
CSE 351, Spring 2010
Lab 1: Manipulating Bits

Due: Thursday April 8, 11:59PM

Questions? Problems? See the course website for contact info:
cs.washington.edu/351

Introduction

The purpose of this assignment is to become more familiar with bit-level representations and manipulations.
You’ll do this by solving a series of programming “puzzles.”Many of these puzzles are quite artificial, but
you’ll find yourself thinking much more about bits in workingyour way through them.

Logistics

For this assignment, please work alone. Any clarifications and revisions to the assignment will be posted on
the course web page. We will assume that you are working on department Linux machines. We suggest any
of the Linux workstations in the Allen Center 002, 006, and 022 labs, as well asattu , a machine you can
access remotely via SSH.Links to info on using these systems can be found on the courseweb page.The
assignments and the tools that you will be using to complete them have all been tested in this environment.
Submission and grading of your work will also happen here.

Tips for Working on Your Own Machine You are welcome to do your code development using any
system or compiler you choose, but make sure the final productworks on one of the department Linux
machines. We can’t guarantee that everything will work on your own computer, but we can point you in
the right direction. For this lab we’ll be using the GNU C Compiler (gcc ) version 4.4.1 and GNUmake
version 3.81, but any recent versions of these tools should suffice. Thedlc tool provided with the lab
handout is compiled for the department Linux machines, though it may work elsewhere too (most likely on
32-bit x86 Linux machines).

Instructions

The files you will need for this assignment are packaged aslab1-handout.zip , available on the course
website or on department Linux machines at:
/projects/instr/10sp/cse351/labs/lab1-handout.zip

1



Start by copyinglab1-handout.zip to where you plan to do your work, then extract it. This can be
done on the Linux command line as follows:

[you@attu3 ˜]$ mkdir 351
[you@attu3 351]$ cd 351
[you@attu3 351]$ cp /projects/instr/10sp/cse351/labs/l ab1-handout.zip .
[you@attu3 351]$ unzip lab1-handout.zip

... some output ...

If you are working on a CSE Windows machine, you should save and unziplab1-handout.zip some-
where in your Z: drive.

Once you’ve unzippedlab1-handout.zip , you’ll have a directory calledlab1-handout containing
several files. The only file you will be modifying and submitting isbits.c . (Feel free to look at the other
files, but any modifications you make outsidebits.c will not be seen when grading.)

The filebtest.c allows you to evaluate the functional correctness of your code. The fileREADMEcontains
additional documentation aboutbtest . Move into the lab directory and use the commandmake to generate
the test code and run it with the command./btest :

[you@attu3 351]$ cd lab1-handout
[you@attu3 lab1-handout]$ make

... some output ...
[you@attu3 lab1-handout]$ ./btest

... some output ...

Before you have done any work,btest will spit out lots of information about tests that fail. The file dlc
is a tool that you can run to check your solutions for compliance with the coding rules. The remaining files
are used to buildbtest .

Thebits.c file contains a skeleton for each of the 15 programming puzzles (2 of which are extra credit).
Your assignment is to complete each function skeleton usingonly straight-linecode (i.e., no loops or con-
ditionals) and a limited number of C arithmetic and logical operators. Specifically, you areonly allowed to
use the following eight operators:

! ˜ & ˆ | + << >>

A few of the functions further restrict this list. Also, you are not allowed to use any constants longer than 8
bits. See the comments inbits.c for detailed rules and a discussion of the desired coding style. The tasks
are described in more detail below.

Every time you want to test your functions withbtest ), first runmake to recompile. This takes care of
running the GCC compiler with the right options, so if there are any compilation errors with your functions
in bits.c , they will show up when you runmake.

2



Evaluation

Your code will be compiled withGCC and run and tested on one of the class machines. Your score will be
computed out of a maximum of 65 points based on the following distribution:

32 Correctness of code running on one of the class machines.

26 Performance of code, based on number of operators used in each function. (2 points each)

7 Style points, based on your instructor’s subjective evaluation of the quality of your solutions and your
comments.

Extra credit (up to 8 points) will be awarded as follows:

4 Correct implementation ofbitCount andleastBitPos . (2 points each)

4 Performance ofbitCount and leastBitPos , based on number of operators used in each function.
(2 points each)

The puzzles have been given a difficulty rating between 1 and 4, such that their weighted sum totals to 32.
We will evaluate your functions using the test arguments inbtest.c . You will get full credit for a puzzle if
it passes all of the tests performed bybtest.c , half credit if it fails one test, and no credit otherwise. (Note
that btest will report a correctness score out of 36 points, which includes the 4 extra credit correctness
points forleastBitPos andbitCount . To receive full credit for correctness, you only need to get32
correctness points.)

Regarding performance, our main concern at this point in thecourse is that you can get the right answer.
However, we want to instill in you a sense of keeping things asshort and simple as you can. Furthermore,
some of the puzzles can be solved by brute force, but we want you to be more clever. Thus, for each function
we’ve established a maximum number of operators that you areallowed to use for each function. This limit
is very generous and is designed only to catch egregiously inefficient solutions. You will receive two points
for each function that satisfies the operator limit.

Finally, we’ve reserved 7 points for a subjective evaluation of the style of your solutions and your com-
menting. Your solutions should be as clean and straightforward as possible. Your comments should be
informative, but they need not be extensive.

Part I: Bit manipulations

Table 1 describes a set of functions that manipulate and testsets of bits. The “Rating” field gives the
difficulty rating (the number of points) for the puzzle, and the “Max ops” field gives the maximum number
of operators you are allowed to use to implement each function.

FunctionbitNor computes the NOR function. That is, when applied to argumentsx and y , it returns
˜(x|y) . You may only use the operators& and˜ . FunctionbitXor should duplicate the behavior of the
bit operation̂ , using only the operations& and˜ .

3



Name Description Rating Max Ops
bitNor(x,y) ˜(x|y) using only& and˜ 1 8
bitXor(x,y) ˆ using only& and˜ 2 14
isNotEqual(x,y) x != y? 2 6
getByte(x,n) Extract byten from x 2 6
copyLSB(x) Set all bits to LSB ofx 2 5
logicalShift(x,n) Logical right shiftx by n 3 16
bang(x) Compute!x without using! operator 4 12
leastBitPos(x) Mark least significant 1 bit Extra Credit 30
bitCount(x) Count number of 1’s inx Extra Credit 40

Table 1: Bit-Level Manipulation Functions.

FunctionisNotEqual comparesx to y for inequality. As with allpredicateoperations, it should return1
if the tested condition holds and0 otherwise.

FunctiongetByte extracts a byte from a word. The bytes within a word are ordered from 0 (least signif-
icant) to 3 (most significant). FunctioncopyLSB replicates a copy of the least significant bit in all 32 bits
of the result. FunctionlogicalShift performs logical right shifts. You may assume the shift amount n

satisfies1 ≤ n ≤ 31. Functionbang computes logical negation without using the! operator.

Extra Credit: FunctionleastBitPos generates a mask consisting of a single bit marking the position of
the least significant one bit in the argument. If the argumentequals 0, it returns 0. FunctionbitCount
returns a count of the number of 1’s in the argument.

Part II: Two’s Complement Arithmetic

Name Description Rating Max Ops
tmax(void) largest two’s complement integer 1 4
isNonNegative(x) x >= 0? 3 6
isGreater(x,y) x > y? 3 24
divpwr2(x,n) x/(1<<n) 3 15
abs(x) absolute value 4 10
addOK(x,y) Doesx+y overflow? 3 20

Table 2: Arithmetic Functions

Table 2 describes a set of functions that make use of the two’scomplement representation of integers.

Functiontmax returns the largest integer.

FunctionisNonNegative determines whetherx is less than or equal to 0.

FunctionisGreater determines whetherx is greater thany .

4



Functiondivpwr2 divides its first argument by2n, wheren is the second argument. You may assume that
0 ≤ n ≤ 30. It must round toward zero.

Functionabs is equivalent to the expressionx<0?-x:x , giving the absolute value ofx for all values other
thanTMin.

FunctionaddOKdetermines whether its two arguments can be added together without overflow.

Checking Your Work

The dlc program, a modified version of an ANSI C compiler, will be usedto check your programs for
compliance with the coding style rules. The typical usage is

[you@attu3 lab1-handout]$ ./dlc bits.c

Type./dlc -help for a list of command line options. The README file is also helpful. Some notes on
dlc :

• Thedlc program runs silently unless it detects a problem.

• Don’t include<stdio.h> in yourbits.c file, as it confusesdlc and results in some non-intuitive
error messages.

Check the fileREADMEfor documentation on running thebtest program. You’ll find it helpful to work
through the functions one at a time, testing each one as you go. You can use the-f flag to instructbtest
to test only a single function, e.g.,./btest -f isPositive .

Submitting Your Work

1. Make sure you have included your name inbits.c .

2. Remove any extraneous print statements.

3. On one of the Linux machines, runmake submit from the directory containing your copy of
bits.c :

[you@attu3 lab1-handout]$ make submit
Submitting bits.c...
Submit succeeded. Submitted bits.c at Wed Mar 31 22:31:14 PD T 2010

This will make a copy of yourbits.c file at:

/projects/instr/10sp/<you>/lab1/bits.c

You may alternately create the directorylab1 in /projects/instr/10sp/<you> (Replace
<you> with your user name.) and put a copy ofbits.c there yourself.

If you discover a mistake and want to submit a revised copy, just repeat this command.It will replace
your previously submitted file with the new version.

5


