
1

Transactions

Terminology

Two types of query workloads:

▪Online Analytical Processing (OLAP)
• SELECT-FROM-WHERE are complex

• No INSERT/UPDATE/DELTE, or very few

• For data visualization (eg Tableau), or interactive SQL

▪Online Transaction Processing (OLTP):
• Lots of INSERT/UPDATE/DELETE

• SELECT-FROM-WHERE are very simple

• Used in Java/Python apps

February 21, 2025 Serializability 2

Next few

lectures

We focused

on these

Applications and Databases

Almost every app uses some database

▪General purpose language (Java, Python)

▪App issues SQL commands to RDBMS

▪Usually, multiple apps (users) access same DB

February 21, 2025 Serializability 3

Simple Banking App in Python

▪Manage user accounts:
• Names

• Balances

• …

▪Allow users to:
• Inquire balance

• Deposit cash/check

• Withdraw cash

• Transfer money

February 21, 2025 Serializability 4

February 21, 2025 Serializability 5

Simple Banking App in Python

CREATE TABLE Acc (

 Usr TEXT PRIMARY KEY,

 Balance INT);

SQL
Usr Balance

Alice 300

Bob 600

Carol 400

Acc

February 21, 2025 Serializability 6

Simple Banking App in Python

CREATE TABLE Acc (

 Usr TEXT PRIMARY KEY,

 Balance INT);

import sqlite3

con = sqlite3.connect(”/path/to/bank.db",

 autocommit=True)

cur = con.cursor()

res = cur.execute("SELECT * FROM acc")

answ = res.fetchall()

print("The answer is: ", answ)

* Documentation here https://docs.python.org/3/library/sqlite3.html

SQL

Python*

Usr Balance

Alice 300

Bob 600

Carol 400

Acc

https://docs.python.org/3/library/sqlite3.html

February 21, 2025 Serializability 7

Simple Banking App in Python

CREATE TABLE Acc (

 Usr TEXT PRIMARY KEY,

 Balance INT);

import sqlite3

con = sqlite3.connect("/path/to/bank.db",

 autocommit=True)

cur = con.cursor()

res = cur.execute("SELECT * FROM acc")

answ = res.fetchall()

print("The answer is: ", answ)

* Documentation here https://docs.python.org/3/library/sqlite3.html

SQL

Python*

Usr Balance

Alice 300

Bob 600

Carol 400

Acc

SQL query

sent to DBMS

https://docs.python.org/3/library/sqlite3.html

February 21, 2025 Serializability 8

DEMO:

 txn_demo_create_table.sql

 txn_demo_simple_1.py

Terminology: Client/Server

▪Client:
• The program running the application

• In our example: a python program running on laptop

• In general: a big program on laptop or in the cloud

▪Server:
• The database management system

• In our example it is Sqlite on laptop

• In general: any RDBMS, on remote server or in cloud

February 21, 2025 Serializability 9

February 21, 2025 Serializability 10

Parameterized Query

res = cur.execute("SELECT * FROM acc")

answ = res.fetchall()

for row in answ:

 usr = row[0]

 bal = row[1]

 b = float(bal)

 i = b*0.04

 cur.execute("UPDATE acc

 SET balance=?

 WHERE usr=?",

 [b+i, usr])

Give every user a 4% interest

February 21, 2025 Serializability 11

Parameterized Query

res = cur.execute("SELECT * FROM acc")

answ = res.fetchall()

for row in answ:

 usr = row[0]

 bal = row[1]

 b = float(bal)

 i = b*0.04

 cur.execute("UPDATE acc

 SET balance=?

 WHERE usr=?",

 [b+i, usr])

Give every user a 4% interest
Read data

February 21, 2025 Serializability 12

Parameterized Query

res = cur.execute("SELECT * FROM acc")

answ = res.fetchall()

for row in answ:

 usr = row[0]

 bal = row[1]

 b = float(bal)

 i = b*0.04

 cur.execute("UPDATE acc

 SET balance=?

 WHERE usr=?",

 [b+i, usr])

Give every user a 4% interest

Parameterized query

February 21, 2025 Serializability 13

DEMO:

 txn_demo_simple_2.py

Simple Banking App in Python

Read a username

Repeat:

▪Read a command

▪Execute that command
• Check the balance

• Deposit money

• Withdraw money

• Transfer between accounts

February 21, 2025 Serializability 14

February 21, 2025 Serializability 15

Simple Banking App in Python

usr = input("Enter the user name: ")

res = cur.execute("SELECT *

 FROM acc

 WHERE usr=?",

 [usr])

if res.fetchone() is None:

 print("Wrong user. Exit")

 exit()

Read a username, check if exists:

We check

that the user

exists

February 21, 2025 Serializability 16

Simple Banking App in Python

while True:

 cmd = input()

 if cmd == “b”: ... check balance

 elif cmd == “d”: ... deposit

 elif cmd == “w”: ... withdraw

 elif cmd == “t”: ... transfer

 elif cmd == “q”: exit()

A simple loop for executing commants:

February 21, 2025 Serializability 17

Simple Banking App in Python

res = cur.execute("SELECT balance

 FROM acc

 WHERE usr=?",

 [usr])

row = res.fetchone()

b = row[0]

print(“Balance is”, b)

Check balance

Fetch one

row/tuple

from output

First element

of the tuple

February 21, 2025 Serializability 18

Simple Banking App in Python

... Read the balance b as before

amount = input() # amount to be deposited

a = int(amount)

b1 = b+a # the new balance

cur.execute("UPDATE acc

 SET balance = ?

 WHERE usr=?",

 [b1,usr])

Deposit

February 21, 2025 Serializability 19

Simple Banking App in Python

Withdraw

... Read the balance b as before

amount = input() # amount to be withdrawn

a = int(amount)

#

THE BANK DISPENSES MONEY HERE!

#

b1 = b-a # the new balance

cur.execute("UPDATE acc

 SET balance = ?

 WHERE usr=?",

 [b1,usr])

February 21, 2025 Serializability 20

Simple Banking App in Python

... Read the balance b as before

amount = input() # amount to be withdrawn

a = int(amount)

#

THE BANK DISPENSES MONEY HERE!

#

b1 = b-a # the new balance

cur.execute("UPDATE acc

 SET balance = ?

 WHERE usr=?",

 [b1,usr])

Withdraw

We need to check

if there is enough

money!

February 21, 2025 Serializability 21

Simple Banking App in Python

... Read the balance b as before

amount = input() # amount to be withdrawn

a = int(amount)

if a>b: # error: overdraft!

 exit()

#

THE BANK DISPENSES MONEY HERE!

#

b1 = b-a # the new balance

cur.execute("UPDATE acc

 SET balance = ?

 WHERE user=?",

 [b1,usr])

Withdraw

Better now

February 21, 2025 Serializability 22

Simple Banking App in Python

... Read the balance b as before

amount = input() # amount to be transferred

a = int(amount)

if a>b: # error: overdraft!

 exit()

usrt = input() # to whom to transfer

... Read the balance bt of usrt

b1 = b-a

bt1 = bt+a

cur.execute("UPDATE acc

 SET balance = ?

 WHERE user=?",

 [b1,usr])

cur.execute("UPDATE acc

 SET balance = ?

 WHERE user=?",

 [bt1,usrt])

Transfer

February 21, 2025 Serializability 23

DEMO:

 txn_demo.py

 single user

Discussion so Far

▪ The users Alice, Bob, … don’t need to know SQL,
but interact with the app;

▪ The app usually has a nice User Interface (UI)

▪ The database is persistent: it retains the data for a
long period of time

February 21, 2025 Serializability 24

February 21, 2025 Serializability 25

Concurrency

Single-Server

▪ The database is accessed by a single user:

▪RDBMS on same laptop, or a server, or the cloud

Transactions: Serializability 26

Application

Database

Client-Server or Two-Tier Architecture

▪Multiple users access the database concurrently

Transactions: Serializability 27

Application

Database

Application

. . .

February 21, 2025 Serializability 28

DEMO:

 txn_demo.py

 multiple users

txn_demo_txn_no.sql

February 21, 2025 Serializability 29

What We Have Seen

-- Alice withdraws $100

b = SELECT balance

 FROM acc

 WHERE user = ‘Alice’;

-- Is b >= 100? Yes:

-- Dispense money

UPDATE acc SET balance=b-100

WHERE user = ‘Alice’

How Alice and Bob colluded to steal $100 (simplified, using only SQL)

Current balance of Alice is $100:

-- Bob impersonates Alice

-- and also withdraws $100

b = SELECT balance

 FROM acc

 WHERE user = ‘Alice’;

-- Is b >= 100? Yes:

-- Dispense money

UPDATE acc SET balance=b-100

WHERE user = ‘Alice’

time

Discussion

▪Users Alice, Bob, … can access the same
database concurrently

▪ This may lead to the database being inconsistent,
which is a big problem

February 21, 2025 Serializability 30

February 21, 2025 Serializability 31

Consistency

Database Consistency

▪Consistency: a property that should always hold
• Every account balance is ≥0

• The sum of all balances is constant,
or changes exactly by the amount deposited/withdrawn

▪ If we write the application correctly, we expect the
database to remain consistent

▪But (without transactions!) things can go wrong
during concurrency. Next.

February 21, 2025 Serializability 32

February 21, 2025 Serializability 33

Conflicts Between

Concurrent Operations

Common Concurrency Conflicts

▪Dirty/Inconsistent Read

▪Unrepeatable Read

▪Phantom Read

▪ Lost Update

These have popular names, but all sorts of other
conflicts can happen. Let’s see these.

February 21, 2025 Serializability 34

Transactions: Serializability 35

Dirty/Inconsistent Read

Manager wants to

balance project budgets

CEO wants to check

company balance

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

A inconsistent read happens when

data is read "during" a write

Transactions: Serializability 36

Dirty/Inconsistent Read

-$10mil from project A

+$7mil to project B

+$3mil to project C

SELECT SUM(money) …

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

Manager wants to

balance project budgets

CEO wants to check

company balance

A inconsistent read happens when

data is read "during" a write

Transactions: Serializability 37

Dirty/Inconsistent Read

-$10mil from project A

+$7mil to project B

+$3mil to project C

SELECT SUM(money) …

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

Manager wants to

balance project budgets

CEO wants to check

company balance

A inconsistent read happens when

data is read "during" a write

Transactions: Serializability 38

Dirty/Inconsistent Read

-$10mil from project A

+$7mil to project B

+$3mil to project C

SELECT SUM(money) …

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

Manager wants to

balance project budgets

CEO wants to check

company balance

A inconsistent read happens when

data is read "during" a write

Transactions: Serializability 39

Dirty/Inconsistent Read

-$10mil from project A

+$7mil to project B

+$3mil to project C

SELECT SUM(money) …

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

Manager wants to

balance project budgets

CEO wants to check

company balance

Database is

temporarily

inconsistent

A inconsistent read happens when

data is read "during" a write

Transactions: Serializability 40

Unrepeatable Read

SELECT inventory

FROM Products

WHERE pid = 1

SELECT inventory*price

FROM Products

WHERE pid = 1

UPDATE Products

SET inventory = 0

WHERE pid = 1

Might get a value that doesn’t

correspond to previous read!

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

Accountant wants to

check company assets

Warehouse updates

inventory levels

An unrepeatable read happens when

data read twice differs

Transactions: Serializability 41

Phantom Read

Accountant wants to

check company assets

SELECT *

FROM products

WHERE price < 20.00

SELECT *

FROM products

WHERE price < 10.00

INSERT INTO Products

VALUES (‘nuts’, 10, 8.99)

Returns a “new” row that should

have been in the last read!

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

Warehouse receives new

products

A phantom read happens when

a record is inserted/delete during reads

Transactions: Serializability 42

Lost Update

User 1 wants to pool

money into account 1

User 2 wants to pool money

into account 2

Account 1 = 100, Account 2 = 100

ti
m

e

A lost update happens

when a write "disappears"

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

Transactions: Serializability 43

Lost Update

Set account 1 = 200

Set account 2 = 0

Account 1 = 100, Account 2 = 100

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

User 1 wants to pool

money into account 1

User 2 wants to pool money

into account 2

A lost update happens

when a write "disappears"

Transactions: Serializability 44

Lost Update

Set account 2 = 200

Set account 1 = 200

Set account 2 = 0

Set account 1 = 0

Account 1 = 100, Account 2 = 100

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

User 1 wants to pool

money into account 1

User 2 wants to pool money

into account 2

A lost update happens

when a write "disappears"

Transactions: Serializability 45

Lost Update

Set account 2 = 200

Set account 1 = 200

Set account 2 = 0

Set account 1 = 0

Account 1 = 100, Account 2 = 100

ti
m

e

At end: Account 1 = 0, Account 2 = 200

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

User 1 wants to pool

money into account 1

User 2 wants to pool money

into account 2

A lost update happens

when a write "disappears"

Transactions: Serializability 46

Lost Update

User 1 wants to pool

money into account 1

User 2 wants to pool money

into account 2

Set account 2 = 200

Set account 1 = 200

Set account 2 = 0

Set account 1 = 0

Account 1 = 100, Account 2 = 100

ti
m

e

At end: Account 1 = 0, Account 2 = 0

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

A lost update happens

when a write "disappears"

February 21, 2025 Serializability 47

Transactions

Transactions

▪A transaction is a set of read and writes to the
database that execute all or nothing

February 21, 2025 Serializability 48

BEGIN TRANSACTION

 ...SQL Statements

COMMIT

BEGIN TRANSACTION

 ...SQL Statements

ROLLBACK

No part of txn is executedEntire txn is executed

Transactions

▪Prevent all concurrency control conflicts

▪Easy to use in app: group statements in txns

▪ Let’s see how they work

February 21, 2025 Serializability 49

February 21, 2025 Serializability 50

DEMO:

txn_demo_txn_yes.sql

Transactions

▪Prevent all concurrency control conflicts

▪Easy to use in app: group statements in txns

▪What property does a TXN satisfy?

• Informally: “TXNs have ACID properties”

• Formally: “execution of TXNs must be serializable”

February 21, 2025 Serializability 51

ACID

February 21, 2025 Serializability 52

Transactions are ACID

▪Atomic

▪Consistent

▪ Isolated

▪Durable

February 21, 2025 Serializability 53

Atomic

▪A set of operations is atomic if either all its
operations happen, or none happens

System

crashed

here

…

Update account1

…

…

…
Update account2

…

Recovery manager (not discussed in this class)

February 21, 2025 Serializability 54

Consistent

Assume TXN is “correct” (this is app specific)

▪ If TXN starts with the DB in a consistent state,
it must end leaving the DB in a consistent state

February 21, 2025 Serializability 55

It is a consequence of Atomicity and Isolation

Isolated

▪ The effect of the transaction on the database is as
if it were running alone on the database

Concurrency Control Manager

Interleaved

actions

should not

interfere

February 21, 2025 Serializability 56

TXN1:

…

Update account1

…

…
…

Update account2

…

TXN2:

…

Update account1

…

…
…

Update account2

…

Durable

▪Data should be stored persistently on disk, always
in a consistent state

February 21, 2025 Serializability 57

Discussion

▪ACID properties: popular job interview question

▪ “A” and “I” matter
• Atomicity: recover from crashes

• Isolation: concurrency control

▪ACID is informal.

Will discuss the formal property next

February 21, 2025 Serializability 58

444

344 and 444

Serializability

February 21, 2025 Serializability 59

Problem Definition

▪ The RDBMs runs several TXNs: T1, T2, T3, …

▪ It could run T1 to completion before starting T2,
 then run T2 to completion before starting T3,
 then run T3…
 …

February 21, 2025 Serializability 60

Problem Definition

▪ The RDBMs runs several TXNs: T1, T2, T3, …

▪ It could run T1 to completion before starting T2,
 then run T2 to completion before starting T3,
 then run T3…
 …
But this has poor performance Why?

February 21, 2025 Serializability 61

Problem Definition

▪ The RDBMs runs several TXNs: T1, T2, T3, …

▪ It could run T1 to completion before starting T2,
 then run T2 to completion before starting T3,
 then run T3…
 …
But this has poor performance

▪ Instead: interleave commands from multiple TXNs

Why?

February 21, 2025 Serializability 62

When is the interleaving ”safe”?

Simplified Data Model for TXN

▪Database = a set of “elements”

▪ TXN = a sequence of Reads/Writes of elements

February 21, 2025 Serializability 63

Element is usually

a record, or a disk block

Example

T1

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

February 21, 2025 Serializability 64

Example

T1

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

A,B are

elements

in the DB

February 21, 2025 Serializability 65

Example

T1

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

A,B are

elements

in the DB

t is a local

variable

in the app

February 21, 2025 Serializability 66

Example

T1

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

T2

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

A,B are

elements

in the DB

t is a local

variable

in the app

February 21, 2025 Serializability 67

Definitions

▪An interleaving of READ/WRITEs from different
TXNs is called a schedule

February 21, 2025 Serializability 68

Definitions

▪An interleaving of READ/WRITEs from different
TXNs is called a schedule

▪Definition: a serial schedule is a schedule where
all operations of transactions come before those of
the next transaction

February 21, 2025 Serializability 69

Definitions

▪An interleaving of READ/WRITEs from different
TXNs is called a schedule

▪Definition: a serial schedule is a schedule where
all operations of transactions come before those of
the next transaction

▪Definition: a serializable schedule is a schedule
that is equivalent to a serial schedule

February 21, 2025 Serializability 70

A Schedule

T1 T2

READ(A, t)

READ(A, s)

s := s*2

t := t+100

WRITE(A, t)

WRITE(A,s)

READ(B,s)

s := s*2

READ(B, t)

WRITE(B,s)

t := t+100

WRITE(B,t)

ti
m

e

February 21, 2025 Serializability 71

A Serial Schedule

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

ti
m

e

February 21, 2025 Serializability 72

A Serial Schedule

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

A = 2

B = 2

ti
m

e

February 21, 2025 Serializability 73

A Serial Schedule

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

A = 2

B = 2

A = 102

B = 102

ti
m

e

February 21, 2025 Serializability 74

A Serial Schedule

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

A = 2

B = 2

A = 102

B = 102

A = 204

B = 204

ti
m

e

February 21, 2025 Serializability 75

The Other Serial Schedule

T1 T2

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

A = 2

B = 2

A = 4

B = 4

A = 104

B = 104

ti
m

e

February 21, 2025 Serializability 76

A Serializable Schedule

A = 2

B = 2

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B, t)

t := t+100

WRITE(B,t)

READ(B,s)

s := s*2

WRITE(B,s)

February 21, 2025 Serializability 77

A Serializable Schedule

A = 2

B = 2

A = 102

B = 2

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B, t)

t := t+100

WRITE(B,t)

READ(B,s)

s := s*2

WRITE(B,s)

February 21, 2025 Serializability 78

A Serializable Schedule

A = 2

B = 2

A = 102

B = 2

A = 204

B = 2

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B, t)

t := t+100

WRITE(B,t)

READ(B,s)

s := s*2

WRITE(B,s)

February 21, 2025 Serializability 79

A Serializable Schedule

A = 2

B = 2

A = 102

B = 2

A = 204

B = 2

A = 204

B = 102

A = 204

B = 204

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B, t)

t := t+100

WRITE(B,t)

READ(B,s)

s := s*2

WRITE(B,s)

February 21, 2025 Serializability 80

A Serializable Schedule

This is NOT a serial schedule

It is a serializable schedule.

A = 2

B = 2

A = 102

B = 2

A = 204

B = 2

A = 204

B = 102

A = 204

B = 204

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B, t)

t := t+100

WRITE(B,t)

READ(B,s)

s := s*2

WRITE(B,s)

February 21, 2025 Serializability 81

A Non-Serializable Schedule

A = 2

B = 2

A = 102

B = 2

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

READ(B, t)

t := t+100

WRITE(B,t)

February 21, 2025 Serializability 82

A Non-Serializable Schedule

A = 2

B = 2

A = 102

B = 2

A = 204

B = 2

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

READ(B, t)

t := t+100

WRITE(B,t)

February 21, 2025 Serializability 83

A Non-Serializable Schedule

A = 2

B = 2

A = 102

B = 2

A = 204

B = 2

A = 204

B = 4

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

READ(B, t)

t := t+100

WRITE(B,t)

February 21, 2025 Serializability 84

A Non-Serializable Schedule

A = 2

B = 2

A = 102

B = 2

A = 204

B = 2

A = 204

B = 4

A = 204

B = 104

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

READ(B, t)

t := t+100

WRITE(B,t)

February 21, 2025 Serializability 85

A Non-Serializable Schedule

A = 2

B = 2

A = 102

B = 2

A = 204

B = 2

A = 204

B = 4

A = 204

B = 104

Should be

impossible!

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

READ(B, t)

t := t+100

WRITE(B,t)

February 21, 2025 Serializability 86

Discussion

▪ If the schedule is serial, then nothing can go wrong

▪Same for a serializable schedule

▪Concurrency Control Manager of the RDBMs must
ensure that the schedule is serializable

How do we check that a schedule is serializable?

February 21, 2025 Serializability 87

Conflict Serializability

February 21, 2025 Serializability 88

Outline

We further simplify the model:

▪A transaction is a sequence of reads and writes

▪We ignore operations between reads and writes

February 21, 2025 Serializability 89

Example

T1

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

T1

R(A)

W(A)

R(B)

W(B)

Also: R1(A), W1(A), R1(B), W1(B)

February 21, 2025 Serializability 90

Example

▪ T1 then T2

T1 T2

R(A)

W(A)

R(B)

W(B)

R(A)

W(A)

R(B)

W(B)

ti
m

e

R1(A), W1(A), R1(B), W1(B), R2(A), W2(A), R2(B), W2(B)

February 21, 2025 Serializability 91

Example

▪ T2 then T1

T1 T2

R(A)

W(A)

R(B)

W(B)

R(A)

W(A)

R(B)

W(B)

R2(A), W2(A), R2(B), W2(B), R1(A), W1(A), R1(B), W1(B)

February 21, 2025 Serializability 92

Example

▪Serializable to T1 then T2

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

R1(A), W1(A), R2(A), W2(A), R1(B), W1(B), R2(B), W2(B)

February 21, 2025 Serializability 93

Example

▪Not serializable

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

R1(A), W1(A), R2(A), W2(A), R2(B), W2(B), R1(B), W1(B)

February 21, 2025 Serializability 94

Main Idea

▪ To check if a schedule is serializable, try swapping
operations until it becomes serial:

▪But we only swap if the new schedule is equivalent

▪A pair is in conflict if it cannot be swapped

… Ri(A), Wj(B), … … Wj(B), Ri(A), …

February 21, 2025 Serializability 95

Conflicts

1. Any pair of ops of the same TXN are in conflict

2. Ri(X), Wj(X) forms a read-write conflict

3. Wi(X), Rj(X) forms a write-read conflict

4. Wi(X), Wj(X) forms a write-write conflict

February 21, 2025 Serializability 96

Conflict Serializable Schedule

A schedule is conflict serializable if it can be

transformed into a serial schedule by a series of

swappings of adjacent non-conflicting actions

February 21, 2025 Serializability 97

Conflict Serializable Schedule Example

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

February 21, 2025 Serializability 98

Conflict Serializable Schedule Example

T1 T2

R(A)

W(A)

R(A)

R(B)

W(A)

W(B)

R(B)

W(B)

February 21, 2025 Serializability 99

Conflict Serializable Schedule Example

T1 T2

R(A)

W(A)

R(B)

R(A)

W(A)

W(B)

R(B)

W(B)

February 21, 2025 Serializability 100

Conflict Serializable Schedule Example

T1 T2

R(A)

W(A)

R(B)

R(A)

W(B)

W(A)

R(B)

W(B)

February 21, 2025 Serializability 101

Conflict Serializable Schedule Example

T1 T2

R(A)

W(A)

R(B)

W(B)

R(A)

W(A)

R(B)

W(B)

February 21, 2025 Serializability 102

Non Conflict Serializable Schedule Example

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

February 21, 2025 Serializability 103

Non Conflict Serializable Schedule Example

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

R(B)

W(B)

W(B)

Conflict rule broken!

February 21, 2025 Serializability 104

Serializable vs Conflict Serializable

February 21, 2025 Serializability 105

Conflict serializability ignores what TXN does between the R’s and the W’s.

It assumes the worst / most complicated updates to the data

Serializable vs Conflict Serializable

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

AA*2

BB*2

BB+100

AA+100

Not serializable nor conflict serializable

February 21, 2025 Serializability 106

Conflict serializability ignores what TXN does between the R’s and the W’s.

It assumes the worst / most complicated updates to the data

Serializable vs Conflict Serializable

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

AA+2

BB+2

Serializable (because 100+2 = 2+100)

But not conflict serializable, because it assumes the worst

February 21, 2025 Serializability 107

BB+100

AA+100

Conflict serializability ignores what TXN does between the R’s and the W’s.

It assumes the worst / most complicated updates to the data

Discussion

▪Most RDBMs enforce conflict-serializability

▪Next: how to test for conflict-serializability

February 21, 2025 Serializability 108

The Precedence Graph

February 21, 2025 Serializability 109

Testing for Conflict Serializability

Fix a schedule

▪Definition. The precedence graph has one node
for every TXN in the schedule, and one edge for
every pair of conflicting ops

▪ Theorem. The schedule is conflict-serializable iff
the precedence graph has no cycles

February 21, 2025 Serializability 110

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

February 21, 2025 Serializability 111

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

February 21, 2025 Serializability 112

Nodes:

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

February 21, 2025 Serializability 113

Edges:

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r1(B)

February 21, 2025 Serializability 114

Edges:

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r1(B)

February 21, 2025 Serializability 115

Edges:

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r1(B) No edge because

no conflict (A != B)

February 21, 2025 Serializability 116

Edges:

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w2(A)

February 21, 2025 Serializability 117

Edges:

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w2(A) No edge because

 same txn (2)

February 21, 2025 Serializability 118

Edges:

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r3(A) ?

February 21, 2025 Serializability 119

Edges:

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w1(B) ?

February 21, 2025 Serializability 120

Edges:

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w3(A) ?

February 21, 2025 Serializability 121

Edges:

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w3(A) Edge! Conflict from

T2 to T3

February 21, 2025 Serializability 122

Edges:

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w3(A) Edge! Conflict from

T2 to T3

February 21, 2025 Serializability 123

Edges:

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r2(B) ?

A

And so on until compared every pair of actions…

February 21, 2025 Serializability 124

Edges:

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

Repeating the same directed edge not necessary

February 21, 2025 Serializability 125

Edges:

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

February 21, 2025 Serializability 126

Example 2

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

February 21, 2025 Serializability 127

Example 2

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

February 21, 2025 Serializability 128

Example 2

1 2 3

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

February 21, 2025 Serializability 129

Example 2

1 2 3

This schedule is NOT conflict-serializable

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

February 21, 2025 Serializability 130

Takeaways

▪ Transactions: “…all or nothing…”

▪Simplified data model: READ/WRITE elements

▪Schedules:
• Serial

• Serializable

• Conflict serializable

▪Precedence graph

February 21, 2025 Serializability 131

	Slide 1
	Slide 2: Terminology
	Slide 3: Applications and Databases
	Slide 4: Simple Banking App in Python
	Slide 5: Simple Banking App in Python
	Slide 6: Simple Banking App in Python
	Slide 7: Simple Banking App in Python
	Slide 8
	Slide 9: Terminology: Client/Server
	Slide 10: Parameterized Query
	Slide 11: Parameterized Query
	Slide 12: Parameterized Query
	Slide 13
	Slide 14: Simple Banking App in Python
	Slide 15: Simple Banking App in Python
	Slide 16: Simple Banking App in Python
	Slide 17: Simple Banking App in Python
	Slide 18: Simple Banking App in Python
	Slide 19: Simple Banking App in Python
	Slide 20: Simple Banking App in Python
	Slide 21: Simple Banking App in Python
	Slide 22: Simple Banking App in Python
	Slide 23
	Slide 24: Discussion so Far
	Slide 25
	Slide 26: Single-Server
	Slide 27: Client-Server or Two-Tier Architecture
	Slide 28
	Slide 29: What We Have Seen
	Slide 30: Discussion
	Slide 31
	Slide 32: Database Consistency
	Slide 33
	Slide 34: Common Concurrency Conflicts
	Slide 35: Dirty/Inconsistent Read
	Slide 36: Dirty/Inconsistent Read
	Slide 37: Dirty/Inconsistent Read
	Slide 38: Dirty/Inconsistent Read
	Slide 39: Dirty/Inconsistent Read
	Slide 40: Unrepeatable Read
	Slide 41: Phantom Read
	Slide 42: Lost Update
	Slide 43: Lost Update
	Slide 44: Lost Update
	Slide 45: Lost Update
	Slide 46: Lost Update
	Slide 47
	Slide 48: Transactions
	Slide 49: Transactions
	Slide 50
	Slide 51: Transactions
	Slide 52
	Slide 53: Transactions are ACID
	Slide 54: Atomic
	Slide 55: Consistent
	Slide 56: Isolated
	Slide 57: Durable
	Slide 58: Discussion
	Slide 59
	Slide 60: Problem Definition
	Slide 61: Problem Definition
	Slide 62: Problem Definition
	Slide 63: Simplified Data Model for TXN
	Slide 64: Example
	Slide 65: Example
	Slide 66: Example
	Slide 67: Example
	Slide 68: Definitions
	Slide 69: Definitions
	Slide 70: Definitions
	Slide 71: A Schedule
	Slide 72: A Serial Schedule
	Slide 73: A Serial Schedule
	Slide 74: A Serial Schedule
	Slide 75: A Serial Schedule
	Slide 76: The Other Serial Schedule
	Slide 77: A Serializable Schedule
	Slide 78: A Serializable Schedule
	Slide 79: A Serializable Schedule
	Slide 80: A Serializable Schedule
	Slide 81: A Serializable Schedule
	Slide 82: A Non-Serializable Schedule
	Slide 83: A Non-Serializable Schedule
	Slide 84: A Non-Serializable Schedule
	Slide 85: A Non-Serializable Schedule
	Slide 86: A Non-Serializable Schedule
	Slide 87: Discussion
	Slide 88
	Slide 89: Outline
	Slide 90: Example
	Slide 91: Example
	Slide 92: Example
	Slide 93: Example
	Slide 94: Example
	Slide 95: Main Idea
	Slide 96: Conflicts
	Slide 97: Conflict Serializable Schedule
	Slide 98: Conflict Serializable Schedule Example
	Slide 99: Conflict Serializable Schedule Example
	Slide 100: Conflict Serializable Schedule Example
	Slide 101: Conflict Serializable Schedule Example
	Slide 102: Conflict Serializable Schedule Example
	Slide 103: Non Conflict Serializable Schedule Example
	Slide 104: Non Conflict Serializable Schedule Example
	Slide 105: Serializable vs Conflict Serializable
	Slide 106: Serializable vs Conflict Serializable
	Slide 107: Serializable vs Conflict Serializable
	Slide 108: Discussion
	Slide 109
	Slide 110: Testing for Conflict Serializability
	Slide 111: Example 1
	Slide 112: Example 1
	Slide 113: Example 1
	Slide 114: Example 1
	Slide 115: Example 1
	Slide 116: Example 1
	Slide 117: Example 1
	Slide 118: Example 1
	Slide 119: Example 1
	Slide 120: Example 1
	Slide 121: Example 1
	Slide 122: Example 1
	Slide 123: Example 1
	Slide 124: Example 1
	Slide 125: Example 1
	Slide 126: Example 1
	Slide 127: Example 2
	Slide 128: Example 2
	Slide 129: Example 2
	Slide 130: Example 2
	Slide 131: Takeaways

