

— Space utilization The peak ratio between the aggregate amount of memory yste lwriver
(i.e., allocated viammnal | ocbut not yet freed viamf r ee) and the size of the heap used by
your allocator. The optimal ratio is 1. You should find goodiges to minimize fragmentation
in order to make this ratio as close as possible to the optimal

— Throughput The average number of operations completed per second.

The driver program summarizes the performance of yourattwdy computing @erformance index
P, which is a weighted sum of the space utilization and thrpugh

P =0.6U 4 0.4min <1, i)
libc

whereU is your space utilizatior]" is your throughput, and;,. is the estimated throughput bf bc
malloc on your system on the default traéeThe performance index favors space utilization over
throughput. You will receivé(P + 0.1) points, roundedip to the closest whole point. For example,
a solution with a performance index @63 or 63% will receive 4 performance points. Our complete
version of the explicit free list allocator has a performaimzex between 0.7 and 0.8; it would receive
5 points.

Observing that both memory and CPU cycles are expensiversysisources, we adopt this formula to
encourage balanced optimization of both memory utilizaéind throughput. Ideally, the performance
index will reachP = 1 or 100%. To receive a good performance score, you must achieve adeala
between utilization and throughput.

7 Hints

e Use themdri ver -f option. During initial development, using tiny trace files will sififp debug-
ging and testing. We have included two such trace faé®f t 1- bal . repandshort 2- bal . r ep)
that you can use for initial debugging.

e Use thendri ver -v and- V options. The- v option will give you a detailed summary for each
trace file. The V will also indicate when each trace file is read, which willghgbu isolate errors.

e Compile withgcc - g and usegdb. The- g flag tellsgcc to include debugging symbols, galb
can follow the source code as it steps through the executablese the g flag with theMakef i | e,
edit theCFLAGS variable in the Makefile OR just rumake like this:

make CFLAGS="-wall -g"

1The value forT},. is a constant in the driver (1800 Kops/s) that is close to treeame throughput of thiei bc allocator on
the same traces, measuredadrt u. The performance index will vary from system to system basethe locall i bc allocator
throughput, so run oat t u for a good idea of where you stand.

This has the effect of replacing the value@HLAGS as defined in th&kkef i | e with whatever you
type on the command line instead. (Just be sure to quotd itahitains spaces, and do not put spaces
around the = sign.) In general, when debugging, you wantrtodfi the- O2 (that's a capitab, not a
zero), since it tells the compiler to perform optimizatidhat can occasionally make following in the
debugger confusing. A debugger will help you isolate andtifieout of bounds memory references.

e Understand every line of the malloc implementation in theébi@ok. The textbook has a detailed
example of a simple allocator based on an implicit free ligse this is a point of departure. Don't
start working on your allocator until you understand eveing about the simple implicit list allocator.

e Encapsulate your pointer arithmetic in C preprocessor macPointer arithmetic in memory man-
agers is confusing and error-prone because of all the gastat is necessary. You can reduce the
complexity significantly by writing macros for your pointeperations. See the textbook for exam-
ples.

e Use a profiler. You may find thegpr of tool helpful for optimizing performancentn gpr of or
searching online fogpr of documentation will get you the basics.) If you uger of , see the hint
about debugging above for how to pass extra arguments to G@eiakefi |l e.

e Start early!It is possible to write an efficient malloc package with a fexges of code. However, we
can guarantee that it will be some of the most difficult andchssifrated code you have written so far
in your career. So start early, and good luck!

7.1 Heap Consistency Checker

Dynamic memory allocators are notoriously tricky beastprimgram correctly and efficiently. They are
difficult to program correctly because they involve a lot ofyped pointer manipulation. In addition to the
usual debugging techniques, you may find it helpful to writeeap checker that scans the heap and checks
it for consistency.

Some examples of what a heap checker might check are:

e Is every block in the free list marked as free?

Are there any contiguous free blocks that somehow escapdsuing?

Is every free block actually in the free list?

Do the pointers in the free list point to valid free blocks?

Do any allocated blocks overlap?

e Do the pointers in a heap block point to valid heap addresses?

Your heap checker will consist of the functiomt mmcheck(voi d) in nm c. Feel free to rename it,
break it into several functions, and call it wherever you twétnshould check any invariants or consistency
conditions you consider prudent. It returns a nonzero vdlaad only if your heap is consistent. This is
not required, but may prove useful. When you submmit ¢, make sure to remove any callstoncheck

as they will slow down your throughput.

