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Transactions



Terminology

Two types of query workloads:

▪Online Analytical Processing (OLAP)
• SELECT-FROM-WHERE are complex

• No INSERT/UPDATE/DELTE, or very few

• For data visualization (eg Tableau), or interactive SQL

▪Online Transaction Processing (OLTP):
• Lots of INSERT/UPDATE/DELETE

• SELECT-FROM-WHERE are very simple

• Used in Java/Python apps
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Next few

lectures

We focused

on these



Applications and Databases

Almost every app uses some database

▪General purpose language (Java, Python) 

▪App issues SQL commands to RDBMS

▪Usually, multiple apps (users) access same DB

February 21, 2025 Serializability 3



Simple Banking App in Python

▪Manage user accounts:
• Names

• Balances

• …

▪Allow users to:
• Inquire balance

• Deposit cash/check

• Withdraw cash

• Transfer money
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Simple Banking App in Python

CREATE TABLE Acc (

   Usr TEXT PRIMARY KEY,

   Balance INT);

SQL
Usr Balance

Alice 300

Bob 600

Carol 400

Acc
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Simple Banking App in Python

CREATE TABLE Acc (

   Usr TEXT PRIMARY KEY,

   Balance INT);

import sqlite3

con = sqlite3.connect(”/path/to/bank.db",

                      autocommit=True)

cur = con.cursor()

res = cur.execute("SELECT * FROM acc")

answ = res.fetchall()

print("The answer is: ", answ)

* Documentation here https://docs.python.org/3/library/sqlite3.html 

SQL

Python*

Usr Balance

Alice 300

Bob 600

Carol 400

Acc

https://docs.python.org/3/library/sqlite3.html
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Simple Banking App in Python

CREATE TABLE Acc (

   Usr TEXT PRIMARY KEY,

   Balance INT);

import sqlite3

con = sqlite3.connect("/path/to/bank.db",

                      autocommit=True)

cur = con.cursor()

res = cur.execute("SELECT * FROM acc")

answ = res.fetchall()

print("The answer is: ", answ)

* Documentation here https://docs.python.org/3/library/sqlite3.html 

SQL

Python*

Usr Balance

Alice 300

Bob 600

Carol 400

Acc

SQL query

sent to DBMS

https://docs.python.org/3/library/sqlite3.html
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DEMO: 

 txn_demo_create_table.sql

 txn_demo_simple_1.py



Terminology: Client/Server

▪Client: 
• The program running the application

• In our example: a python program running on laptop

• In general: a big program on laptop or in the cloud

▪Server:
• The database management system

• In our example it is Sqlite on laptop

• In general: any RDBMS, on remote server or in cloud
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Parameterized Query

res = cur.execute("SELECT * FROM acc")

answ = res.fetchall()

for row in answ:

    usr = row[0]

    bal = row[1]

    b = float(bal)

    i = b*0.04

    cur.execute("UPDATE acc 

       SET balance=?

                 WHERE usr=?",

                 [b+i, usr])

Give every user a 4% interest
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Parameterized Query

res = cur.execute("SELECT * FROM acc")

answ = res.fetchall()

for row in answ:

    usr = row[0]

    bal = row[1]

    b = float(bal)

    i = b*0.04

    cur.execute("UPDATE acc 

       SET balance=?

                 WHERE usr=?",

                 [b+i, usr])

Give every user a 4% interest
Read data
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Parameterized Query

res = cur.execute("SELECT * FROM acc")

answ = res.fetchall()

for row in answ:

    usr = row[0]

    bal = row[1]

    b = float(bal)

    i = b*0.04

    cur.execute("UPDATE acc 

       SET balance=?

                 WHERE usr=?",

                 [b+i, usr])

Give every user a 4% interest

Parameterized query
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DEMO: 

 txn_demo_simple_2.py



Simple Banking App in Python

Read a username

Repeat:

▪Read a command

▪Execute that command
• Check the balance

• Deposit money

• Withdraw money

• Transfer between accounts
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Simple Banking App in Python

usr = input("Enter the user name: ")

res = cur.execute("SELECT *

                   FROM acc

                   WHERE usr=?",

                  [usr])

if res.fetchone() is None:

    print("Wrong user. Exit")

    exit()

Read a username, check if exists:

We check

that the user

exists
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Simple Banking App in Python

while True:

   cmd = input()

   if cmd == “b”: ... check balance

   elif cmd == “d”: ... deposit

   elif cmd == “w”:  ... withdraw

   elif cmd == “t”: ... transfer

   elif cmd == “q”: exit()

A simple loop for executing commants:
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Simple Banking App in Python

res = cur.execute("SELECT balance 

                   FROM acc

                   WHERE usr=?",

                  [usr])

row = res.fetchone()

b = row[0]

print(“Balance is”, b)

Check balance

Fetch one

row/tuple

from output

First element

of the tuple
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Simple Banking App in Python

... Read the balance b as before

amount = input() # amount to be deposited

a = int(amount)

b1 = b+a    # the new balance

cur.execute("UPDATE acc

             SET balance = ? 

             WHERE usr=?",

             [b1,usr])

Deposit
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Simple Banking App in Python

Withdraw

... Read the balance b as before

amount = input() # amount to be withdrawn

a = int(amount)

#

# THE BANK DISPENSES MONEY HERE!

#

b1 = b-a    # the new balance

cur.execute("UPDATE acc

             SET balance = ? 

             WHERE usr=?",

             [b1,usr])
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Simple Banking App in Python

... Read the balance b as before

amount = input() # amount to be withdrawn

a = int(amount)

#

# THE BANK DISPENSES MONEY HERE!

#

b1 = b-a    # the new balance

cur.execute("UPDATE acc

             SET balance = ? 

             WHERE usr=?",

             [b1,usr])

Withdraw

We need to check

if there is enough

money!
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Simple Banking App in Python

... Read the balance b as before

amount = input() # amount to be withdrawn

a = int(amount)

if a>b:    # error: overdraft!

   exit()

#

# THE BANK DISPENSES MONEY HERE!

#

b1 = b-a    # the new balance

cur.execute("UPDATE acc

             SET balance = ? 

             WHERE user=?",

             [b1,usr])

Withdraw

Better now
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Simple Banking App in Python

... Read the balance b as before

amount = input() # amount to be transferred

a = int(amount)

if a>b:    # error: overdraft!

   exit()

usrt = input()  # to whom to transfer

... Read the balance bt of usrt

b1 = b-a

bt1 = bt+a

cur.execute("UPDATE acc

             SET balance = ? 

             WHERE user=?",

             [b1,usr]) 

cur.execute("UPDATE acc

             SET balance = ? 

             WHERE user=?",

             [bt1,usrt])

Transfer
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DEMO: 

 txn_demo.py

 single user



Discussion so Far

▪ The users Alice, Bob, … don’t need to know SQL, 
but interact with the app;

▪ The app usually has a nice User Interface (UI)

▪ The database is persistent: it retains the data for a 
long period of time
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Concurrency



Single-Server

▪ The database is accessed by a single user:

▪RDBMS on same laptop, or a server, or the cloud

Transactions: Serializability 26

Application

Database



Client-Server or Two-Tier Architecture

▪Multiple users access the database concurrently

Transactions: Serializability 27

Application

Database

Application

. . .
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DEMO: 

 txn_demo.py

 multiple users

txn_demo_txn_no.sql
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What We Have Seen

-- Alice withdraws $100

b = SELECT balance

 FROM acc

 WHERE user = ‘Alice’;

-- Is b >= 100?  Yes:

-- Dispense money

UPDATE acc SET balance=b-100

WHERE user = ‘Alice’

How Alice and Bob colluded to steal $100 (simplified, using only SQL)

Current balance of Alice is $100:

-- Bob impersonates Alice

-- and also withdraws $100

b = SELECT balance

 FROM acc

 WHERE user = ‘Alice’;

-- Is b >= 100?  Yes:

-- Dispense money

UPDATE acc SET balance=b-100

WHERE user = ‘Alice’

time



Discussion

▪Users Alice, Bob, … can access the same 
database concurrently

▪ This may lead to the database being inconsistent, 
which is a big problem
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Consistency



Database Consistency

▪Consistency: a property that should always hold
• Every account balance is ≥0

• The sum of all balances is constant,
or changes exactly by the amount deposited/withdrawn

▪ If we write the application correctly, we expect the 
database to remain consistent

▪But (without transactions!) things can go wrong 
during concurrency.  Next.
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Conflicts Between

Concurrent Operations



Common Concurrency Conflicts

▪Dirty/Inconsistent Read

▪Unrepeatable Read

▪Phantom Read 

▪ Lost Update

These have popular names, but all sorts of other 
conflicts can happen.  Let’s see these.

February 21, 2025 Serializability 34



Transactions: Serializability 35

Dirty/Inconsistent Read

Manager wants to 

balance project budgets

CEO wants to check 

company balance

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

A inconsistent read happens when

data is read "during" a write
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Dirty/Inconsistent Read

-$10mil from project A

+$7mil to project B

+$3mil to project C

SELECT SUM(money) …

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

Manager wants to 

balance project budgets

CEO wants to check 

company balance

A inconsistent read happens when

data is read "during" a write
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Dirty/Inconsistent Read

-$10mil from project A

+$7mil to project B

+$3mil to project C

SELECT SUM(money) …

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

Manager wants to 

balance project budgets

CEO wants to check 

company balance

A inconsistent read happens when

data is read "during" a write
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Dirty/Inconsistent Read

-$10mil from project A

+$7mil to project B

+$3mil to project C

SELECT SUM(money) …

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

Manager wants to 

balance project budgets

CEO wants to check 

company balance

A inconsistent read happens when

data is read "during" a write
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Dirty/Inconsistent Read

-$10mil from project A

+$7mil to project B

+$3mil to project C

SELECT SUM(money) …

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

Manager wants to 

balance project budgets

CEO wants to check 

company balance

Database is 

temporarily 

inconsistent

A inconsistent read happens when

data is read "during" a write



Transactions: Serializability 40

Unrepeatable Read

SELECT inventory

FROM Products

WHERE pid = 1

SELECT inventory*price

FROM Products

WHERE pid = 1

UPDATE Products

SET inventory = 0

WHERE pid = 1

Might get a value that doesn’t 

correspond to previous read!

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

Accountant wants to 

check company assets

Warehouse updates 

inventory levels

An unrepeatable read happens when

data read twice differs
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Phantom Read

Accountant wants to 

check company assets

SELECT *

FROM products

WHERE price < 20.00

SELECT *

FROM products

WHERE price < 10.00

INSERT INTO Products

VALUES (‘nuts’, 10, 8.99)

Returns a “new” row that should 

have been in the last read!

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

Warehouse receives new 

products

A phantom read happens when

a record is inserted/delete during reads
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Lost Update

User 1 wants to pool 

money into account 1

User 2 wants to pool money 

into account 2

Account 1 = 100, Account 2 = 100

ti
m

e

A lost update happens 

when a write "disappears"

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update
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Lost Update

Set account 1 = 200

Set account 2 = 0

Account 1 = 100, Account 2 = 100

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

User 1 wants to pool 

money into account 1

User 2 wants to pool money 

into account 2

A lost update happens 

when a write "disappears"
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Lost Update

Set account 2 = 200

Set account 1 = 200

Set account 2 = 0

Set account 1 = 0

Account 1 = 100, Account 2 = 100

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

User 1 wants to pool 

money into account 1

User 2 wants to pool money 

into account 2

A lost update happens 

when a write "disappears"
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Lost Update

Set account 2 = 200

Set account 1 = 200

Set account 2 = 0

Set account 1 = 0

Account 1 = 100, Account 2 = 100

ti
m

e

At end: Account 1 = 0, Account 2 = 200 

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

User 1 wants to pool 

money into account 1

User 2 wants to pool money 

into account 2

A lost update happens 

when a write "disappears"
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Lost Update

User 1 wants to pool 

money into account 1

User 2 wants to pool money 

into account 2

Set account 2 = 200

Set account 1 = 200

Set account 2 = 0

Set account 1 = 0

Account 1 = 100, Account 2 = 100

ti
m

e

At end: Account 1 = 0, Account 2 = 0 

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

A lost update happens 

when a write "disappears"
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Transactions



Transactions

▪A transaction is a set of read and writes to the 
database that execute all or nothing
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BEGIN TRANSACTION

  ...SQL Statements

COMMIT

BEGIN TRANSACTION

  ...SQL Statements

ROLLBACK

No part of txn is executedEntire txn is executed



Transactions

▪Prevent all concurrency control conflicts

▪Easy to use in app: group statements in txns

▪ Let’s see how they work
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DEMO: 

txn_demo_txn_yes.sql



Transactions

▪Prevent all concurrency control conflicts

▪Easy to use in app: group statements in txns

▪What property does a TXN satisfy?

• Informally: “TXNs have ACID properties”

• Formally: “execution of TXNs must be serializable”
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ACID
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Transactions are ACID

▪Atomic

▪Consistent

▪ Isolated

▪Durable
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Atomic

▪A set of operations is atomic if either all its 
operations happen, or none happens

System

crashed

here

…

Update account1

…

…

…
Update account2

…

Recovery manager (not discussed in this class)

February 21, 2025 Serializability 54



Consistent

Assume TXN is “correct” (this is app specific)

▪ If TXN starts with the DB in a consistent state,
it must end leaving the DB in a consistent state
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It is a consequence of Atomicity and Isolation



Isolated

▪ The effect of the transaction on the database is as 
if it were running alone on the database

Concurrency Control Manager

Interleaved

actions

should not

interfere
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TXN1:

…

Update account1

…

…
…

Update account2

…

TXN2:

…

Update account1

…

…
…

Update account2

…



Durable

▪Data should be stored persistently on disk, always 
in a consistent state
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Discussion

▪ACID properties: popular job interview question

▪ “A” and “I” matter
• Atomicity: recover from crashes

• Isolation: concurrency control

▪ACID is informal.

Will discuss the formal property next
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444

344 and 444



Serializability
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Problem Definition

▪ The RDBMs runs several TXNs:   T1, T2, T3, …

▪ It could run T1 to completion before starting T2,
     then run T2 to completion before starting T3,
     then run T3…
     …
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Problem Definition

▪ The RDBMs runs several TXNs:   T1, T2, T3, …

▪ It could run T1 to completion before starting T2,
     then run T2 to completion before starting T3,
     then run T3…
     …
But this has poor performance Why?
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Problem Definition

▪ The RDBMs runs several TXNs:   T1, T2, T3, …

▪ It could run T1 to completion before starting T2,
     then run T2 to completion before starting T3,
     then run T3…
     …
But this has poor performance

▪ Instead: interleave commands from multiple TXNs

Why?
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When is the interleaving ”safe”?



Simplified Data Model for TXN

▪Database = a set of “elements”

▪ TXN = a sequence of Reads/Writes of elements
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Element is usually

a record, or a disk block



Example

T1

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)
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Example

T1

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

A,B are

elements

in the DB
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Example

T1

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

A,B are

elements

in the DB

t is a local

variable

in the app
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Example

T1

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

T2

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

A,B are

elements

in the DB

t is a local

variable

in the app
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Definitions

▪An interleaving of READ/WRITEs from different 
TXNs is called a schedule
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Definitions

▪An interleaving of READ/WRITEs from different 
TXNs is called a schedule

▪Definition: a serial schedule is a schedule where 
all operations of transactions come before those of 
the next transaction
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Definitions

▪An interleaving of READ/WRITEs from different 
TXNs is called a schedule

▪Definition: a serial schedule is a schedule where 
all operations of transactions come before those of 
the next transaction

▪Definition: a serializable schedule is a schedule 
that is equivalent to a serial schedule
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A Schedule

T1 T2

READ(A, t)

READ(A, s)

s := s*2

t := t+100

WRITE(A, t)

WRITE(A,s)

READ(B,s)

s := s*2

READ(B, t)

WRITE(B,s)

t := t+100

WRITE(B,t)

ti
m

e

February 21, 2025 Serializability 71



A Serial Schedule

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

ti
m

e
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A Serial Schedule

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

A = 2

B = 2

ti
m

e
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A Serial Schedule

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

A = 2

B = 2

A = 102

B = 102

ti
m

e
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A Serial Schedule

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

A = 2

B = 2

A = 102

B = 102

A = 204

B = 204

ti
m

e
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The Other Serial Schedule

T1 T2

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

A = 2

B = 2

A = 4

B = 4

A = 104

B = 104

ti
m

e
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A Serializable Schedule

A = 2

B = 2

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B, t)

t := t+100

WRITE(B,t)

READ(B,s)

s := s*2

WRITE(B,s)
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A Serializable Schedule

A = 2

B = 2

A = 102

B = 2

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B, t)

t := t+100

WRITE(B,t)

READ(B,s)

s := s*2

WRITE(B,s)

February 21, 2025 Serializability 78



A Serializable Schedule

A = 2

B = 2

A = 102

B = 2

A = 204

B = 2

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B, t)

t := t+100

WRITE(B,t)

READ(B,s)

s := s*2

WRITE(B,s)
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A Serializable Schedule

A = 2

B = 2

A = 102

B = 2

A = 204

B = 2

A = 204

B = 102

A = 204

B = 204

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B, t)

t := t+100

WRITE(B,t)

READ(B,s)

s := s*2

WRITE(B,s)
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A Serializable Schedule

This is NOT a serial schedule

It is a serializable schedule.

A = 2

B = 2

A = 102

B = 2

A = 204

B = 2

A = 204

B = 102

A = 204

B = 204

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B, t)

t := t+100

WRITE(B,t)

READ(B,s)

s := s*2

WRITE(B,s)
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A Non-Serializable Schedule

A = 2

B = 2

A = 102

B = 2

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

READ(B, t)

t := t+100

WRITE(B,t)
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A Non-Serializable Schedule

A = 2

B = 2

A = 102

B = 2

A = 204

B = 2

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

READ(B, t)

t := t+100

WRITE(B,t)
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A Non-Serializable Schedule

A = 2

B = 2

A = 102

B = 2

A = 204

B = 2

A = 204

B = 4

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

READ(B, t)

t := t+100

WRITE(B,t)
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A Non-Serializable Schedule

A = 2

B = 2

A = 102

B = 2

A = 204

B = 2

A = 204

B = 4

A = 204

B = 104

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

READ(B, t)

t := t+100

WRITE(B,t)
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A Non-Serializable Schedule

A = 2

B = 2

A = 102

B = 2

A = 204

B = 2

A = 204

B = 4

A = 204

B = 104

Should be

impossible!

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

READ(B, t)

t := t+100

WRITE(B,t)
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Discussion

▪ If the schedule is serial, then nothing can go wrong

▪Same for a serializable schedule

▪Concurrency Control Manager of the RDBMs must 
ensure that the schedule is serializable

How do we check that a schedule is serializable?
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Conflict Serializability
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Outline

We further simplify the model:

▪A transaction is a sequence of reads and writes

▪We ignore operations between reads and writes
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Example

T1

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

T1

R(A)

W(A)

R(B)

W(B)

Also:  R1(A), W1(A), R1(B), W1(B)
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Example

▪ T1 then T2

T1 T2

R(A)

W(A)

R(B)

W(B)

R(A)

W(A)

R(B)

W(B)

ti
m

e

R1(A), W1(A), R1(B), W1(B), R2(A), W2(A), R2(B), W2(B)
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Example

▪ T2 then T1

T1 T2

R(A)

W(A)

R(B)

W(B)

R(A)

W(A)

R(B)

W(B)

R2(A), W2(A), R2(B), W2(B), R1(A), W1(A), R1(B), W1(B)
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Example

▪Serializable to T1 then T2

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

R1(A), W1(A), R2(A), W2(A), R1(B), W1(B), R2(B), W2(B)
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Example

▪Not serializable

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

R1(A), W1(A), R2(A), W2(A), R2(B), W2(B), R1(B), W1(B)

February 21, 2025 Serializability 94



Main Idea

▪ To check if a schedule is serializable, try swapping 
operations until it becomes serial:

▪But we only swap if the new schedule is equivalent

▪A pair is in conflict if it cannot be swapped

… Ri(A), Wj(B), … … Wj(B), Ri(A), …
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Conflicts

1. Any pair of ops of the same TXN are in conflict

2. Ri(X), Wj(X) forms a read-write conflict

3. Wi(X), Rj(X) forms a write-read conflict

4. Wi(X), Wj(X) forms a write-write conflict
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Conflict Serializable Schedule

A schedule is conflict serializable if it can be

transformed into a serial schedule by a series of

swappings of adjacent non-conflicting actions
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Conflict Serializable Schedule Example

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)
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Conflict Serializable Schedule Example

T1 T2

R(A)

W(A)

R(A)

R(B)

W(A)

W(B)

R(B)

W(B)
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Conflict Serializable Schedule Example

T1 T2

R(A)

W(A)

R(B)

R(A)

W(A)

W(B)

R(B)

W(B)
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Conflict Serializable Schedule Example

T1 T2

R(A)

W(A)

R(B)

R(A)

W(B)

W(A)

R(B)

W(B)
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Conflict Serializable Schedule Example

T1 T2

R(A)

W(A)

R(B)

W(B)

R(A)

W(A)

R(B)

W(B)
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Non Conflict Serializable Schedule Example

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)
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Non Conflict Serializable Schedule Example

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

R(B)

W(B)

W(B)

Conflict rule broken!
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Serializable vs Conflict Serializable
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Conflict serializability ignores what TXN does between the R’s and the W’s.

It assumes the worst / most complicated updates to the data



Serializable vs Conflict Serializable

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

AA*2

BB*2

BB+100

AA+100

Not serializable nor conflict serializable
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Serializable vs Conflict Serializable

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

AA+2

BB+2

Serializable (because 100+2 = 2+100)

But not conflict serializable, because it assumes the worst
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Discussion

▪Most RDBMs enforce conflict-serializability

▪Next: how to test for conflict-serializability
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The Precedence Graph
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Testing for Conflict Serializability

Fix a schedule

▪Definition. The precedence graph has one node 
for every TXN in the schedule, and one edge for 
every pair of conflicting ops

▪ Theorem. The schedule is conflict-serializable iff 
the precedence graph has no cycles
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Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)
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Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3
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Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3
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Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r1(B)
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Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r1(B)
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Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r1(B) No edge because

no conflict (A != B)
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Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w2(A)
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Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w2(A) No edge because

 same txn (2)
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Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r3(A) ?
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Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w1(B) ?
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Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w3(A) ?
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Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w3(A) Edge! Conflict from 

T2 to T3
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Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w3(A) Edge! Conflict from 

T2 to T3
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Edges:



Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r2(B) ?

A

And so on until compared every pair of actions… 
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Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B) 

1 2 3

Repeating the same directed edge not necessary
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Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B) 

1 2 3

This schedule is conflict-serializable
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Example 2

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)
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Example 2

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3
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Example 2

1 2 3

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)
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Example 2

1 2 3

This schedule is NOT conflict-serializable

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)
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Takeaways

▪ Transactions: “…all or nothing…”

▪Simplified data model: READ/WRITE elements

▪Schedules:
• Serial

• Serializable

• Conflict serializable

▪Precedence graph

February 21, 2025 Serializability 131


	Slide 1
	Slide 2: Terminology
	Slide 3: Applications and Databases
	Slide 4: Simple Banking App in Python
	Slide 5: Simple Banking App in Python
	Slide 6: Simple Banking App in Python
	Slide 7: Simple Banking App in Python
	Slide 8
	Slide 9: Terminology: Client/Server
	Slide 10: Parameterized Query
	Slide 11: Parameterized Query
	Slide 12: Parameterized Query
	Slide 13
	Slide 14: Simple Banking App in Python
	Slide 15: Simple Banking App in Python
	Slide 16: Simple Banking App in Python
	Slide 17: Simple Banking App in Python
	Slide 18: Simple Banking App in Python
	Slide 19: Simple Banking App in Python
	Slide 20: Simple Banking App in Python
	Slide 21: Simple Banking App in Python
	Slide 22: Simple Banking App in Python
	Slide 23
	Slide 24: Discussion so Far
	Slide 25
	Slide 26: Single-Server
	Slide 27: Client-Server or Two-Tier Architecture
	Slide 28
	Slide 29: What We Have Seen
	Slide 30: Discussion
	Slide 31
	Slide 32: Database Consistency
	Slide 33
	Slide 34: Common Concurrency Conflicts
	Slide 35: Dirty/Inconsistent Read
	Slide 36: Dirty/Inconsistent Read
	Slide 37: Dirty/Inconsistent Read
	Slide 38: Dirty/Inconsistent Read
	Slide 39: Dirty/Inconsistent Read
	Slide 40: Unrepeatable Read
	Slide 41: Phantom Read
	Slide 42: Lost Update
	Slide 43: Lost Update
	Slide 44: Lost Update
	Slide 45: Lost Update
	Slide 46: Lost Update
	Slide 47
	Slide 48: Transactions
	Slide 49: Transactions
	Slide 50
	Slide 51: Transactions
	Slide 52
	Slide 53: Transactions are ACID
	Slide 54: Atomic
	Slide 55: Consistent
	Slide 56: Isolated
	Slide 57: Durable
	Slide 58: Discussion
	Slide 59
	Slide 60: Problem Definition
	Slide 61: Problem Definition
	Slide 62: Problem Definition
	Slide 63: Simplified Data Model for TXN
	Slide 64: Example
	Slide 65: Example
	Slide 66: Example
	Slide 67: Example
	Slide 68: Definitions
	Slide 69: Definitions
	Slide 70: Definitions
	Slide 71: A Schedule
	Slide 72: A Serial Schedule
	Slide 73: A Serial Schedule
	Slide 74: A Serial Schedule
	Slide 75: A Serial Schedule
	Slide 76: The Other Serial Schedule
	Slide 77: A Serializable Schedule
	Slide 78: A Serializable Schedule
	Slide 79: A Serializable Schedule
	Slide 80: A Serializable Schedule
	Slide 81: A Serializable Schedule
	Slide 82: A Non-Serializable Schedule
	Slide 83: A Non-Serializable Schedule
	Slide 84: A Non-Serializable Schedule
	Slide 85: A Non-Serializable Schedule
	Slide 86: A Non-Serializable Schedule
	Slide 87: Discussion
	Slide 88
	Slide 89: Outline
	Slide 90: Example
	Slide 91: Example
	Slide 92: Example
	Slide 93: Example
	Slide 94: Example
	Slide 95: Main Idea
	Slide 96: Conflicts
	Slide 97: Conflict Serializable Schedule
	Slide 98: Conflict Serializable Schedule Example
	Slide 99: Conflict Serializable Schedule Example
	Slide 100: Conflict Serializable Schedule Example
	Slide 101: Conflict Serializable Schedule Example
	Slide 102: Conflict Serializable Schedule Example
	Slide 103: Non Conflict Serializable Schedule Example
	Slide 104: Non Conflict Serializable Schedule Example
	Slide 105: Serializable vs Conflict Serializable
	Slide 106: Serializable vs Conflict Serializable
	Slide 107: Serializable vs Conflict Serializable
	Slide 108: Discussion
	Slide 109
	Slide 110: Testing for Conflict Serializability
	Slide 111: Example 1
	Slide 112: Example 1
	Slide 113: Example 1
	Slide 114: Example 1
	Slide 115: Example 1
	Slide 116: Example 1
	Slide 117: Example 1
	Slide 118: Example 1
	Slide 119: Example 1
	Slide 120: Example 1
	Slide 121: Example 1
	Slide 122: Example 1
	Slide 123: Example 1
	Slide 124: Example 1
	Slide 125: Example 1
	Slide 126: Example 1
	Slide 127: Example 2
	Slide 128: Example 2
	Slide 129: Example 2
	Slide 130: Example 2
	Slide 131: Takeaways

