
CSE 351, Autumn 2010
Lab 5: Buffer Overflow

Due: Sunday November 14, 11 PM

This assignment helps you develop a detailed understanding of the calling stack organization on an IA32
processor. It involves applying a series of buffer overflow attacks on an executable file bufbomb in the lab
directory. (For some reason the textbook authors have a penchant for pyrotechnics.)

Note: In this lab, you will gain firsthand experience with one of the methods commonly used to exploit
security weaknesses in operating systems and network servers. Our purpose is to help you learn about the
runtime operation of programs and to understand the nature of this form of security weakness so that you
can avoid it when you write system code. We do not condone the use of these or any other form of attack to
gain unauthorized access to any system resources. There are criminal statutes governing such activities.

Instructions

Start by extracting /projects/instr/10au/cse351/labs/lab5.tar to a (protected) directory
in which you plan to do your work:

tar xvf /projects/instr/10au/cse351/labs/lab5.tar

(You can also download the file directly from the assignments page on the course web.) This will cause a
number of files to be unpacked in a directory called lab5:

makecookie: Generates a “cookie” based on your username.

bufbomb: The executable you will attack.

bufbomb.c: The important bits of C code used to compile bufbomb.

sendstring: A utility to help convert between string formats.

Makefile: Making a tar file of your exploits for Catalyst submission.

All of these programs are compiled to run on attu.

In the following instructions, we will assume that you have the three programs to a protected local directory,
and that you are executing them in that local directory.
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Make a Cookie

A cookie is a string of eight hexadecimal digits that is (with high probability) unique to you. You can
generate your cookie with the makecookie program giving your user name as the argument. For example:

$ ./makecookie username
0x78327b66

In some of the attacks in this lab, your objective will be to make your cookie show up in places where it
ordinarily would not.

The bufbomb Program

The bufbomb program reads a string from standard input with a function getbuf having the following C
code:

1 int getbuf()
2 {
3 char buf[12];
4 Gets(buf);
5 return 1;
6 }

The function Gets is similar to the standard library function gets—it reads a string from standard input
(terminated by ‘\n’ or end-of-file) and stores it (along with a null terminator) at the specified destination.
In this code, the destination is an array buf having sufficient space for 12 characters.

Neither Gets nor gets has any way to determine whether there is enough space at the destination to store
the entire string. Instead, they simply copy the entire string, possibly overrunning the bounds of the storage
allocated at the destination.

If the string typed by the user to getbuf is no more than 11 characters long, it is clear that getbuf will
return 1, as shown by the following execution example:

$ ./bufbomb
Type string: howdy doody
Dud: getbuf returned 0x1

Typically an error occurs if we type a longer string:

$ ./bufbomb
Type string: This string is too long
Ouch!: You caused a segmentation fault!

As the error message indicates, overrunning the buffer typically causes the program state to be corrupted,
leading to a memory access error. Your task is to be more clever with the strings you feed bufbomb so that
it does more interesting things. These are called exploit strings.
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bufbomb must be run with the -u username argument, which operates the bomb for the indicated user-
name. (We will feed bufbomb your username with -u when grading your solutions.) bufbomb determines
the cookie you will be using based on this argument, just as does the program makecookie, and some of
the key stack addresses you will need to use depend on your cookie.

Formatting Exploit Strings

Your exploit strings will typically contain byte values that do not correspond to the ASCII values for printing
characters. The program sendstring can help you generate these raw strings. It takes as input a hex-
formatted string. In this format, each byte value is represented by two hex digits. For example, the string
“012345” could be entered in hex format as “30 31 32 33 34 35.” (The ASCII code for decimal
digit x is 0x3x. Run man ascii for a full table.) Non-hex digit characters are ignored, including the
blanks in the example shown.

If you generate a hex-formatted exploit string in the file exploit.txt, you can store the raw string in a
file and use I/O redirection to supply it to bufbomb:

$ ./sendstring < exploit.txt > exploit.bytes
$ ./bufbomb -u username < exploit.bytes

Then, when running bufbomb from within gdb:

$ gdb bufbomb
(gdb) run -u username < exploit.bytes

One important point: your exploit string must not contain byte value 0x0A at any intermediate position,
since this is the ASCII code for newline (‘\n’). When Gets encounters this byte, it will assume you
intended to terminate the string. sendstring will warn you if it encounters this byte value.

Tip: You may find it useful to save a series of gdb commands as a text file and then run gdb -x
commands.txt bufbomb. This saves you the trouble of retyping the commands every time you run
gdb.

Generating Byte Codes

You may with to come back and read this section later after looking at the problems.

Using gcc as an assembler and objdump as a disassembler makes it convenient to generate the byte codes
for instruction sequences. For example, suppose we write a file example.s containing the following
assembly code:

# Example of hand-generated assembly code
pushl $0x89abcdef # Push value onto stack
addl $17,%eax # Add 17 to %eax
.align 4 # Following will be aligned on multiple of 4
.long 0xfedcba98 # A 4-byte constant
.long 0x00000000 # Padding
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The code can contain a mixture of instructions and data. Anything to the right of a ‘#’ character is a
comment. We have added an extra word of all 0s to work around a shortcoming in objdump to be described
shortly.

We can now assemble and disassemble this file:

$ gcc -c example.s
$ objdump -d example.o > example.d

The generated file example.d contains the following lines

0: 68 ef cd ab 89 push $0x89abcdef
5: 83 c0 11 add $0x11,%eax
8: 98 cwtl Objdump tries to interpret

9: ba dc fe 00 00 mov $0xfedc,%edx these as instructions

Each line shows a single instruction. The number on the left indicates the starting address (starting with 0),
while the hex digits after the ‘:’ character indicate the byte codes for the instruction. Thus, we can see that
the instruction pushl $0x89ABCDEF has hex-formatted byte code 68 ef cd ab 89.

Starting at address 8, the disassembler gets confused. It tries to interpret the bytes in the file example.o as
instructions, but these bytes actually correspond to data. Note, however, that if we read off the 4 bytes start-
ing at address 8 we get: 98 ba dc fe. This is a byte-reversed version of the data word 0xFEDCBA98.
This byte reversal represents the proper way to supply the bytes as a string, since a little endian machine
lists the least significant byte first. Note also that it only generated two of the four bytes at the end with
value 00. Had we not added this padding, objdump gets even more confused and does not emit all of the
bytes we want.

Finally, we can read off the byte sequence for our code (omitting the final 0’s) as:

68 ef cd ab 89 83 c0 11 98 ba dc fe

Submitting Exploits

You will submit your exploit for each level in a separate text file. Make sure you have each exploit in hex-
format in a file ending in .txt in the same directory as the Makefile. To check your results quickly,
run make test. This will output a summary of your exploits (.txt files) and whether they succeed.

To submit, run make submit to create a tar file. The tar file will contain all .txt files in the same
directory as the Makefile. (It also contains .s files, in case you have a partially working exploit you’d
like us to consider for partial credit.) Upload the tar file in the Catalyst drop box linked to from the website.
You will get full credit for a level as long as one of your submitted exploits successfully attacks that level.

Level 0: Candle (10 pts)

The function getbuf is called within bufbomb by a function test having the following C code:
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1 void test()
2 {
3 int val;
4 volatile int local = 0xdeadbeef;
5 entry_check(3); /* Make sure entered this function properly */
6 val = getbuf();
7 /* Check for corrupted stack */
8 if (local != 0xdeadbeef) {
9 printf("Sabotaged!: the stack has been corrupted\n");

10 }
11 else if (val == cookie) {
12 printf("Boom!: getbuf returned 0x%x\n", val);
13 validate(3);
14 }
15 else {
16 printf("Dud: getbuf returned 0x%x\n", val);
17 }
18 }

When getbuf executes its return statement (line 5 of getbuf), the program ordinarily resumes execution
within function test (at line 8 of this function). Within the file bufbomb, there is a function smoke
having the following C code:

void smoke()
{

entry_check(0); /* Make sure entered this function properly */
printf("Smoke!: You called smoke()\n");
validate(0);
exit(0);

}

Your task is to get bufbomb to execute the code for smoke when getbuf executes its return statement,
rather than returning to test. You can do this by supplying an exploit string that overwrites the stored
return pointer in the stack frame for getbuf with the address of the first instruction in smoke. Note that
your exploit string may also corrupt other parts of the stack state, but this will not cause a problem, since
smoke causes the program to exit directly.

Some Advice:

• All the information you need to devise your exploit string for this level can be determined by exam-
ining a disassembled version of bufbomb.

• Be careful about byte ordering.

• You might want to use gdb to step the program through the last few instructions of getbuf to make
sure it is doing the right thing.

• The placement of buf within the stack frame for getbuf depends on which version of gcc was
used to compile bufbomb. You will need to pad the beginning of your exploit string with the proper
number of bytes to overwrite the return pointer. The values of these bytes can be arbitrary.
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Level 1: Sparkler (20 pts)

Within the file bufbomb there is also a function fizz having the following C code:

void fizz(int val)
{

entry_check(1); /* Make sure entered this function properly */
if (val == cookie) {

printf("Fizz!: You called fizz(0x%x)\n", val);
validate(1);

} else {
printf("Misfire: You called fizz(0x%x)\n", val);

}
exit(0);

}

Similar to Level 0, your task is to get bufbomb to execute the code for fizz rather than returning to test.
In this case, however, you must make it appear to fizz as if you have passed your cookie as its argument.
You can do this by encoding your cookie in the appropriate place within your exploit string.

Some Advice:

• Note that the program won’t really call fizz—it will simply execute its code. This has important
implications for where on the stack you want to place your cookie.

Level 2: Firecracker (30 pts)

For level 2, you will need to run your exploit within gdb for it to succeed. (attu has special memory
protection that prevents execution of memory locations in the stack. Since gdb works a little differently, it
will allow the exploits to succeed.)

A much more sophisticated form of buffer attack involves supplying a string that encodes actual machine
instructions. The exploit string then overwrites the return pointer with the starting address of these instruc-
tions. When the calling function (in this case getbuf) executes its ret instruction, the program will start
executing the instructions on the stack rather than returning. With this form of attack, you can get the pro-
gram to do almost anything. The code you place on the stack is called the exploit code. This style of attack
is tricky, though, because you must get machine code onto the stack and set the return pointer to the start of
this code.

Within the file bufbomb there is a function bang having the following C code:

int global_value = 0;

void bang(int val)
{

entry_check(2); /* Make sure entered this function properly */
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if (global_value == cookie) {
printf("Bang!: You set global_value to 0x%x\n", global_value);
validate(2);

} else {
printf("Misfire: global_value = 0x%x\n", global_value);

}
exit(0);

}

Similar to Levels 0 and 1, your task is to get bufbomb to execute the code for bang rather than return-
ing to test. Before this, however, you must set global variable global_value to your cookie. Your
exploit code should set global_value, push the address of bang on the stack, and then execute a ret
instruction to cause a jump to the code for bang.

Some Advice:

• You can use gdb to get the information you need to construct your exploit string. Set a break-
point within getbuf and run to this breakpoint. Determine parameters such as the address of
global_value and the location of the buffer.

• Determining the byte encoding of instruction sequences by hand is tedious and prone to errors. You
can let tools do all of the work by writing an assembly code file containing the instructions and data
you want to put on the stack. Assemble this file with gcc and disassemble it with objdump. You
should be able to get the exact byte sequence that you will type at the prompt. (A brief example of
how to do this is included in the Generating Byte Codes section.)

• Keep in mind that your exploit string depends on your machine, your compiler, and even your cookie.
Do all of your work on attu, and make sure you include your username on the command line to
bufbomb.

• Our solution requires 16 bytes of exploit code. Fortunately, there is sufficient space on the stack, be-
cause we can overwrite the stored value of %ebp. This stack corruption will not cause any problems,
since bang causes the program to exit directly.

• Watch your use of address modes when writing assembly code. Note that movl $0x4, %eax
moves the value 0x00000004 into register %eax; whereas movl 0x4, %eax moves the value
at memory location 0x00000004 into %eax. Since that memory location is usually undefined, the
second instruction will cause a segfault!

• Do not attempt to use either a jmp or a call instruction to jump to the code for bang. These
instructions uses PC-relative addressing, which is very tricky to set up correctly. Instead, push an
address on the stack and use the ret instruction.

Extra Credit - Level 3: Dynamite (5 pts)

For level 3, you will need to run your exploit within gdb for it to succeed. (attu has special memory
protection that prevents execution of memory locations in the stack. Since gdb works a little differently, it
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will allow the exploits to succeed.)

Our preceding attacks have all caused the program to jump to the code for some other function, which
then causes the program to exit. As a result, it was acceptable to use exploit strings that corrupt the stack,
overwriting the saved value of register %ebp and the return pointer.

The most sophisticated form of buffer overflow attack causes the program to execute some exploit code
that patches up the stack and makes the program return to the original calling function (test in this case).
The calling function is oblivious to the attack. This style of attack is tricky, though, since you must: 1) get
machine code onto the stack, 2) set the return pointer to the start of this code, and 3) undo the corruptions
made to the stack state.

Your job for this level is to supply an exploit string that will cause getbuf to return your cookie back to
test, rather than the value 1. You can see in the code for test that this will cause the program to go
“Boom!.” Your exploit code should set your cookie as the return value, restore any corrupted state, push
the correct return location on the stack, and execute a ret instruction to really return to test.

Some Advice:

• In order to overwrite the return pointer, you must also overwrite the saved value of %ebp. However, it
is important that this value is correctly restored before you return to test. You can do this by either
1) making sure that your exploit string contains the correct value of the saved %ebp in the correct
position, so that it never gets corrupted, or 2) restore the correct value as part of your exploit code.
You’ll see that the code for test has some explicit tests to check for a corrupted stack.

• You can use gdb to get the information you need to construct your exploit string. Set a breakpoint
within getbuf and run to this breakpoint. Determine parameters such as the saved return address
and the saved value of %ebp.

• Again, let tools such as GCC and OBJDUMP do all of the work of generating a byte encoding of the
instructions.

• Keep in mind that your exploit string depends on your machine, your compiler, and even your cookie.
Do all of your work on a Fish machine, and make sure you include the proper username on the
command line to bufbomb.

Reflect on what you have accomplished. You caused a program to execute machine code of your own design.
You have done so in a sufficiently stealthy way that the program did not realize that anything was amiss.
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