CSE 351, Spring 2010
Lab 5: Buffer Overflow
Due: Thursday May 13, 11:59PM

This assignment helps you develop a detailed understarddittte calling stack organization on an I1A32
processor. It involves applying a seriestofffer overflow attacken an executable filbuf bonb in the lab
directory. (For some reason the textbook authors have dpahtor pyrotechnics.)

Note: In this lab, you will gain firsthand experience with one of thethods commonly used to exploit

security weaknesses in operating systems and networkrse®er purpose is to help you learn about the
runtime operation of programs and to understand the nafutgsoform of security weakness so that you

can avoid it when you write system code. We do not condonedba@tithese or any other form of attack to
gain unauthorized access to any system resources. Thergraneal statutes governing such activities.

Instructions

Start by extracting pr oj ect s/ i nstr/ 10sp/ cse351/1 abs/| ab5. t ar to a (protected) directory
in which you plan to do your work:

tar xvf /projects/instr/10sp/cse351/1abs/| ab5.tar
This will cause a number of files to be unpacked in a directailed! ab5:

makecooki e: Generates a “cookie” based on your username.
buf bonb: The executable you will attack.

buf bonb. c: The important bits of C code used to compilef borb.
sendstring: A utility to help convert between string formats.
Makefi | e: For submitting your exploits.

All of these programs are compiled to run on attu.

In the following instructions, we will assume that you halre three programs to a protected local directory,
and that you are executing them in that local directory.

Make a Cookie

A cookieis a string of eight hexadecimal digits that is (with high tpability) unique to you. You can
generate your cookie with theakecooki e program giving your user name as the argument. For example:

$./ makecooki e usernane
0x78327b66

In some of the attacks in this lab, your objective will be tokeagour cookie show up in places where it
ordinarily would not.

The buf bonb Program

Thebuf borb program reads a string from standard input with a funcgjeh buf having the following C
code:

1 int getbuf()

2 {

3 char buf[12];
4 Get s(buf);

5 return 1;

6}

The functionGet s is similar to the standard library functiaget s—it reads a string from standard input
(terminated by\ n’ or end-of-file) and stores it (along with a null terminatat)the specified destination.
In this code, the destination is an artayf having sufficient space for 12 characters.

NeitherGet s norget s has any way to determine whether there is enough space atdtiration to store
the entire string. Instead, they simply copy the entirengirpossibly overrunning the bounds of the storage
allocated at the destination.

If the string typed by the user et buf is no more than 11 characters long, it is clear thet buf will
return 1, as shown by the following execution example:

$./ buf bonb
Type string: howdy doody
Dud: getbuf returned Ox1

Typically an error occurs if we type a longer string:

$./ buf bonb
Type string: This string is too |ong
Quch!: You caused a segnmentation fault!

As the error message indicates, overrunning the buffec#ylpi causes the program state to be corrupted,

leading to a memory access error. Your task is to be morerolgtte the strings you feetiuf bornb so that
it does more interesting things. These are cadbggploit strings.

2

buf bonmb must be run with the u usernameargument, which operates the bomb for the indicated user-
name. (We will feed bufbomb your username withh when grading your solutionshuf bonb determines

the cookie you will be using based on this argument, just as tlee progranmakecooki e, and some of
the key stack addresses you will need to use depend on yokiecoo

Formatting Exploit Strings

Your exploit strings will typically contain byte values thdo not correspond to the ASCII values for printing
characters. The prograsendst ri ng can help you generate thesew strings. It takes as input laex-
formattedstring. In this format, each byte value is represented byheodigits. For example, the string
“012345” could be entered in hex format a80 31 32 33 34 35. (The ASCII code for decimal
digit x is Ox3z. Runman asci i for a full table.) Non-hex digit characters are ignored luding the
blanks in the example shown.

If you generate a hex-formatted exploit string in the ébepl oi t . t xt , you can store the raw string in a
file and use 1/O redirection to supply it buf bonb:

$./sendstring < exploit.txt > exploit.bytes
$./bufbonb -u usernane < exploit.bytes

Then, when runningpuf bonb from within gdb:

$ gdb buf borb
(gdb) run -u usernane < exploit.bytes

One important point: your exploit string must not containiebyalueOx0A at any intermediate position,
since this is the ASCII code for newline\ (). When Get s encounters this byte, it will assume you
intended to terminate the stringendst r i ng will warn you if it encounters this byte value.

Tip: You may find it useful to save a series gllb commands as a text file and then rgdb - x
commands. t xt buf bonb. This saves you the trouble of retyping the commands everg {iou run
gdb.

Generating Byte Codes

You may with to come back and read this section later aftekifgpat the problems.

Usinggcc as an assembler antj dunp as a disassembler makes it convenient to generate the lgs co
for instruction sequences. For example, suppose we writke @Xfianpl e. s containing the following
assembly code:

Exanpl e of hand-generated assenbly code

pushl $0x89abcdef # Push val ue onto stack

addl $17, %ax # Add 17 to Y%ax

.align 4 # Following will be aligned on nultiple of 4
.1 ong Oxf edcba98 # A 4-byte constant

.1 ong 0x00000000 # Paddi ng

The code can contain a mixture of instructions and data. Hngtto the right of a# character is a
comment. We have added an extra word of all Os to work arouhdrac®ming inobj dunp to be described
shortly.

We can now assemble and disassemble this file:

$ gcc -c exanple.s
$ objdunmp -d exanple.o > exanple.d

The generated filexanpl e. d contains the following lines

0: 68 ef cd ab 89 push $0x89abcdef

5: 83 c0 11 add $0x11, %eax

8: 98 cw | Obj dunp tries to interpret
9: ba dc fe 00 00 nov $0xf edc, ¥%€dx these as instructions

Each line shows a single instruction. The number on theneitates the starting address (starting with 0),
while the hex digits after the * character indicate the byte codes for the instruction. sTkee can see that
the instructiorpushl $0x89ABCDEF has hex-formatted byte co®8 ef cd ab 89.

Starting at address 8, the disassembler gets confuseigsltdrinterpret the bytes in the fiégecanpl e. o as
instructions, but these bytes actually correspond to dddée, however, that if we read off the 4 bytes start-
ing at address 8 we ge®8 ba dc f e. This is a byte-reversed version of the data word-EDCBA98.
This byte reversal represents the proper way to supply theskas a string, since a little endian machine
lists the least significant byte first. Note also that it ongngrated two of the four bytes at the end with
value00. Had we not added this paddinghj dunp gets even more confused and does not emit all of the
bytes we want.

Finally, we can read off the byte sequence for our code (omithe final 0's) as:

68 ef cd ab 89 83 cO 11 98 ba dc fe

Submitting Exploits

You will submit your exploit for each level in a separate tiet Make sure you have each exploit in hex-
format in a file ending in . t xt in the same directory as theMakef i | e. To check your results quickly,
runrmake t est . This will output a summary of your exploits { xt files) and whether they succeed.

To submit, runmake subm t. This will submit all. t xt files in the same directory as thvdakefi | e.

(It submits. s files as well, in case you have a partially working exploit ‘ddike us to consider for partial
credit.) You will get full credit for a level as long as one afyr submitted exploits successfully attacks that
level.

Resubmitting will add your new solutions to your existingesr{instead of overwriting).

Level O: Candle (10 pts)

The functionget buf is called withinbuf bonb by a functiont est having the following C code:

4

1 void test()

2 {

3 int val;

4 volatile int local = Oxdeadbeef;

5 entry check(3); /* Make sure entered this function properly =/
6 val = getbuf();

7 [+ Check for corrupted stack =/

8 if (local != Oxdeadbeef) ({

9 printf("Sabotaged!: the stack has been corrupted\n");
10 }

11 else if (val == cookie) {

12 printf("Booml: getbuf returned Ox%\n", val);

13 val i dat e(3);

14 }

15 el se {

16 printf("Dud: getbuf returned Ox%\n", val);

17 }

18 }

Whenget buf executes its return statement (line Sgeft buf), the program ordinarily resumes execution
within functiont est (at line 8 of this function). Within the filduf borb, there is a functiorsnoke
having the following C code:

voi d snoke()

{
entry check(0); /* Make sure entered this function properly =*/
printf("Snmoke!: You called snmoke()\n");
val i dat e(0);
exit(0);
}

Your task is to gebuf bonb to execute the code fanmoke whenget buf executes its return statement,
rather than returning tbest . You can do this by supplying an exploit string that overesithe stored
return pointer in the stack frame fget buf with the address of the first instruction smoke. Note that
your exploit string may also corrupt other parts of the ststelte, but this will not cause a problem, since
snoke causes the program to exit directly.

Some Advice

¢ All the information you need to devise your exploit string this level can be determined by exam-
ining a disassembled versionlofif bonb.

e Be careful about byte ordering.

e You might want to usgdb to step the program through the last few instructiongexf buf to make
sure it is doing the right thing.

e The placement obuf within the stack frame foget buf depends on which version gicc was
used to compilduf bonb. You will need to pad the beginning of your exploit string vihe proper
number of bytes to overwrite the return pointer. The valdabese bytes can be arbitrary.

Level 1: Sparkler (20 pts)
Within the filebuf bonb there is also a functiohi zz having the following C code:

void fizz(int val)

{
entry check(1l); /* Make sure entered this function properly =*/
if (val == cookie) {
printf("Fizz!: You called fizz(0Ox%)\n", val);
val i date(1);
} else {
printf("Msfire: You called fizz(0x%)\n", val);
}
exit(0);
}

Similar to Level O, your task is to getuf bonb to execute the code fén zz rather than returning tbest .
In this case, however, you must make it appedritaz as if you have passed your cookie as its argument.
You can do this by encoding your cookie in the appropriatelaithin your exploit string.

Some Advice

e Note that the program won't really cdlli zz—it will simply execute its code. This has important
implications for where on the stack you want to place youikeao

Level 2: Firecracker (30 pts)

For level 2, you will need to run your exploit within gdb fort succeed. gt t u has special memory
protection that prevents execution of memory locationdinstack. Since gdb works a little differently, it
will allow the exploits to succeed.)

A much more sophisticated form of buffer attack involvespying a string that encodes actual machine
instructions. The exploit string then overwrites the ratpointer with the starting address of these instruc-
tions. When the calling function (in this caget buf) executes itg et instruction, the program will start
executing the instructions on the stack rather than retgriiVith this form of attack, you can get the pro-
gram to do almost anything. The code you place on the stackledctheexploitcode. This style of attack
is tricky, though, because you must get machine code ontstéo& and set the return pointer to the start of
this code.

Within the filebuf bonb there is a functiodbang having the following C code:

i nt global _value = 0;

voi d bang(int val)

{

entry check(2); /* Make sure entered this function properly =*/

i f (global_value == cookie) {
printf("Bang!: You set global_value to Ox¥%\n", gl obal _val ue);

val i date(2);
} else {

printf("Msfire: global _value = 0Ox%\n", gl obal val ue);
}
exit(0);

}

Similar to Levels 0 and 1, your task is to daiif bonb to execute the code fdrang rather than return-
ing tot est . Before this, however, you must set global variapleobal _val ue to your cookie. Your
exploit code should sefl obal _val ue, push the address biang on the stack, and then execute &t
instruction to cause a jump to the code fang.

Some Advice

e You can usegdb to get the information you need to construct your exploiingtr Set a break-
point within get buf and run to this breakpoint. Determine parameters such asdteess of
gl obal _val ue and the location of the buffer.

e Determining the byte encoding of instruction sequencesanghs tedious and prone to errors. You
can let tools do all of the work by writing an assembly codedataining the instructions and data
you want to put on the stack. Assembile this file wgthc and disassemble it withbj dunp. You
should be able to get the exact byte sequence that you wél &yphe prompt. (A brief example of
how to do this is included in the Generating Byte Codes segtio

e Keep in mind that your exploit string depends on your machjoer compiler, and even your cookie.
Do all of your work on attu, and make sure you include your naere on the command line to
buf bonb.

e Our solution requires 16 bytes of exploit code. Fortunathlgre is sufficient space on the stack, be-
cause we can overwrite the stored valué®bp. This stack corruption will not cause any problems,
sincebang causes the program to exit directly.

e Watch your use of address modes when writing assembly codee tHatnmovl $0x4, %eax
moves thevalue0x00000004 into register¥eax; whereasrovl 0x4, %eax moves the value
at memory locatiorOx00000004 into %eax. Since that memory location is usually undefined, the
second instruction will cause a segfault!

e Do not attempt to use eitherjarp or acal | instruction to jump to the code fdrang. These
instructions uses PC-relative addressing, which is veckytrto set up correctly. Instead, push an
address on the stack and usettled instruction.

Extra Credit - Level 3: Dynamite (5 pts)

For level 3, you will need to run your exploit within gdb fortit succeed. gt t u has special memory
protection that prevents execution of memory locationdienstack. Since gdb works a little differently, it

7

will allow the exploits to succeed.)

Our preceding attacks have all caused the program to jumbet@ade for some other function, which
then causes the program to exit. As a result, it was acceptahlse exploit strings that corrupt the stack,
overwriting the saved value of regist#ebp and the return pointer.

The most sophisticated form of buffer overflow attack caubkesprogram to execute some exploit code
that patches up the stack and makes the program return taoigfireab calling function { est in this case).
The calling function is oblivious to the attack. This styfeattack is tricky, though, since you must: 1) get
machine code onto the stack, 2) set the return pointer totéinedf this code, and 3) undo the corruptions
made to the stack state.

Your job for this level is to supply an exploit string that ixdauseget buf to return your cookie back to

t est, rather than the value 1. You can see in the codd st that this will cause the program to go
“Boonl .” Your exploit code should set your cookie as the return @ahestore any corrupted state, push
the correct return location on the stack, and executetainstruction to really return tbest .

Some Advice

e In order to overwrite the return pointer, you must also ovéeithe saved value @tebp. However, it
is important that this value is correctly restored befora yeturn tot est . You can do this by either
1) making sure that your exploit string contains the corsadtie of the save@&ebp in the correct
position, so that it never gets corrupted, or 2) restore thieect value as part of your exploit code.
You'll see that the code fdrest has some explicit tests to check for a corrupted stack.

e You can useydb to get the information you need to construct your exploingtr Set a breakpoint
within get buf and run to this breakpoint. Determine parameters such asatrexl return address
and the saved value ékbp.

e Again, let tools such ascc andoBibumpP do all of the work of generating a byte encoding of the
instructions.

e Keep in mind that your exploit string depends on your maghyoer compiler, and even your cookie.
Do all of your work on a Fish machine, and make sure you inclindeproper username on the
command line tduf bonb.

Reflect on what you have accomplished. You caused a prograretute machine code of your own design.
You have done so in a sufficiently stealthy way that the pnogdad not realize that anything was amiss.

