
CSE 351, Autumn 2010
Lab 7: Writing a Dynamic Storage Allocator

Due: Thursday Dec. 9, 11 PM

1 Instructions

In this lab you will be writing a dynamic storage allocator for C programs, i.e., your own version of the
malloc and free routines.

Start by extracting /projects/instr/10au/cse351/labs/lab7.tar to a (protected) directory
in which you plan to do your work:

tar xvf /projects/instr/10au/cse351/labs/lab7.tar

(You can also obtain the file from the direct link on the web page.)

This will cause a number of files to be unpacked into the directory. The only file you will be modifying
and handing in is mm.c. The mdriver.c program is a driver program that allows you to evaluate the
performance of your solution. Use the command make to generate the driver code and run it with the
command ./mdriver -V. (The -V flag displays helpful summary information.)

1.1 Submitting Your Work

When you have completed the lab, you will hand in only one file (mm.c), which contains your solution. To
turn in mm.c, run make submit and turn in the resulting archive file using the regular Catalyst dropbox,
or just turn in the single mm.c file. For this lab, you can work anywhere there’s a C compiler and make,
but make sure your allocator works on attu, where we’ll be testing it.

2 How to Work on the Lab

Your dynamic storage allocator will consist of the following three functions (and several helper functions),
which are declared in mm.h and defined in mm.c.

int mm_init(void);
void* mm_malloc(size_t size);
void mm_free(void* ptr);

1



The mm.c file we have given you partially implements an allocator using an explicit free list. Your job
is to complete this implementation by filling out mm malloc and mm free. The three main memory
management functions should work as follows:

• mm init (provided): Before calling mm malloc or mm free, the application program (i.e., the
trace-driven driver program that you will use to evaluate your implementation) calls mm init to
perform any necessary initializations, such as allocating the initial heap area. The return value is -1 if
there was a problem in performing the initialization, 0 otherwise.

• mm malloc: The mm malloc routine returns a pointer to an allocated block payload of at least
size bytes. (size t is a type for describing sizes; it’s basically an unsigned integer.) The entire
allocated block should lie within the heap region and should not overlap with any other allocated
chunk.

We will compare your implementation to the version of malloc supplied in the standard C library
(libc). Since the libc malloc always returns payload pointers that are aligned to 8 bytes, your
malloc implementation should do likewise and always return 8-byte aligned pointers.

• mm free: The mm free routine frees the block pointed to by ptr. It returns nothing. This rou-
tine is only guaranteed to work when the passed pointer (ptr) was returned by an earlier call to
mm malloc and has not yet been freed.

These semantics match the the semantics of the corresponding malloc and free routines in libc. Type
man malloc to the shell for complete documentation.

3 Supporting Code

We define a BlockInfo struct designed to be used as a node in a doubly-linked explicit free list, and the
following functions for manipulating free lists.

• BlockInfo* searchFreeList(int reqSize) returns a block of at least the requested size
if one exists (and NULL otherwise).

• void insertFreeBlock(BlockInfo* blockInfo) inserts the given block in the free list
in LIFO manner.

• void removeFreeBlock(BlockInfo* blockInfo) removes the given block from the free
list.

• Helper functions for implementing list functions:

– BlockInfo* getFreeListHead() returns a pointer to the first block in the free list.

– void getFreeListHead(BlockInfo* newHead) takes a pointer to a block and sets
the head of the free list to point to the block referenced by the pointer.

2



In addition, we implement mm init and provide two helper functions implementing important parts of the
allocator:

• void requestMoreSpace(int incr) enlarges the heap by incr bytes (if enough memory
is available on the machine to do so).

• void coalesceFreeBlock(BlockInfo* oldBlock) coalesces any other free blocks ad-
jacent in memory to oldBlock into a single new large block and updates the free list accordingly.

Finally, we use a number of C Preprocessor macros to extract common pieces of code (constants, annoy-
ing casts/pointer manipulation) that might be prone to error. Each is documented in the code. You are
welcome to use macros as well, though the ones already included in mm.c are the only ones we used in
our sample solution, so it’s possible without more. For more info on macros, check the GCC manual at
http://gcc.gnu.org/onlinedocs/cpp/Macros.html.

3.1 Memory System

The memlib.c package simulates the memory system for your dynamic memory allocator. In your allo-
cator, you can call the following functions (if you use the provided code for an explicit free list, most uses
of the memory system calls are already covered).

• void* mem sbrk(int incr): Expands the heap by incr bytes, where incr is a positive non-
zero integer and returns a pointer to the first byte of the newly allocated heap area. The semantics are
identical to the Unix sbrk function, except that mem sbrk accepts only a positive non-zero integer
argument. (Run man sbrk if you want to learn more about what this does in Unix.)

• void* mem heap lo(): Returns a pointer to the first byte in the heap.

• void* mem heap hi(): Returns a pointer to the last byte in the heap.

• size t mem heapsize(): Returns the current size of the heap in bytes.

• size t mem pagesize(): Returns the system’s page size in bytes (4K on Linux systems).

4 The Trace-driven Driver Program

The driver program mdriver.c in the lab7.tar distribution tests your mm.c package for correctness,
space utilization, and throughput. The driver program is controlled by a set of trace files that are included in
the lab7.tar distribution. Each trace file contains a sequence of allocate and free directions that instruct
the driver to call your mm malloc and mm free routines in some sequence. The driver and the trace files
are the same ones we will use when we grade your submitted mm.c file.

The driver mdriver accepts the following command line arguments:

• -t <tracedir>: Look for the default trace files in directory tracedir instead of the default
directory defined in config.h.

3



• -f <tracefile>: Use one particular tracefile for testing instead of the default set of trace-
files.

• -h: Print a summary of the command line arguments.

• -l: Run and measure libc malloc in addition to the student’s malloc package.

• -v: Verbose output. Print a performance breakdown for each tracefile in a compact table.

• -V: More verbose output. Prints additional diagnostic information as each trace file is processed.
Useful during debugging for determining which trace file is causing your malloc package to fail.

5 Programming Rules

• You should not change any of the interfaces in mm.c.

• You should not invoke any memory-management related library calls or system calls. This excludes
the use of malloc, calloc, free, realloc, sbrk, brk or any variants of these calls in your
code. (You may use all the functions in memlib.c, of course.)

• You are not allowed to define any global or static compound data structures such as arrays, structs,
trees, or lists in your mm.c program. You are allowed to declare global scalar variables such as
integers, floats, and pointers in mm.c, but try to keep these to a minimum. (It is possible to complete
the implementation of the explicit free list without adding any global variables.)

• For consistency with the malloc implementation in libc, which returns blocks aligned on 8-byte
boundaries, your allocator must always return pointers that are aligned to 8-byte boundaries. The
driver will enforce this requirement for you.

6 Evaluation

Your grade will be calculated out of a total of 60 points as follows:

• Correctness (45 points). You will receive 5 points for each test performed by the driver program that
your solution passes. (9 tests)

• Style (10 points).

– Your code should use as few global variables as possible (ideally none!).

– Your code should be as clear and concise as possible.

– Since some of the unstructured pointer manipulation inherent to allocators can be confusing,
short inline comments on steps of the allocation algorithms are also recommended. (These will
also help us give you partial credit if you have a partially working implementation.)

– Each function should have a header comment that describes what it does and how it does it.

4



• Performance (5 points). Performance represents a small portion of your grade. We are most concerned
about the correctness of your implementation. For the most part a correct implementation will yield
reasonable performance. Two performance metrics will be used to evaluate your solution:

– Space utilization: The peak ratio between the aggregate amount of memory used by the driver
(i.e., allocated via mm malloc but not yet freed via mm free) and the size of the heap used by
your allocator. The optimal ratio is 1. You should find good policies to minimize fragmentation
in order to make this ratio as close as possible to the optimal.

– Throughput: The average number of operations completed per second.

The driver program summarizes the performance of your allocator by computing a performance index,
P , which is a weighted sum of the space utilization and throughput

P = 0.6U + 0.4min

(
1,

T

Tlibc

)
where U is your space utilization, T is your throughput, and Tlibc is the estimated throughput of libc
malloc on your system on the default traces.1 The performance index favors space utilization over
throughput. You will receive 5(P + 0.1) points, rounded up to the closest whole point. For example,
a solution with a performance index of 0.63 or 63% will receive 4 performance points. Our complete
version of the explicit free list allocator has a performance index between 0.7 and 0.8; it would receive
5 points.

Observing that both memory and CPU cycles are expensive system resources, we adopt this formula to
encourage balanced optimization of both memory utilization and throughput. Ideally, the performance
index will reach P = 1 or 100%. To receive a good performance score, you must achieve a balance
between utilization and throughput.

7 Hints

• Use the mdriver -f option. During initial development, using tiny trace files will simplify debug-
ging and testing. We have included two such trace files (short1-bal.rep and short2-bal.rep)
that you can use for initial debugging.

• Use the mdriver -v and -V options. The -v option will give you a detailed summary for each
trace file. The -V will also indicate when each trace file is read, which will help you isolate errors.

• Compile with gcc -g and use gdb. The -g flag tells gcc to include debugging symbols, so gdb
can follow the source code as it steps through the executable. To use the -g flag with the Makefile,
edit the CFLAGS variable in the Makefile OR just run make like this:

make CFLAGS="-Wall -g"

1The value for Tlibc is a constant in the driver (1800 Kops/s) that is close to the average throughput of the libc allocator on
the same traces, measured on attu. The performance index will vary from system to system based on the local libc allocator
throughput, so run on attu for a good idea of where you stand.

5



This has the effect of replacing the value of CFLAGS as defined in the Makefile with whatever you
type on the command line instead. (Just be sure to quote it if it contains spaces, and do not put spaces
around the = sign.) In general, when debugging, you want to turn off the -O2 (that’s a capital o, not a
zero), since it tells the compiler to perform optimizations that can occasionally make following in the
debugger confusing. A debugger will help you isolate and identify out of bounds memory references.

• Understand every line of the malloc implementation in the textbook. The textbook has a detailed
example of a simple allocator based on an implicit free list. Use this is a point of departure. Don’t
start working on your allocator until you understand everything about the simple implicit list allocator.

• Encapsulate your pointer arithmetic in C preprocessor macros. Pointer arithmetic in memory man-
agers is confusing and error-prone because of all the casting that is necessary. You can reduce the
complexity significantly by writing macros for your pointer operations. See the textbook for exam-
ples.

• Use a profiler. You may find the gprof tool helpful for optimizing performance. (man gprof or
searching online for gprof documentation will get you the basics.) If you use gprof, see the hint
about debugging above for how to pass extra arguments to GCC in the Makefile.

• Start early! It is possible to write an efficient malloc package with a few pages of code. However, we
can guarantee that it will be some of the most difficult and sophisticated code you have written so far
in your career. So start early, and good luck!

7.1 Heap Consistency Checker

Dynamic memory allocators are notoriously tricky beasts to program correctly and efficiently. They are
difficult to program correctly because they involve a lot of untyped pointer manipulation. In addition to the
usual debugging techniques, you may find it helpful to write a heap checker that scans the heap and checks
it for consistency.

Some examples of what a heap checker might check are:

• Is every block in the free list marked as free?

• Are there any contiguous free blocks that somehow escaped coalescing?

• Is every free block actually in the free list?

• Do the pointers in the free list point to valid free blocks?

• Do any allocated blocks overlap?

• Do the pointers in a heap block point to valid heap addresses?

Your heap checker will consist of the function int mm check(void) in mm.c. Feel free to rename it,
break it into several functions, and call it wherever you want. It should check any invariants or consistency
conditions you consider prudent. It returns a nonzero value if and only if your heap is consistent. This is
not required, but may prove useful. When you submit mm.c, make sure to remove any calls to mm check
as they will slow down your throughput.

6


