CSE 351, Spring 2010
Lab 1: Manipulating Bits
Due: Thursday April 8, 11:59PM

Questions? Problems? See the course website for contact inf
cs.washington.edu/351

I ntroduction

The purpose of this assignment is to become more familidr biitlevel representations and manipulations.
You'll do this by solving a series of programming “puzzlebfany of these puzzles are quite artificial, but
you'll find yourself thinking much more about bits in workiygur way through them.

L ogistics

For this assignment, please work alone. Any clarificatiombravisions to the assignment will be posted on
the course web page. We will assume that you are working oarttepnt Linux machines. We suggest any
of the Linux workstations in the Allen Center 002, 006, an@ Gibs, as well aattu , a machine you can
access remotely via SSHinks to info on using these systems can be found on the caugls@age.The
assignments and the tools that you will be using to completmthave all been tested in this environment.
Submission and grading of your work will also happen here.

Tips for Working on Your Own Machine You are welcome to do your code development using any
system or compiler you choose, but make sure the final prodadts on one of the department Linux
machines. We can't guarantee that everything will work oorymwvn computer, but we can point you in
the right direction. For this lab we’ll be using the GNU C Cdhap(gcc) version 4.4.1 and GNUuhake
version 3.81, but any recent versions of these tools shaiffics. Thedlc tool provided with the lab
handout is compiled for the department Linux machines,ghdumay work elsewhere too (most likely on
32-bit x86 Linux machines).

I nstructions

The files you will need for this assignment are packagddtzs-handout.zip , available on the course
website or on department Linux machines at:
/projects/instr/10sp/cse351/labs/labl-handout.zip

Start by copyindabl-handout.zip to where you plan to do your work, then extract it. This can be
done on the Linux command line as follows:

[you@attu3 1$ mkdir 351
[you@attu3 351]$ cd 351
[you@attu3 351]$ cp /projects/instr/10sp/cse351/labs/| abl-handout.zip .
[you@attu3 351]$ unzip labl-handout.zip
. some output ...

If you are working on a CSE Windows machine, you should sadeuarziplabl-handout.zip some-
where in your Z: drive.

Once you've unzippethbl-handout.zip ,you'll have a directory callethbl-handout containing
several files. The only file you will be modifying and submmigtiisbits.c . (Feel free to look at the other
files, but any modifications you make outsiigs.c will not be seen when grading.)

The filebtest.c allows you to evaluate the functional correctness of yodecd he fleREADMIEontains
additional documentation abdottest . Move into the lab directory and use the commarake to generate
the test code and run it with the commariatest

[you@attu3 351]$ cd labl-handout
[you@attu3 labl-handout]$ make
. some output ...
[you@attu3 labl-handout]$./btest
. some output ...

Before you have done any worktest will spit out lots of information about tests that fail. Théefidlc
is a tool that you can run to check your solutions for comméawith the coding rules. The remaining files
are used to buildhtest

Thebits.c file contains a skeleton for each of the 15 programming psz@ef which are extra credit).
Your assignment is to complete each function skeleton usihgstraight-linecode (i.e., no loops or con-
ditionals) and a limited number of C arithmetic and logicaémators. Specifically, you amnly allowed to
use the following eight operators:

& " | + << >>

A few of the functions further restrict this list. Also, yoveanot allowed to use any constants longer than 8
bits. See the commentsluits.c for detailed rules and a discussion of the desired codirlg.sthe tasks
are described in more detail below.

Every time you want to test your functions wititest), first runmake to recompile. This takes care of
running the GCC compiler with the right options, so if there any compilation errors with your functions
in bits.c , they will show up when you rumake.

Evaluation

Your code will be compiled witlecc and run and tested on one of the class machines. Your scdreewil
computed out of a maximum of 65 points based on the followistridution:

32 Correctness of code running on one of the class machines.
26 Performance of code, based on number of operators usedhirfugation. (2 points each)

7 Style points, based on your instructor’s subjective euaunaof the quality of your solutions and your
comments.

Extra credit (up to 8 points) will be awarded as follows:

4 Correct implementation dfitCount andleastBitPos . (2 points each)

4 Performance obitCount andleastBitPos , based on number of operators used in each function.
(2 points each)

The puzzles have been given a difficulty rating between 1 aisdeh that their weighted sum totals to 32.
We will evaluate your functions using the test argumentst@st.c . You will get full credit for a puzzle if

it passes all of the tests performediigst.c , half credit if it fails one test, and no credit otherwise osl
thatbtest will report a correctness score out of 36 points, which idelithe 4 extra credit correctness
points forleastBitPos andbitCount . To receive full credit for correctness, you only need to3ft
correctness points.)

Regarding performance, our main concern at this point ircthese is that you can get the right answer.
However, we want to instill in you a sense of keeping thingstast and simple as you can. Furthermore,
some of the puzzles can be solved by brute force, but we wartiyioe more clever. Thus, for each function
we've established a maximum number of operators that yoalknwed to use for each function. This limit
is very generous and is designed only to catch egregiousfiigient solutions. You will receive two points
for each function that satisfies the operator limit.

Finally, we've reserved 7 points for a subjective evaluatid the style of your solutions and your com-
menting. Your solutions should be as clean and straightdoivas possible. Your comments should be
informative, but they need not be extensive.

Part |: Bit manipulations

Table 1 describes a set of functions that manipulate andsetstof bits. The “Rating” field gives the
difficulty rating (the number of points) for the puzzle, ahe tMax ops” field gives the maximum number
of operators you are allowed to use to implement each fumctio

FunctionbitNor computes the NR function. That is, when applied to argumemtsandy, it returns
“(x]y) . You may only use the operatofsand™ . FunctionbitXor should duplicate the behavior of the
bit operation™ , using only the operation& and™ .

Name Description Rating Max Ops
bitNor(x,y) “(x]ly) using only&and” 1 8
bitXor(x,y) "~ using only& and”™ 2 14
isNotEqual(x,y) X 1= y? 2 6
getByte(x,n) Extract byten from x 2 6
copyLSB(X) Set all bits to LSB ok 2 5
logicalShift(x,n) Logical right shiftx by n 3 16
bang(x) Computelx without using! operator 4 12
leastBitPos(x) Mark least significant 1 bit Extra Credit 30
bitCount(x) Count number of 1's ix Extra Credit 40

Table 1: Bit-Level Manipulation Functions.

FunctionisNotEqual comparex toy for inequality. As with allpredicateoperations, it should returh
if the tested condition holds arflotherwise.

FunctiongetByte extracts a byte from a word. The bytes within a word are odién@m O (least signif-
icant) to 3 (most significant). FunctiaopyLSB replicates a copy of the least significant bit in all 32 bits
of the result. FunctiotogicalShift performs logical right shifts. You may assume the shift aneu
satisfiesl < n < 31. Functionbang computes logical negation without using th@perator.

Extra Credit: FunctioheastBitPos generates a mask consisting of a single bit marking theipnf
the least significant one bit in the argument. If the arguneepials 0, it returns 0. FunctidsitCount
returns a count of the number of 1's in the argument.

Part I1: Two's Complement Arithmetic

Name Description Rating | Max Ops
tmax(void) largest two's complement integer 1 4
isNonNegative(x) x >= 0? 3 6
isGreater(x,y) X > y? 3 24
divpwr2(x,n) x/(1<<n) 3 15
abs(x) absolute value 4 10
addOK(x,y) Doesx+y overflow? 3 20

Table 2: Arithmetic Functions

Table 2 describes a set of functions that make use of the teo'gplement representation of integers.
Functiontmax returns the largest integer.

FunctionisNonNegative determines whether is less than or equal to O.

FunctionisGreater determines whethet is greater thary.

Functiondivpwr2 divides its first argument b¥", wheren is the second argument. You may assume that
0 < n < 30. It must round toward zero.

Functionabs is equivalent to the expressior0?-x:x , giving the absolute value of for all values other
than TMin.

FunctionaddOK determines whether its two arguments can be added togeitineutvoverflow.

Checking Your Work

Thedlc program, a modified version of an ANSI C compiler, will be usectheck your programs for
compliance with the coding style rules. The typical usage is

[you@attu3 labl-handout]$./dlc bits.c

Type./dlc -help for a list of command line options. The README file is also HalpSome notes on
dic :

e Thedlc program runs silently unless it detects a problem.

e Don'tinclude<stdio.h> inyourbits.c file, as it confusedic and results in some non-intuitive
error messages.

Check the filEREADMEor documentation on running theest program. You'll find it helpful to work
through the functions one at a time, testing each one as yoMaocan use thef flag to instructbtest
to test only a single function, e.glbtest -f isPositive

Submitting Your Work

1. Make sure you have included your naméits.c
2. Remove any extraneous print statements.

3. On one of the Linux machines, runake submit from the directory containing your copy of
bits.c

[you@attu3 labl-handout]$ make submit

Submitting bits.c...

Submit succeeded. Submitted bits.c at Wed Mar 31 22:31:14 PD T 2010
This will make a copy of youbits.c file at:

/projects/instr/10sp/<you>/lab1/bits.c

You may alternately create the directdgbl in /projects/instr/10sp/<you> (Replace
<you> with your user name.) and put a copyhifs.c there yourself.

If you discover a mistake and want to submit a revised copy,rgpeat this commandt.will replace
your previously submitted file with the new version.

