Setup

— 7 [senmn
Senphame
~
Lslp SetupType
FK1 | SestioniD Device
NumberOfTrial Sctshaies
K2 |SetupiD Filtes
tes |sabjeaio SetupCondiion
P
puraton
ket
Sttapblaker
RecortedMinieh
Note
Trial_has_Timecourse Trial_has_Trajectory
rer [Per | Toaio
re2 | rimecousen rez [Tmectonyio
Tanacouse Toietory
[Temecounen o | Teieasrro
Frequency frequency
Seemenio seqmentid
Kiadoroats indoroata
Neeam Markers
) NP oesiniing
—

Walder.

N N

e
=
rolih
/ i Luﬁ,\ys N
VAN 4 !
/X Bt
y :‘_a?w! R-c?a!d / Ecm* 'Hos(ev

¥

JoffeNtargation

ey
iy

Var
o

y HE X Condr
. B s 7 Podik oY
Toras A KeviShae
/ ct
« Waltoh
3 Myroetia Gregor
deric e \

HyperCube

gCube shuffle-based parallel g

CSE 344: Intro to Data Management
Subqueries and Relational Alge

Paul G. Allen School of Computer Science and Engineering

January 24, 2025

University of Washington, Seattle

SQL Review

The WITH Clause

The WITH Clause

» Define temporary tables

» Use them in a query

January 24, 2025 SQL Review

The WITH Clause

What is the average salary of car drivers?

payroll

345 Allison TA 60000 123 Charger
567 Magda Prof 90000 o567 Civic
789 Dan Prof 100000 o567 Pinto

January 24, 2025 SQL Review

The WITH Clause

What is the average salary of car drivers?

SELECT avg(p.salary)
FROM payroll p, regist r
WHERE p.user 1d = r.user 1d;

payroll

345 Allison TA 60000 123 Charger
567 Magda Prof 90000 o567 Civic
789 Dan Prof 100000 o567 Pinto

January 24, 2025 SQL Review

The WITH Clause

What is the average salary of car drivers?

SELECT avg(p.salary)
FROM payroll p, regist r

SELECT p.salary
FROM ...;

WHERE p.user 1d = r.user 1d;

<

payroll

IE-
Jack 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

January 24, 2025 SQL Review

76667 _

!

name BEEIERY

Jack 50000
Magda 90000 Duplicate!

Magda 90000

regist

123 Charger
567 Civic
567 Pinto

The WITH Clause

What is the average salary of car drivers?

WHERE p.user 1d =

SELECT avg (DISTINCT p.salary)
FROM payroll p, regist r
r.user 1id;

Does DISTINCT fix it?

user_id |name m salary regist

payroll

Jack
345 Allison TA
567 Magda Prof
789 Dan Prof

January 24, 2025

60000 123 Charger
90000 567 Civic
100000 567 Pinto

SQL Review

The WITH Clause

What is the average salary of car drivers?

SELECT avg (DISTINCT p.salary)
FROM payroll p, regist r
WHERE p.user 1d = r.user 1d;

SELECT DISTINCT p.salary

FROM ...;

0000
Does DISTINCT fix it? 70000 _
90000
Correct answer:
63333
payroll regist
user_id |name |
123 Jack TA '50000) 123 Charger
345 Allison TA 50000 345 Tesla
567 Magda Prof 90000 567 Civic
789 Dan Prof 100000 567 Pinto

January 24, 2025 SQL Review

The WITH Clause

What is the average salary of car drivers?

We will solve this query by computing

a temporary table using the WITH clause

payroll regist

IE_ _
Jack 50000 Charger

345 Allison TA 50000 345 Tesla

567 Magda Prof 90000 567 Civic

789 Dan Prof 100000 567 Pinto

January 24, 2025

SQL Review

The WITH Clause

What is the average salary of car drivers?

WITH cardrivers AS
(SELECT DISTINCT p.user 1d, p.salary
FROM payroll p, regist r
WHERE p.user 1d=r.user 1d)

SELECT avg (salary)

FROM cardrivers;

payroll regist

IE- user_id _Jcar
Jack 50000 123 Charger

345 Allison TA 50000 345 Tesla

567 Magda Prof 90000 567 Civic

789 Dan Prof 100000 567 Pinto

January 24, 2025 SQL Review

The WITH Clause

What is the average salary of car drivers?

WITH cardrivers AS
(SELECT DISTINCT p.user 1d, p.salary
FROM payroll p, regist r
WHERE p.user 1d=r.user 1d)

payroll regist

IE- _
Jack 50000 Charger

345 Allison TA 50000 345 Tesla

567 Magda Prof 90000 567 Civic

789 Dan Prof 100000 567 Pinto

January 24, 2025 SQL Review

The WITH Clause

What is the average salary of car drivers?

WITH cardrivers AS

FROM payroll p,

(SELECT DISTINCT p.user 1d, p.salary
regist r
WHERE p.user 1d=r.user 1d)

cardrivers
123 50000
345 50000

567 90000

payroll

IE-
Jack

345 Allison TA

567 Magda Prof

789 Dan Prof

50000
50000
90000
100000

regist

user id_Jcar

Charger
345 Tesla
567 Civic
567 Pinto

January 24, 2025

SQL Review

The WITH Clause

What is the average salary of car drivers?

SELECT avg (salary)
FROM cardrivers;

l cardrivers

user_id | salary

123 ” 50000

345 50000
567 _ 90000

y,

payroll regist

m_ _
Jack 50000 Charger

345 Allison TA 50000 345 Tesla

567 Magda Prof 90000 567 Civic

789 Dan Prof 100000 567 Pinto

January 24, 2025

SQL Review

The WITH Clause

What is the average salary of car drivers?

l cardrivers

user_id | salary

123 (50000
SELECT avg (salary) 345 50000
FROM cardrivers; 567 | 90000 |
63333 '
payroll regist
IE_ -
Jack 50000 Charger

345 Allison TA 50000 345 Tesla

567 Magda Prof 90000 567 Civic

789 Dan Prof 100000 567 Pinto

January 24, 2025 SQL Review

The WITH Clause

What is the average salary of car drivers?

SELECT avg (salary)
FROM cardrivers;

h 567 | 90000

W 63333

l cardrivers

user_id | salary

123 ” 50000
345 50000

payroll regist

m_ _
Jack 50000 Charger

345 Allison TA 50000 345 Tesla

567 Magda Prof 90000 567 Civic

789 Dan Prof 100000 567 Pinto

January 24, 2025

SQL Review

The WITH Clause

General form:

January 24, 2025

WITH tbll as (SELECT ...),
tbl2 as (SELECT ...),
SELECT

Here we may use
FROM tbl1, tbl2, ...

WHERE

SQL Review

Discussion

= AWITH construct is a simple form of a subquery

= \We could also write the subquery in the FROM
clause, but it is less readable

January 24, 2025 SQL Review

Views

January 24, 2025 SQL Review

Views

= Aview Is a table that is defined using a SQL query
* The table content is computed only when used

* The view becomes part of the persistent database

January 24, 2025 SQL Review

Views

= Aview Is a table that is defined using a SQL query
* The table content is computed only when used

Different from WITH M

* The view definition becomes part of the persistent
database

January 24, 2025 SQL Review

payroll

user_id | name salary

Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

regist

user_id Jcar ___

567
567

January 24, 2025 SQL Review

Charger
Civic
Pinto

Persistent database

‘payroll \

user_id | name salary regist

Jack TA 50000 -

345 Allison TA 60000
567 Magda Prof 90000 567
789 Dan Prof 100000 567

January 24, 2025 SQL Review

Charger
Civic
Pinto

Views

CREATE VIEW cardrivers AS
SELECT DISTINCT p.*
FROM payroll p, regist r
WHERE p.user i1d=r.user 1d;

payroll

m regist.
Jack TA 50000 -

345 Allison TA 60000 Charger
567 Magda Prof 90000 567 Civic
789 Dan Prof 100000 567 Pinto

January 24, 2025 SQL Review

Views

CREATE VIEW cardrivers AS
SELECT DISTINCT p.*
FROM payroll p, regist r
WHERE p.user i1d=r.user 1d;

Persistent database

/ ayroII \

P

m regist cardrivers
Jack TA 50000 -

SELECT ...
345 Allison TA 60000 Charger FROM . . .
567 Magda Prof 90000 567 Civic

789 Dan Prof 100000 567 Pinto

January 24, 2025 SQL Review

Persistent database

f—%

user_id | name salary

50000

user_id Jcar ___

cardrivers

Allison 60000

Charger

SELECT ...
FROM ...

90000
100000

Magda

January 24, 2025

SQL Review

Views

SELECT ~*
FROM cardrivers;

payroll

user_id [name salary

50000

user_id Jcar ___

cardrivers

Allison 60000

Charger

SELECT ...
FROM ...

90000
100000

Magda

January 24, 2025

SQL Review

Views

SELECT ~*
FROM cardrivers;

user_id | name salary

Jack TA 50000
567 Magda Prof 90000

payroll

m regist cardrivers
Jack TA 50000 -

SELECT ...
345 Allison TA 60000 Charger FROM . . .
567 Magda Prof 90000 567 Civic

789 Dan Prof 100000 567 Pinto

January 24, 2025 SQL Review

Views

SELECT ~*
FROM cardrivers;

user_id | name salary

Jack TA 50000
567 Magda Prof 90000

The view is computed at

guery time, with fresh data.
Let's see that...

payroll

m regist cardrivers
Jack TA 50000 -

SELECT ...
345 Allison TA 60000 Charger FROM . . .
567 Magda Prof 90000 567 Civic

789 Dan Prof 100000 567 Pinto

January 24, 2025 SQL Review

Views

INSERT INTO regist
VALUES (345, ‘Tesla’

payroll
IEI
50000
60000
90000
100000

Allison
Magda

January 24, 2025

SQL Review

cardrivers
user_id |car
SELECT ...
Charger FROM ...
Civic
Pinto

Views

INSERT INTO regist
VALUES (345, ‘Tesla’) ;

payroll regist
IEI - cardrivers
Jack TA 50000 Charger
SELECT ...
345 Allison TA 60000 567 Civic FROM . . .
567 Magda Prof 90000 567 Pinto
789 Dan Prof 100000 345 Tesla

January 24, 2025 SQL Review

Views

SELECT ~*
FROM cardrivers;

payroll regist
IEI - cardrivers
Jack TA 50000 Charger
SELECT ...
345 Allison TA 60000 567 Civic FROM . . .
567 Magda Prof 90000 567 Pinto
789 Dan Prof 100000 345 Tesla

January 24, 2025 SQL Review

Views

SELECT ~*
FROM cardrivers;

user_id [name salary

Jack TA 50000
Allison TA 60000
Magda Prof 90000

payroII

Jack
345 Allison
567 Magda
789 Dan

January 24, 2025

50000
60000
90000
100000

SQL Review

Charger

SELECT ...
Civic FROM ...
Pinto
Tesla

SELECT ~*
FROM cardrivers;

Uses updated data

user_id [name salary

Jack TA 50000
Allison TA 60000
Magda Prof 90000

payroII

Jack
345 Allison
567 Magda
789 Dan

January 24, 2025

50000
60000
90000
100000

SQL Review

Charger

SELECT ...
Civic FROM ...
Pinto
Tesla

All DBMS
Virtual View: means computed at query time

Materialized View: computed at definition time

Not in Sqlite

What are their pros and cons?

January 24, 2025 SQL Review

All DBMS
Virtual View: means computed at query time

Materialized View: computed at definition time

Not in Sqlite

Advantage of virtual views:

« Always contains fresh data

« Query-time optimization
(in class)

Disadvantages:
* Need to re-compute
every time it is queried

January 24, 2025 SQL Review

All DBMS
Virtual View: means computed at guery time

Materialized View: computed at definition time

Not in Sqlite

Advantage of virtual views: Advantage of materialize views:
« Always contains fresh data + Computed only once
« Query-time optimization

(in class) Disadvantages:
* Need to be updated when
Disadvantages: the input data Is updated
* Need to re-compute * Incremental View Maintenance

every time it is queried (IVM)

January 24, 2025 SQL Review

All DBMS

Virtual View: means computed at query time
Materialized View: computed at definition time

Not in Sqlite

Advantage of virtual views: Advantage of materialize views:
« Always contains fresh data + Computed only once
« Query-time optimization

(in class) Disadvantages:
* Need to be updated when
Disadvantages: the input data Is updated
* Need to re-compute * Incremental View Maintenance
every time it is queried (IVM)

We don’t discuss materialized views in this class

January 24, 2025 SQL Review

Materializing Query Outputs

Materializing Query Outputs

CREATE TABLE drivers AS
SELECT DISTINCT p.*
FROM payroll p, regist r
WHERE p.user i1d=r.user 1d;

payroll

m regist.
Jack TA 50000 -

345 Allison TA 60000 Charger
567 Magda Prof 90000 567 Civic
789 Dan Prof 100000 567 Pinto

January 24, 2025 SQL Review

Materializing Query Outputs

CREATE TABLE drivers AS
SELECT DISTINCT p.*
FROM payroll p, regist r
WHERE p.user i1d=r.user 1d;

payroll

m regist.
Jack TA 50000 -

345 Allison TA 60000 Charger
567 Magda Prof 90000 567 Civic
789 Dan Prof 100000 567 Pinto

January 24, 2025 SQL Review

Materializing Query Outputs

SELECT DISTINCT p.*
FROM payroll p, regist r
WHERE p.user i1d=r.user 1d;

payroll

m regist.
Jack TA 50000 -

345 Allison TA 60000 Charger
567 Magda Prof 90000 567 Civic
789 Dan Prof 100000 567 Pinto

. Only the attributes
CREATE TABLE drivers Aiéﬁziéi o cayrol

January 24, 2025 SQL Review

Materializing Query Outputs

CREATE TABLE drivers AS
SELECT DISTINCT p.*
FROM payroll p, regist r
WHERE p.user i1d=r.user 1d;

payroll

user_id | name salary reglst

Jack TA 50000 drivers
345 Allison TA 60000 - Charger !

567 Magda Prof 90000 567 Civic ..+ 20000
789 Dan Prof 100000 567 Pinto =l .- 90000

January 24, 2025 SQL Review

Materializing Query Outputs

CREATE TABLE drivers AS
SELECT DISTINCT p.*
FROM payroll p, regist r
WHERE p.user i1d=r.user 1d;

Persistent database

/ ayroll \

P

user_id | name salary reglst

Jack TA 50000 drivers
345 Allison TA 60000 - Charger !

567 Magda Prof 90000 567 Civic ..+ 20000
789 Dan Prof 100000 567 Pinto =l .- 90000

January 24, 2025 SQL Review

Materializing Query Outputs

CREATE TABLE drivers AS
SELECT DISTINCT p.*
FROM payroll p, regist r
WHERE p.user i1d=r.user 1d;

How does this differ
from a materialized
view?

Persistent database

‘payroll \

m regist.
Jack TA 50000

345 Allison TA 60000 -
567 Magda Prof 90000 567
789 Dan Prof 100000 567

drivers
[T e
Civic . 50000
Pinto 567 ... 90000

January 24, 2025 SQL Review

Materializing Query Outputs

CREATE TABLE drivers AS
SELECT DISTINCT p.*
FROM payroll p, regist r
WHERE p.user i1d=r.user 1d;

How does this differ
from a materialized
view?

System will not

: update automaticall
Persistent databa g Y

payroll

user_id | name salary reglst

Jack TA 50000 drivers
345 Allison TA 60000 - Charger !

567 Magda Prof 90000 567 Civic ..+ 20000
789 Dan Prof 100000 567 Pinto =l .- 90000

January 24, 2025 SQL Review

Materializing Query Outputs

payroll

user_id | name salary reglst

345
567
789

January 24, 2025

Jack
Allison
Magda
Dan

TA
TA

Prof
Prof

50000
60000
90000
100000

123

567
567

SELECT ~*
FROM drivers;

l

user_id ! salary

. 50000
567 ... 90000
drivers
[T e
Civic . 50000
567 ... 90000

Pinto

SQL Review

Materializing Query Outputs

V.

IﬁiERT INTO regist
UES (345, ‘Tesla’) ;

payroll regist

IEI
Jack TA 50000 Charger

345 Allison TA 60000 567 Civic

567 Magda Prof 90000 567 Pinto

789 Dan Prof 100000 345 Tesla

January 24, 2025 SQL Review

drivers
!
. 50000
567 ... 90000

Materializing Query Outputs

SELECT ~*
FROM drivers;

l

user_id ! salary

567 ... 90000
payroll regist
IEI

drivers
Jack TA 50000 Charger
345 Allison TA 60000 567 Civic !
567 Magda Prof 90000 567 Pinto ... 50000
789 Dan Prof 100000 345 Tesla 567 .-~ 90000

January 24, 2025

SQL Review

More about GROUP BY

More GROUP BY

» So far, we grouped only by attributes

= \We can also group by expressions!

January 24, 2025 SQL Review

More GROUP BY

Find the total revenue per company and decade

Company

name Revenue | year

Acme
IBM
Apple
IBM

January 24, 2025

100000
200000
300000
250000

1995
2012
2012
2019

SQL Review

More GROUP BY

Find the total revenue per company and decade

Company

name Revenue | year

Acme 100000

IBM 200000
Apple 300000
IBM 250000

1995
2012
2012
2019

We want this: ﬁ

1990
1990
2000

2010

1999 Acme 250000
1999 IBM
2009 Acme

2019 IBM 450000

January 24, 2025

SQL Review

More GROUP BY

Find the total revenue per company and decade

SELECT year/10*10 AS Start, year/10*10 + 9 AS End,
name, sum(Revenue)

FROM Company

GROUP BY year/10*10, year/10*10 + 9, name;

ompany
1990 1999 Acme 250000

Acme 100000 1995 1990 1999 IBM
IBM 200000 2012 2000 2009 Acme

Apple 300000 2012 ..

IBM 250000 2019 2010 2019 IBM 450000

January 24, 2025 SQL Review

More GROUP BY

Find the total revenue per company and decade

SELECT year/10*10 AS Start, year/10*10 + 9 AS End,
name, sum(Revenue)
FROM Comp

GROUP BYO, yvear/10*10 + 9, name;

Integer division

or use cast(...)

ompany
1990 1999 Acme 250000

Acme 100000 1995 1990 1999 IBM
IBM 200000 2012 2000 2009 Acme

Apple 300000 2012 ..

IBM 250000 2019 2010 2019 IBM 450000

January 24, 2025 SQL Review

More GROUP BY

Find the total revenue per company and decade

name, sum(Revenue)
FROM Compapsz

SELECT year/10*10 AS Start, year/10*10 + 9 AS End,

GROUP BY(year/10*10) year/10*10 + 9, name;

Beginning of decade

Company

1990 1999

Acme 100000 1995 1990 1999
IBM 200000 2012 2000 2009
Apple 300000 2012 ..

IBM 250000 2019 2010 2019

Acme 250000
IBM
Acme

IBM 450000

January 24, 2025 SQL Review

More GROUP BY

Find the total revenue per company and decade

SELECT year/10*10 AS Start, year/10*10 + 9 AS End,
name, sum(Revenue)
FROM Compapsz

GROUP BY(year/10*10 ear/10*10 + 9,
Beginning of decade End of decade

ompany
1990 1999 Acme 250000

Acme 100000 1995 1990 1999 IBM
IBM 200000 2012 2000 2009 Acme

Apple 300000 2012

IBM 250000 2019 2010 2019 IBM 450000

January 24, 2025 SQL Review

More GROUP BY

Find the total revenue per company and decade

Needs to occur

in GROUP BY

name, sum(Revenue)
FROM Company

SELECT year/10*10 AS Start, year/10*10 + 9 AS End,

GROUP BY year/10*10, year/10*10 + 9, name;

Company

name Revenue | year

Acme 100000 1995

IBM 200000 2012
Apple 300000 2012
IBM 250000 2019

1990 1999
1990 1999
2000 2009
2010 2019

Acme 250000
IBM
Acme

IBM 450000

January 24, 2025 SQL Review

More GROUP BY

Find the total revenue per company and decade

name, sum(Revenue)
FROM Company
GROUP BY Start, End, name;

SELECT year/10*10 AS Start,

vear/10*10 + 9 AS End,

Sqlite allows

this. Nice ©

Company

name Revenue | year

Acme 100000 1995
IBM 200000 2012
Apple 300000 2012
IBM 250000 2019

Acme 250000
IBM
Acme

IBM 450000

January 24, 2025

SQL Review

More GROUP BY

Find the total revenue in a sliding window of 10 years

Company

name Revenue | year

Acme
IBM
Apple
IBM

January 24, 2025

100000
200000
300000
250000

1995
2012
2012
2019

SQL Review

More GROUP BY

Find the total revenue in a sliding window of 10 years

Company

name Revenue | year

Acme 100000

IBM 200000
Apple 300000
IBM 250000

1995
2012
2012
2019

We want this: ﬁ

1990
1991
1992

2013

1999
2000
2001

2022

January 24, 2025

SQL Review

More GROUP BY

Find the total revenue in a sliding window of 10 years

FROM Company X, Company Y
WHERE X.name = Y.name

GROUP BY X.year, X.year+9,
ORDER BY X.year;

SELECT X.year, X.yeart9, X.name,

sum (Y .Revenue)

and X.year <= Y.year and Y.year < X.year+10
X.name

Company

name Revenue | year

Acme 100000 1995
IBM 200000 2012
Apple 300000 2012
IBM 250000 2019

1990
1991
1992

2013

1999
2000
2001

2022

January 24, 2025

SQL Review

More GROUP BY

Find the total revenue in a sliding window of 10 years

Gaps if

SELECT X.year, X.yeart+9, X.name, sum(Y.Revenue) year
FROM Company X, Company Y not in
database

WHERE X.name = Y.name

and X.year <= Y.year and Y.year < X.year+10
GROUP BY X.year, X.year+9, X.name
ORDER BY X.year;

Company

Acme 100000 1995 1991 2000
IBM 200000 2012 1992 2001
Apple 300000 2012 ..

IBM 250000 2019 2013 2022

January 24, 2025 SQL Review

More GROUP BY

Find the total revenue in a sliding window of 10 years

Gaps if

SELECT X.year, X.yeart+9, X.name, sum(Y.Revenue) year
FROM Company X, Company Y not in
database

WHERE X.name = Y.name

and X.year <= Y.year and Y.year < X.year+10
GROUP BY X.year, X.year+9, X.name
ORDER BY X.year;

Postgres:

generate series(1999,2024) 5

Revenue 1990 1999
Acme 100000 1995 1991 2000
IBM 200000 2012 1992 2001
Apple 300000 2012
IBM 250000 2019 2013 2022

January 24, 2025 SQL Review

Discussion

* GROUP-BY is versatile and powerful

= Optimizers can often find every efficient plans

= SQL also has “windows function”. very complex
« Will not discuss in class

January 24, 2025 SQL Review

The Withess

January 24, 2025

The Withess

» SQL provides min/max, but not argmin/argmax

= Record that achieves min/max; The Witness

» Several ways to compute it:
« WITH
 Self-join and HAVING

January 24, 2025 SQL Review

The Witnhessing Problem

Find the person with highest salary for each job

payroll
IE_
Jack 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

January 24, 2025 SQL Review

The Witnhessing Problem

Find the person with highest salary for each job

job___[name | salary

Desired answer: TA

Prof
payroll
IE-
Jack 50000
345 Allison TA 60000

567 Magda Prof 90000
789 Dan Prof 100000

January 24, 2025 SQL Review

Allison
Dan

60000
100000

The Witnessing Problem

Find the person with highest salary for each job

SELECT job, MAX(salary) job |salary |

FROM payroll TA 60000
GROUP BY job Prof 100000

Finding max is easy.

payroll
IE_
Jack 50000
345 Allison TA 60000

567 Magda Prof 90000
789 Dan Prof 100000

January 24, 2025 SQL Review

The Witnessing Problem

Find the person with highest salary for each job

SELECT job, MAX(salary) job |salary |

FROM payroll TA 60000
GROUP BY job Prof 100000

Finding max is easy.

payroll

IE_ But we want argmax.
Jack 50000 How do we find

345 Allison TA 60000 the withess?

567 Magda Prof 90000
789 Dan Prof 100000

January 24, 2025 SQL Review

The Witnhessing Problem

Find the person with highest salary for each job
Solution 1: Using WITH

Solution 2: Using HAVING

Plan:
1. Compute the max(salary) for each job
2.Join back with payroll on job

3. Return the users where salary = max(salary)

payroll
IE_
Jack 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

January 24, 2025 SQL Review

The Witnhessing Problem

Find the person with highest salary for each job

WITH jobSal AS
(SELECT job, max(salary) AS M
FROM payroll
GROUP BY job)
SELECT j.job, p.name, p.salary
FROM jobSal j, payroll p
WHERE 7 .job = p.job
and jJ.M = p.salary;

payroll

IE_
Jack 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

January 24, 2025 SQL Review

The Witnhessing Problem

Find the person with highest salary for each job

WITH jobSal AS

FROM payroll
GROUP BY job)

(SELECT job, max(salary) AS M

user_id |name m salary

payroll

Jack
345 Allison
567 Magda
789 Dan

January 24, 2025

TA
Prof
Prof

50000
60000
90000
100000

SQL Review

!

job M ___

TA
Prof

60000
100000

The Witnhessing Problem

Find the person with highest salary for each job

!
m-

60000
Prof 100000

FROM jobSal j, payroll p
WHERE 7 .job = p.job

payroll

IE_
Jack 50000

345 Allison - 60000

567 Magda Prof 90000

789 Dan Prof 100000

- 3

January 24, 2025 SQL Review

p.Jjob

payro Il 100000

Prof 100000
E_EE._

50000
60000
90000
100000

SQL Review

Allison
Magda

January 24, 2025

345
567
789

100000

The Witnhessing Problem

Find the person with highest salary for each job

!
m-

ﬁ
FROM jobSal j, payroll p m-m

WHERE 7.job

50000
60000
90000
100000

The Witnhessing Problem

Find the person with highest salary for each job

ﬁ

60000
100000

Prof

WHERE J.job = p.job 60000 Jack
and j.M = p.salary; TA 60000 345 Allison
payroll Prof 100000 567 Magda
m@ Prof 100000 789 Dan
Jack 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

January 24, 2025

TA
Prof
Prof

- 3

FROM jobSal j, payroll p m-m

50000

90000
100000

SQL Review

The Witnhessing Problem

Find the person with highest salary for each job

SELECT j.job, p.name,

!
m-

60000
100000

Prof

- 3

p.salarv

FROM jobSal j, payroll p m-m
WHERE j.job = p.job TA 60000 Jack 50000
and J.M = p.salary; TA 60000 345 Alison TA 60000
paym” Prof 100000 567 Magda Prof 90000
m@ Prof 100000 Dan Prof 100000

Jack 50000

345 Alison TA 60000 L job |name |salary |
567 Magda Prof 90000 TA Allison 60000
789 Dan Prof 100000 Prof Dan 100000

January 24, 2025

SQL Review 77

The Witnhessing Problem

Find the person with highest salary for each job
Solution 1: Using WITH

Solution 2: Using HAVING

Plan:
1. Compute the max(salary) for each job
2.Join back with payroll on job

3. Return the users where salary = max(salary)

payroll
IE_
Jack 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

January 24, 2025 SQL Review

The Witnhessing Problem

Find the person with highest salary for each job

Plan: @

1. Compute the max(salary) for each job
2.Join back with payroll on job
3. Return the users where salary = max(salary)

Goes in HAVING

payroll
IE_
Jack 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

January 24, 2025 SQL Review

The Witnhessing Problem

Find the person with highest salary for each job

SELECT pl.job, MAX (pl.salary)
FROM payroll AS pl

GROUP BY pl.7ob

payroll
IE_
Jack 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

January 24, 2025 SQL Review

The Witnhessing Problem

Find the person with highest salary for each job

Similar to jobSal
in our first solution

SELECT pl.job, MAX (pl.salary)
FROM payroll AS pl

GROUP BY pl.7ob

payroll
IE_
Jack 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

January 24, 2025 SQL Review

The Witnhessing Problem

Find the person with highest salary for each job

FROM payroll AS pl

GROUP BY pl.7ob

SELECT pl.job, MAX{pt-satarvyr

payroll
IE_
Jack 50000
345 Allison TA 60000
567 Magda Prof 90000

789 Dan Prof 100000

January 24, 2025

SQL Review

The Witnhessing Problem

Find the person with highest salary for each job

SELECT pl.job
FROM payroll AS pl

GROUP BY pl.7ob

payroll
IE_
Jack 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

January 24, 2025 SQL Review

The Witnhessing Problem

Find the person with highest salary for each job

SELECT pl.job, P2.name, PZ.salary
FROM payroll AS pl, payroll AS P2
WHERE pl.job = P2.7j0b

GROUP BY pl.job

payroll
IE_
Jack 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

January 24, 2025 SQL Review

The Witnhessing Problem

Find the person with highest salary for each job

GROUP BY pl.7ob

SELECT pl.job, PZ2.name,
FROM payroll AS pl,
WHERE pl.job = P2.7j0b

payroll AS P2

P2 .salary

Similar to joining

jobSal with payroll

payroll
IE_
Jack 50000
345 Allison TA 60000
567 Magda Prof 90000

789 Dan Prof 100000

January 24, 2025

SQL Review

The Witnhessing Problem

Find the person with highest salary for each job

SELECT pl.job, P2.name, PZ.salary
FROM payroll AS pl, payroll AS P2

WHERE pl.job = P2.7j0b

GROUP BY pl.7ob

payroll
IE_
Jack 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

January 24, 2025 SQL Review

The Witnessing Problem

Find the person with highest salary for each job

SELECT pl.job, P2.name, P2.salary
FROM payroll AS pl, payroll AS P2
WHERE pl.job = P2.jo0b

GROUP BY pl.job, P2.name, P2.salary

Correct: but not done!

payroll
IE_
Jack 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

January 24, 2025 SQL Review

The Witnhessing Problem

Find the person with highest salary for each job

SELECT pl.job, P2.name, PZ2.salary
FROM payroll AS pl, payroll AS P2
WHERE pl.job = P2.jo0b

GROUP BY pl.job, P2Z2.name, P2.salary

payro” Which P2 should
m we return for each job?
Jack 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

January 24, 2025 SQL Review

The Witnhessing Problem

Find the person with highest salary for each job

SELECT pl.job, P2.name, PZ2.salary
FROM payroll AS pl, payroll AS P2
WHERE pl.job = P2.jo0b

GROUP BY pl.job, P2Z2.name, P2.salary
HAVING P2 .salary = MAX(pl.salary)

payroll
m_
Jack 50000
345 Allison TA 60000
567 Magda Prof 90000

789 Dan Prof 100000

January 24, 2025 SQL Review

The Witnhessing Problem

Find the person with highest salary for each job

SELECT pl.job, P2.name, P2.salary
FROM payroll AS pl, payroll AS P2
WHERE pl.job = P2.job

GROUP BY pl.job, P2.name, P2.salary
HAVING MAX (pl.salary) = P2.salary;

USGT [name “ salary

Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000

789 Dan Prof 100000
anuary 24, 20 SQL Review 90

The Witnessing Problem

Find the person with highest salary for each job

SELECT pl.job, P2.name, P2.salary
FROM payroll AS pl, payroll AS P2
WHERE pl.job = P2.job

GROUP BY pl.job, P2.name, P2.salary

payroll join with payroll

HAVING MAX (pl.salary) = P2.salary;
m-m-
Jack TA 50000 Jack TA 50000
345 Allison TA 60000 123 Jack TA 50000
123 Jack TA 50000 345 Allison TA 60000
345 Allison TA 60000 345 Allison TA 60000
567 Magda Prof 90000 567 Magda Prof 90000
789 Dan Prof 100000 567 Magda Prof 90000
567 Magda Prof 90000 789 Dan Prof 100000
Prof 100000 789 Dan Prof 100000
P e
Jack 50000
345 Allison TA 60000
567 Magda Prof 90000

789 Dan Prof 100000

SQL Review

The Witnessing Problem

Find the person with highest salary for each job

SELECT pl.job, P2.name,
FROM payroll AS pl,

P2.salary
payroll AS P2

WHERE pl.job = P2.job
GROUP BY pl.job, P2.name, P2.salary
HAVING MAX (pl.salary) = PZ2.salary;

P1

123

Jack

50000 123

345 Allison TA 60000 123 Jack TA
123 Jack TA 50000 345 Allison TA 60000
345 Allison TA 60000 345 Allison TA 60000
567 Magda Prof 90000 567 Magda Prof 90000
789 Dan Prof 100000 567 Magda Prof 90000
567 Magda Prof 90000 789 Dan Prof 100000
Prof 100000 789 Dan Prof 100
T T T
Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000

789 Dan Prof 100000
anuary 24, 20 SQL Review 92

The Witnessing Problem

Find the person with highest salary for each job

SELECT pl.job, P2.name, P2.salary
FROM payroll AS pl, payroll AS P2

WHERE pl.job = P2.j0b Compute max(pl.salary)
GROUP BY pl.job, P2.name, P2.salary
HAVING MAX (pl.salary) = P2.salary;
Pl P2
luserid | name |job | salary |userid [name |job | salary
123 Jack TA 50000 123 Jack TA 50000
m max(salary)=60000
345 Allison TA 60000 123 Jack TA 50000
123 Jack TA 50000 345 Allison TA 60000
n max(salary)=60000
345 Allison TA 650000 345 Allison TA 60000

567 Magda Prof 90000 567 90000
2 - max(salary)=100000
789 Dan Prof 100000) 567 90000
567 Magda Prof 90000 100000
g m max(salary)=100000
Prof 00000 100000

789 Dan
user_i name salary
d
123 Jack TA 50000

345 Allison TA 60000
567 Magda Prof 90000

789 Dan Prof 100000
anuary Z4, Z0 SQL Review 93

The Witnessing Problem

Find the person with highest salary for each job

SELECT pl.job, P2.name, P2.salary
FROM payroll AS pl, payroll AS P2
WHERE pl.job = P2.job

GROUP BY pl.job, P2.name, P2.salary
HAVING MAX (pl.salary) = P2.salary;

user_id | name m salary user_id | name m salary

123 Jack TA TA 50000
max(salary)=60000
345 Allison TA 60000 123 k TA 50000
123 Jack TA 50000 345 Allison TA 60000
max(salary)=60000
345 Allison TA 60000 345 Allison TA 60000
567 Magda 0000 5 agda Prof 90000
2 2 max(salary)=100000
789 Dan 00000 5 agda Prof 90000
567 Magda Prof 90000 789 Dan Prof 100000
- max(salary)=100000
Prof 100000 789 Dan Prof
Iiiilllliiiﬁllliillliﬂﬁilll
Jack 50000
345 Allison TA 60000
567 Magda Prof 90000
100000

789 Dan Prof
nual SQL Review

The Witnessing Problem

Find the person with highest salary for each job

SELECT pl.job, P2.name, P2.salary
FROM payroll AS pl, payroll AS P2
WHERE pl.job = P2.job

GROUP BY pl.job, P2.name, P2.salary
HAVING MAX(pl.salary) = P2.salary;

user_id | name m salary user_id | name m salary

123 Jack TA

345 Allison TA 60000 123

123 Jack TA 50000 345

345 Allison TA 60000 345

567 Magda 0000 5

789 Dan 00000 5

567 Magda Prof 90000 789
Prof 100000 789

userl name “ salary

Jack TA 50000

345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

anuary 24, 20

SQL Review

max(salary)=60000
max(salary)=60000

max(salary)=100000

max(salary)=100000

Allison 60000

100000

The Witnhessing Problem

Find the person with highest salary for each job

SELECT pl.job, P2.name, P2.salary
FROM payroll AS pl, payroll AS P2
WHERE pl.job = P2.job

GROUP BY pl.job, P2.name, P2.salary
HAVING MAX(pl.salary) = P2.salary;

Final output has the witnesses

|
ﬂ pLi: P2 salary

S U ReTT0 Allison 60000
345 Allison TA 60000
567 Magda Prof 90000 Prof Dan 100000

789 Dan Prof 100000
anuary 24, 20 SQL Review

Subqueries in FROM

Subqueries In FROM

What is the average salary of car drivers?

payroll regist

m_ user_id _Jcar
Jack 50000 123 Charger

345 Allison TA 60000 567 Civic

567 Magda Prof 90000 567 Pinto

789 Dan Prof 100000

January 24, 2025 SQL Review

Subqueries In FROM

What is the average salary of car drivers?

WITH cardrivers AS
(SELECT DISTINCT p.*
FROM payroll p, regist r
WHERE p.user 1d=r.user 1d)
SELECT avg (salary)
FROM cardrivers;

payroll regist

user_id | name m salary user_id -

Jack 50000
345 Allison TA 60000 567
567 Magda Prof 90000 567
789 Dan Prof 100000

Charger

January 24, 2025 SQL Review

Subqueries In FROM

What is the average salary of car drivers?

(SELECT DISTINCT p.*
FROM payroll p,
WHERE p.user 1d=r.user 1id

regist r

Side note:
This is called a

semi-join

payroll

regist

user_id | name m salary user_id -

Allison
Magda

January 24, 2025

50000 Charger
60000 567 Civic
90000 567 Pinto

100000

SQL Review

Subqueries In FROM

What is the average salary of car drivers?

(SELECT DISTINCT p.*
FROM payroll p, regist r
WHERE p.user 1d=r.user 1id

Side note:
This is called a

semi-join

A semi-join is a join of two relations,
followed by a projection on the attributes of the first relation

January 24, 2025 SQL Review

Subqueries In FROM

What is the average salary of car drivers?

WITH cardrivers AS
(SELECT DISTINCT p.*
FROM payroll p, regist r
WHERE p.user 1d=r.user 1d)
SELECT avg (salary)
FROM cardrivers;

SELECT avg (C.salary)
FROM (SELECT DISTINCT p.~*
FROM payroll p, regist r
WHERE p.user id=r.user id)as C;

January 24, 2025 SQL Review

Subqueries In FROM

What is the average salary of car drivers?

(SELECT DISTINCT p.*
FROM payroll p, regist r
WHERE p.user 1d=r.user 1d)

(SELECT DISTINCT p.*
FROM payroll p, regist r

Subquery in WHERE p.user id=r.user id) ;
the FROM clause

January 24, 2025 SQL Review

Subqueries In FROM

What is the average salary of car drivers?

(SELECT DISTINCT p.*
FROM payroll p, regist r
WHERE p.user 1d=r.user 1d)

Must have
an alias

SELECT avg(C.salary)
FROM (SELECT DISTINCT p.~*
FROM payroll p, regist r

Subquery in WHERE p.user id=r.user 1id)as C;
the FROM clause

January 24, 2025 SQL Review

Discussion

» Subquery in FROM is the same as one in WITH

» Sometimes WITH makes the query easier to read

» Some DBMS may not support one or the other

January 24, 2025 Subqueries

Subqgueries in SELECT

Subqueries In SELECT

We can use subqgueries in SELECT, but caveat:

= A subquery returns a set...

» ...while in SELECT we must list single values!

* Must ensure that our query returns a single value

January 24, 2025 Subqueries

Subqueries In SELECT

For each user, find the average salary of their job type

payroll

Iﬂ-
Jack 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

January 24, 2025 Subqueries

Subqueries In SELECT

For each user, find the average salary of their job type

payroll

We want this

name salary m

Jack
Allison
Magda
Dan

user_id |name m salary

345
567
789

January 24, 2025

Jack
Allison
Magda
Dan

TA
Prof
Prof

50000
60000
90000
100000

Subqueries

50000
60000
90000
100000

55000

55000

95000

95000
.

Subqueries In SELECT

For each user, find the average salary of their job type

SELECT p.name, (SELECT AVG(pl.salary)
FROM payroll AS pl
WHERE p.job = pl.job)
FROM payroll AS P;

payroll

IE-
Jack 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

January 24, 2025 Subqueries

Subqueries In SELECT

For each user, find the average salary of their job type

SELECT p.name, (SELECT AVG(pl.salary)
FROM payroll AS pl
WHERE p.job = pl.job)
FROM payroll AS P;

payroll Semantics:

IE_ Nested for loops!
Jack 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

January 24, 2025 Subqueries

Subqueries In SELECT

SELECT p.name, (SELECT AVG (pl.salary)
FROM payroll AS pl
WHERE p.job = pl.job)
FROM payroll AS P;

payroll P
m_
m—) 123 Jack
345 Allison TA
567 Magda Prof
789 Dan Prof

January 24, 2025 Subqueries

50000 Asingle
FOR loop:

60000 vl

90000

100000

Subqueries In SELECT

SELECT p.name, (SELECT AVG (pl.salary)
FROM payroll AS pl
WHERE p.job = pl.job)
FROM payroll AS P;

payroll P
IE_
m—) 123 Jack 50000
345 Allison TA 60000
567 Magda Prof 90000
For each P, 789 Dan Prof 100000
compute a
subquery payroII pl
IE_
Jack 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

January 24, 2025 Subqueries

A single

FOR loop:
payroll p

Subqueries In SELECT

SELECT p.name, (SELECT AVG (pl.salary)
FROM payroll AS pl
WHERE p.job = pl.job)
FROM payroll AS P;

payroll P
m_
m—) 123 Jack 50000
345 Allison TA 60000
567 Magda Prof 90000
For each P, 789 Dan Prof 100000
compute a
subquery payroII pl
m_
Jack 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

January 24, 2025 Subqueries

A single

FOR loop:
payroll p

Subqueries In SELECT

SELECT p.name, (SELECT AVG (pl.salary)
FROM payroll AS pl
WHERE p.job = pl.job)
FROM payroll AS P;

payroll P
IE_
m—) 123 Jack 50000
345 Allison TA 60000
567 Magda Prof 90000
For each P, 789 Dan Prof 100000
compute a
subquery payroII pl
IE_
Jack 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

January 24, 2025 Subqueries

55000

Subqueries In SELECT

SELECT p.name, (SELECT AVG (pl.salary)
FROM payroll AS pl
WHERE p.job = pl.job)
FROM payroll AS P;

payroll P
IE_
Jack 50000 55000
‘ 345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

January 24, 2025 Subqueries

Subqueries In SELECT

SELECT p.name,

(SELECT AVG (pl.salary)

FROM payroll AS pl

WHERE p.job = pl.job)
FROM payroll AS P;

January 24, 2025

user_id | name m salary

50000 55000
60000
90000

100000

user_id | name m salary

payroll p

Jack

ﬂ 345 Allison

567 Magda
789 Dan
payroll p1

Jack
345 Allison
567 Magda
789 Dan

50000
60000
90000
100000

Subqueries

Subqueries In SELECT

SELECT p.name,

(SELECT AVG (pl.salary)

FROM payroll AS pl

WHERE p.job = pl.job)
FROM payroll AS P;

January 24, 2025

user_id | name m salary

50000 55000
60000
90000

100000

user_id | name m salary

payroll p

Jack

ﬂ 345 Allison

567 Magda
789 Dan
payroll p1

Jack
345 Allison
567 Magda
789 Dan

50000
60000
90000
100000

Subqueries

Subqueries In SELECT

SELECT p.name,

FROM payroll AS P;

(SELECT AVG (pl.salary)
FROM payroll AS pl
WHERE p.job = pl.job)

January 24, 2025

payroll P
IE_
Jack 50000 55000
‘ 345 Allison TA 60000 55000
567 Magda Prof 90000
789 Dan Prof 100000
payroll pl
IE_
Jack 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

Subqueries

Subqueries In SELECT

SELECT p.name, (SELECT AVG (pl.salary)
FROM payroll AS pl
WHERE p.job = pl.job)
FROM payroll AS P;

payroll P
IE_
Jack 50000 55000
345 Allison TA 60000 55000
) 567 Magda Prof 90000 95000
789 Dan Prof 100000
payroll pl
IE_
Jack 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

January 24, 2025 Subqueries

Subqueries In SELECT

SELECT p.name,

(SELECT AVG (pl.salary)

FROM payroll AS pl

WHERE p.job = pl.job)
FROM payroll AS P;

January 24, 2025

user_id | name m salary

55000
55000

95000
95000

50000
60000
90000
100000

user_id | name m salary

payroll p

Jack
345 Allison
567 Magda

) 789 Dan

payroll p1

Jack
345 Allison
567 Magda
789 Dan

50000
60000
90000
100000

Subqueries

Subqueries In SELECT

For each person find the average salary of their job

SELECT p.name, (SELECT AVG(pl.salary)
FROM payroll AS pl
WHERE p.job = pl.job)
FROM payroll AS P;

Same query, unnested

SELECT pl.name, AVG(P2.salary)

FROM payroll AS pl, payroll AS P2
WHERE pl.job = P2.j0b
GROUP BY pl.user 1d, pl.name;

January 24, 2025 Subqueries

Subqueries In SELECT

» A subquery in SELECT can be unnested

= careful: sometimes it requires left outer joins

January 24, 2025 Subqueries

Subqueries In SELECT

For each person find the number of cars they drive

January 24, 2025 Subqueries

Subqueries In SELECT

For each person find the number of cars they drive

SELECT p.name,

(SELECT COUNT (r.car)

FROM regist AS
WHERE p.user 1d
r.user 1d)

FROM payroll AS P;

R

January 24, 2025

Subqueries

Subqueries In SELECT

For each person find the number of cars they drive

FROM regist AS
WHERE p.user 1d
r.user 1d)

FROM payroll AS P;

SELECT p.name, (SELECT COUNT (r.car)

R

|

SELECT p.name, COUNT (r.car)

FROM payroll AS P, regist AS R
WHERE p.user 1d = r.user 1d
GROUP BY p.user 1d, p.name;

January 24, 2025 Subqueries

Subqueries In SELECT

For each person find the number of cars they drive

FROM regist AS
WHERE p.user 1d
r.user 1d)
FROM payroll AS P;

SELECT p.name, (SELECT COUNT (r.car)

R

Not the same!
Why?

SELECT p.name, COUNT (r.car)

FROM payroll AS P, regist AS R
WHERE p.user 1d = r.user 1d
GROUP BY p.user 1d, p.name;

January 24, 2025 Subqueries

Subqueries In SELECT

For each person find the number of cars they drive

FROM regist AS
WHERE p.user 1d
r.user 1d)
FROM payroll AS P;

SELECT p.name, (SELECT COUNT (r.car)

R

0-count case not covered! ‘

SELECT p.name, COUNT (r.car)

FROM payroll AS P, regist AS R
WHERE p.user 1d = r.user 1d
GROUP BY p.user 1d, p.name;

January 24, 2025 Subqueries

Subqueries In SELECT

For each person find the number of cars they drive

FROM payroll AS P;

SELECT p.name, (SELECT COUNT (r.car)

FROM regist AS R
WHERE p.user 1d =

r.userid)
name

Jack

Allison
O-count case not covered!
Magda

WHERE p.user 1d

GROUP BY p.user

Dan

SELECT p.name, COUNT (r.car)
FROM payroll AS P, regist AS R

= r. user_id

id, p.name; Jack

Magda

1
2

January 24, 2025

Subqueries

Subqueries In SELECT

For each person find the number of cars they drive

SELECT p.name,

(SELECT COUNT (r.car)

FROM regist AS
WHERE p.user 1d
r.user 1d)

FROM payroll AS P;

R

January 24, 2025

1 Still possible to unnest

Subqueries

Subqueries In SELECT

For each person find the number of cars they drive

SELECT p.name, (SELECT COUNT (r.car)
FROM regist AS R
WHERE p.user 1d =
r.user 1d)
FROM payroll AS P;

1 Still possible to unnest

SELECT p.name, COUNT (r.car)
FROM payroll AS P LEFT OUTER JOIN
regist AS R ON p.user 1d = r.user 1
GROUP BY p.user 1d, p.name;

January 24, 2025 Subqueries

Subqueries In SELECT

" |_esson:
« Unnesting queries may require left outer join

= Another issue:

« Subqueries in SELECT must return a single value

» Otherwise, they produce an error (except Sqlite...)

January 24, 2025 Subqueries

Subqueries In SELECT

For each person list the cars that they drive

regist

user_id | name m salary user_id -

payroll

Jack
345 Allison TA
567 Magda Prof
789 Dan Prof

January 24, 2025

50000 Charger
60000 567 Civic
90000 567 Pinto
100000

Subqueries

Subqueries In SELECT

For each person list the cars that they drive

name car

Jack Charger
Magda Civic

Intended answer Magda Pinto

payroll regist

m_ user_id _Jcar
Jack 50000 123 Charger

345 Allison TA 60000 567 Civic

567 Magda Prof 90000 567 Pinto

789 Dan Prof 100000

January 24, 2025 Subqueries

Subqueries In SELECT

For each person list the cars that they drive

FROM payroll p;

SELECT p.name, (SELECT r.car
FROM regist r
WHERE p.user id=r.user 1d)

regist

user_id | name m salary user_id -

payroll

Jack
345 Allison TA
567 Magda Prof
789 Dan Prof

January 24, 2025

50000 Charger
60000 567 Civic
90000 567 Pinto

100000

Subqueries

Subqueries In SELECT

For each person list the cars that they drive

SELECT p.name, (SELECT r.car

FROM regist r

WHERE p.user id=r.user 1d)
FROM pavyroll p;

WRONG! Why?

payroll regist

IE- user_id _Jcar
Jack 50000 123 Charger

345 Allison TA 60000 567 Civic

567 Magda Prof 90000 567 Pinto

789 Dan Prof 100000

January 24, 2025 Subqueries

Subqueries In SELECT

For each person list the cars that they drive

Is not always

SELECT p.name, (SELECT r.car a single value

FROM regist r
WHERE p.user id=r.user 1d)

FROM payroll | car
Jack Charger
Magda Civic
Pinto
payroll regist ~ Pa"
IE_ —
Jack 50000 Charger
345 Allison TA 60000 567 Civic
567 Magda Prof 90000 567 Pinto
789 Dan Prof 100000

January 24, 2025

Subqueries

Subqueries In SELECT

For each person list the cars that they drive

Is not always

SELECT p.name, (SELECT r.car a single value
FROM regist r
WHERE p.user id=r.user 1d)

FROM payroll | car
Jack Charger
WRONG! Why? Allison
| Sqlite returns junk. Magda Civic
Better systems give an error Pinto
payroll regist ~ Dan
IE- —
Jack 50000 123 Charger
345 Allison TA 60000 567 Civic
567 Magda Prof 90000 567 Pinto
789 Dan Prof 100000

January 24, 2025 Subqueries

Subqueries In SELECT

For each person list the cars that they drive

SELECT p.name, (SELECT r.car

FROM regist r

WHERE p.user id=r.user 1d)
FROM pavyroll p;

WRONG! Why? ‘ SELECT p.name, r.car

FROM payroll p, regist r
WHERE p.user 1d=r.user 1d;

payroll
IE-

Jack 50000 The only right way
345 Allison TA 60000 to write this query
567 Magda Prof 90000
789 Dan Prof 100000

January 24, 2025 Subqueries

Subqueries In SELECT

Final wrinkle:

= A query with a subquery in SELECT may introduce
unwanted duplicates

* Need DISTINCT

January 24, 2025 Subqueries

Subqueries In SELECT

Compute the average salary for each job

Want this output:

payroll

Iﬂ-
Jack 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

job___lavg(.) _

TA 55000
Prof 95000

January 24, 2025 Subqueries

Subqueries In SELECT

Compute the average salary for each job

SELECT p.job, (SELECT avg(pl.salary)
FROM payroll AS pl
WHERE p.job = pl.job)
FROM payroll AS P;

payroll

IE-
Jack 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

January 24, 2025 Subqueries

Subqueries In SELECT

Compute the average salary for each job

SELECT p.job, (SELECT avg(pl.salary)
FROM payroll AS pl
WHERE p.job = pl.job)
FROM payroll AS P;

How many records are

In the output?

payroll

IE-
Jack 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

January 24, 2025 Subqueries

Subqueries In SELECT

Compute the average salary for each job

SELECT p.job, (SELECT avg(pl.salary)
FROM payroll AS pl
WHERE p.job = pl.job)
FROM payroll AS P;

How many records are

In the output?

!

payroll

IE- m-
Jack 50000 55000

345 Allison TA 60000 TA 55000

567 Magda Prof 90000 Prof 95000

789 Dan Prof 100000 Prof 95000

January 24, 2025 Subqueries

Subqueries In SELECT

Compute the average salary for each job

SELECT DISTINCT p.job,
(SELECT avg(pl.salary)
FROM payroll AS pl
WHERE p.job = pl.job)

FROM payroll AS P;

payroll

IE- job |avg(.)
Jack 50000 TA 55000

345 Allison TA 60000 TA 55000

567 Magda Prof 90000 Prof 95000

789 Dan Prof 100000 Prof 95000

January 24, 2025 Subqueries

Subqueries In SELECT

Compute the average salary for each job

SELECT DISTINCT p.7ob,
(SELECT avg(pl.salary) job avg(..)
FROM payroll AS pl 1A >>000
WHERE p.job = pl.job) e

FROM payroll AS P; I

payroll

IE- job |avg(.)
Jack 50000 TA 55000

345 Allison TA 60000 TA 55000

567 Magda Prof 90000 Prof 95000

789 Dan Prof 100000 Prof 95000

January 24, 2025 Subqueries

Subqueries In SELECT

Compute the average salary for each job

SELECT DISTINCT p. job,
(SELECT avg(pl.salary)
FROM payroll AS pl
WHERE p.job = pl.job) Under the hood:

GROUP BY replaces
FROM payroll AS P; two loops with one

loop over some

| hash table

SELECT p.job, avg(p.salary)
FROM payroll AS P
GROUP BY p. job;

January 24, 2025 Subqueries

Discussion

» Queries in SELECT must return single value

» Think about edge cases: zero matches, null values

» Best: avoid nested gueries when possible

= Appreciate the utility of GROUP BY

January 24, 2025 Subqueries

Subqueries in WHERE/HAVING

Subqueries In WHERE/HAVING

= Can use subquery that returns single value;
same as in SELECT

= Additional predicates:
« EXISTS / NOT EXISTS
« IN/NOTIN
« ANY /ALL

January 24, 2025 Subqueries

Subqueries In WHERE/HAVING

Find all employees who earn less than the average of their job

payroll

Iﬂ-
Jack 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

January 24, 2025 Subqueries

Subqueries In WHERE/HAVING

Find all employees who earn less than the average of their job

SELECT p.name, p.salary

FROM payroll p

WHERE p.salary < (SELECT avg(pl.salary)
FROM payroll pl
WHERE p.job = pl.job);

payroll

IE-
Jack 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

January 24, 2025 Subqueries

Subqueries In WHERE/HAVING

Find all employees who earn less than the average of their job

SELECT p.name, p.salary

FROM payroll p

WHERE p.salary < (SELECT avg(pl.salary)
FROM payroll pl
WHERE p.job = pl.job);

We can unnest

user_id |name m salary

Jack 50000
345 Allison TA 60000
567 Magda Prof 90000

789 Dan Prof 100000

January 24, 2025 Subqueries

Subqueries In WHERE/HAVING

Find all employees who earn less than the average of their job

FROM payroll p

SELECT p.name, p.salary

WHERE p.salary < (SELECT avg(pl.salary)

FROM payroll pl
WHERE p.job = pl.job);

FROM pavyroll p,

GROUP BRY p.name,
HAVING p.salary

WHERE p.Jjob = pl.job

Iﬂﬁiﬁiﬂiﬁiﬂ
SELECT p.name, p.salary using HAVING

payroll pl

p.salary
< avg(pl.salary);

January 24, 2025

Subqueries

Subqueries In WHERE/HAVING

SQL has a few predicates that apply to a subquery:

» EXISTS (SELECT) checks if it is not empty
NOT EXISTS (SELECT ...) checks if it is empty

January 24, 2025 Subqueries

Subqueries In WHERE/HAVING

SQL has a few predicates that apply to a subquery:

» EXISTS (SELECT) checks if it is not empty
NOT EXISTS (SELECT ...) checks if it is empty

= Xin (SELECT Y FROM ...) checks output has X
Xnotin (SELECTY ...) checks if it doesn’t have X

January 24, 2025 Subqueries

Subqueries In WHERE/HAVING

SQL has a few predicates that apply to a subquery:

» EXISTS (SELECT) checks if it is not empty
NOT EXISTS (SELECT ...) checks if it is empty

= Xin (SELECT Y FROM ...) checks output has X
Xnotin (SELECTY ...) checks if it doesn’t have X

= X>ALL(SELECT ...)
X >ANY(SELECT ...)
checks if X i1s > than one or all values in output

January 24, 2025 Subqueries

Subqueries In WHERE/HAVING

Sﬁ! has a few predicates that apply to a subquery:
» EXISTS (SELECT) checks if it is not empty

NOT EXISTS (SELECT ...) checks if it is empty

= Xin (SELECT Y FROM ...) checks output has X
Xnotin (SELECTY ...) checks if it doesn’t have X

« X > ALL(SELECT ...) k>

X >ANY(SELECT ...)
checks if X i1s > than one or all values in output

January 24, 2025 Subqueries

Subqueries In WHERE/HAVING

Find people who do drive cars

payroll

M regist
Jack TA 50000

345 Allison TA 60000 123 Charger
567 Magda Prof 90000 567 Civic
789 Dan Prof 100000 567 Pinto

January 24, 2025 SQL Review

Subqueries In WHERE/HAVING

Find people who do drive cars

SELECT p.user 1i1d, p.name
FROM pavyroll p

WHERE exists
(SELECT ~*

FROM regist r
WHERE p.user 1d =

r.user_id);

payroll

user_id | name salary regist

Jack TA 50000

345 Allison TA 60000 123
567 Magda Prof 90000 567
789 Dan Prof 100000 567

January 24, 2025 SQL Review

Charger
Civic
Pinto

Subqueries In WHERE/HAVING

Find people who do drive cars

SELECT p.user 1i1d, p.name

FROM pavyroll p

WHERE exists Same as
(SELECT * a semi-join
FROM regist r
WHERE p.user 1d = r.user 1d);

payroll

M regist 1
Jack TA 50000

345 Allison TA 60000 123 Charger

567 Magda Prof 90000 567 Civic 123 Jack
789 Dan Prof 100000 567 Pinto 567 Magda

January 24, 2025 SQL Review 161

Subqueries In WHERE/HAVING

Find people who do not drive cars

SELECT p.user 1i1d, p.name
FROM pavyroll p

WHERE exists
(SELECT ~*

FROM regist r
WHERE p.user 1d =

r.user_id);

payroll

user_id | name salary regist

Jack TA 50000

345 Allison TA 60000 123
567 Magda Prof 90000 567
789 Dan Prof 100000 567

January 24, 2025 SQL Review

Charger
Civic
Pinto

Subqueries In WHERE/HAVING

Find people who do not drive cars

SELECT p.user 1i1d, p.name
FROM pavyroll p
WHERE not exists
(SELECT *
FROM regist r
WHERE p.user 1d =

r.user_id);

payroll

user_id | name salary regist

Jack TA 50000

345 Allison TA 60000 123
567 Magda Prof 90000 567
789 Dan Prof 100000 567

January 24, 2025 SQL Review

Charger
Civic
Pinto

Subqueries In WHERE/HAVING

Find people who do not drive cars

SELECT p.user 1i1d, p.name
FROM pavyroll p
WHERE not exists
(SELECT *
FROM regist r
WHERE p.user 1d =

r.user_id);

payroll

user_id | name salary regist

Jack TA 50000

345 Allison TA 60000 123
567 Magda Prof 90000 567
789 Dan Prof 100000 567

Charger
Civic
Pinto

345
789

!

user_id | name

Allison
Dan

January 24, 2025 SQL Review

Subqueries In WHERE/HAVING

Find people who do not drive cars

SELECT p.user 1i1d, p.name
FROM pavyroll p
WHERE not exists
(SELECT *
FROM regist r
WHERE p.user 1d =

Called an
anti-semijoin

r.user_id);

payroll

user_id | name salary regist

Jack TA 50000

345 Allison TA 60000 123
567 Magda Prof 90000 567
789 Dan Prof 100000 567

Charger
Civic
Pinto

!

user_id | name

345
789

Allison
Dan

January 24, 2025 SQL Review

Nested Loop Semantics

January 24, 2025

SELECT p.user id, p.name
FROM payroll p
WHERE not exists
(SELECT ~*
FROM regist r
WHERE p.user id = r.user 1id);

payroII

M
Jack 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

regist

user_id

123 Charger
567 Civic
567 Pinto

Subqueries

Nested Loop Semantics

payroll

SELECT p.user id, p.name
FROM payroll p
WHERE not exists

(SELECT ~*

FROM regist r

WHERE p.user id = r.user id);

user_id | name salary

P mmm) 123

345
567
789

regist

Jack 50000
Allison TA 60000
Magda Prof 90000
Dan Prof 100000

user_id

123
567
567

January 24, 2025

Charger
Civic
Pinto

Subqueries

Output so far

user_id | name

Nested Loop Semantics

payroll

SELECT p.user id, p.name
FROM payroll p
WHERE not exists

(SELECT ~*

FROM regist r

WHERE p.user id = r.user id);

user_id | name salary

P mmm) 123

345
567
789

regist

user_id

123
567
567

January 24, 2025

Jack 50000
Allison TA 60000
Magda Prof 90000
Dan Prof 100000

Compute subquery
for p.user_id=123

Charger user_id

Car

Civic

Pinto

Subqueries

Output so far

user_id | name

Nested Loop Semantics

SELECT p.user id, p.name
FROM payroll p
WHERE not exists

(SELECT ~*

FROM regist r

WHERE p.user id = r.user id);

payroII
M

P mmm) 123 Jack 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000
e
-

R mmmm) 123 Charger user_id | car
567 Civic 123 Charger
567 Pinto

January 24, 2025 Subqueries

Output so far

user_id | name

Nested Loop Semantics

SELECT p.user id, p.name
FROM payroll p
WHERE not exists

(SELECT ~*

FROM regist r

WHERE p.user id = r.user id);

payroII
m

P mmm) 123 Jack 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000
e
-
123 Charger user_id | car

R ‘ 567 Civic 123 Charger
567 Pinto

January 24, 2025 Subqueries

Output so far

user_id | name

Nested Loop Semantics

SELECT p.user id, p.name
FROM payroll p
WHERE not exists

(SELECT ~*

FROM regist r

WHERE p.user id = r.user id);

payroII
m

P mmm) 123 Jack 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000
e
-
123 Charger user_id | car
567 Civic 123 Charger

R) 567 Pinto

January 24, 2025 Subqueries

Output so far

user_id | name

Nested Loop Semantics

SELECT p.user id, p.name
FROM payroll p
WHERE not exists

(SELECT ~*

FROM regist r

WHERE p.user id = r.user id);

payroII
m

P mmm) 123 Jack 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000
e
-
123 Charger user_id | car
567 Civic 123 Charger
567 Pinto

January 24, 2025 Subqueries

Output so far

user_id | name

Done user _id=123
Exists answers

Nested Loop Semantics

payroll

SELECT p.user id, p.name
FROM payroll p
WHERE not exists

(SELECT ~*

FROM regist r

WHERE p.user id = r.user id);

user_id | name salary

P mmm) 123

345
567
789

regist

user_id

123
567
567

January 24, 2025

Jack 50000
Allison TA 60000
Magda Prof 90000
Dan Prof 100000

Compute subquer
for p.user_id=123

Charger user_id | car
Civic 123 Charger
Pinto

Subqueries

Output so far

user_id | name

Y Skip user_id=123

Done user _id=123
Exists answers

Nested Loop Semantics

SELECT p.user id, p.name
FROM payroll p
WHERE not exists

(SELECT ~*

FROM regist r

WHERE p.user id = r.user id);

payroII

m
P mmm) 123 Jack 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

regist

user_id

123 Charger
567 Civic
567 Pinto

January 24, 2025 Subqueries

Output so far

user_id | name

Nested Loop Semantics

SELECT p.user id, p.name
FROM payroll p
WHERE not exists

(SELECT ~*

FROM regist r

WHERE p.user id = r.user id);

payroII
m
Jack 50000
P ‘ 345 Alison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000
regist

user_id

123 Charger
567 Civic
567 Pinto

January 24, 2025 Subqueries

Output so far

user_id | name

Nested Loop Semantics

payroll

SELECT p.user id, p.name
FROM payroll p
WHERE not exists

(SELECT ~*

FROM regist r

WHERE p.user id = r.user id);

user_id | name salary

P‘ 345

567
789

regist

user_id

123
567
567

January 24, 2025

Jack 50000
Allison TA 60000
Magda Prof 90000
Dan Prof 100000

Compute subquery
for p.user_id=345

Charger user_id

Car

Civic

Pinto

Subqueries

Output so far

user_id | name

Nested Loop Semantics

payroll

SELECT p.user id, p.name
FROM payroll p
WHERE not exists

(SELECT ~*

FROM regist r

WHERE p.user id = r.user id);

user_id | name salary

P‘ 345

567
789

regist

user_id

R mmm) 123

567
567

January 24, 2025

Jack 50000
Allison TA 60000
Magda Prof 90000
Dan Prof 100000

Compute subquery
for p.user_id=345

Charger user_id

Car

Civic

Pinto

Subqueries

Output so far

user_id | name

Nested Loop Semantics

payroll

SELECT p.user id, p.name
FROM payroll p
WHERE not exists

(SELECT ~*

FROM regist r

WHERE p.user id = r.user id);

user_id | name salary

P‘ 345

567
789

regist

user_id

123

R mmm) 567

567

January 24, 2025

Jack 50000
Allison TA 60000
Magda Prof 90000
Dan Prof 100000

Compute subquery
for p.user_id=345

Charger user_id

Car

Civic

Pinto

Subqueries

Output so far

user_id | name

Nested Loop Semantics

payroll

SELECT p.user id, p.name
FROM payroll p
WHERE not exists

(SELECT ~*

FROM regist r

WHERE p.user id = r.user id);

user_id | name salary

P‘ 345

567
789

regist

user_id

123
567

R mmm) 567

January 24, 2025

Jack 50000
Allison TA 60000
Magda Prof 90000
Dan Prof 100000

Compute subquery
for p.user_id=345

Charger user_id

Car

Civic

Pinto

Subqueries

Output so far

user_id | name

Nested Loop Semantics

payroll

SELECT p.user id, p.name
FROM payroll p
WHERE not exists

(SELECT ~*

FROM regist r

WHERE p.user id = r.user id);

user_id | name salary

P‘ 345

567
789

regist

user_id

123
567

R mmm) 567

January 24, 2025

Jack 50000
Allison TA 60000
Magda Prof 90000
Dan Prof 100000

Compute subquery
for p.user_id=345

Charger user_id

Car

Civic

Pinto

Subqueries

Output so far

user_id | name

Done user _id=345
Not exists answers

Nested Loop Semantics

payroll

SELECT p.user id, p.name
FROM payroll p
WHERE not exists

(SELECT ~*

FROM regist r

WHERE p.user id = r.user id);

user_id | name salary

P‘ 345

567
789

regist

user_id

123
567
567

January 24, 2025

Jack 50000
Allison TA 60000
Magda Prof 90000
Dan Prof 100000

Compute subqu
for p.user_id=34%

Charger user_id

Car

Civic

Pinto

Subqueries

Output so far

user_id | name

345 Allison

Output user_id=345

Done user _id=345
Not exists answers

Nested Loop Semantics

SELECT p.user id, p.name
FROM payroll p
WHERE not exists

(SELECT ~*

FROM regist r

WHERE p.user id = r.user id);

payroII
m
Jack 50000
P ‘ 345 Alison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000
regist

user_id

123 Charger
567 Civic
567 Pinto

January 24, 2025 Subqueries

Output so far

user_id | name

345

Allison

Nested Loop Semantics

SELECT p.user id, p.name
FROM payroll p
WHERE not exists

(SELECT ~*

FROM regist r

WHERE p.user id = r.user id);

payroII
m
Jack 50000
345 Allison TA 60000
P mmm) 567 Magda Prof 90000
789 Dan Prof 100000
regist

user_id

123 Charger
567 Civic
567 Pinto

January 24, 2025 Subqueries

Output so far

user_id | name

345

Allison

Nested Loop Semantics

payroll

SELECT p.user id, p.name
FROM payroll p
WHERE not exists

(SELECT ~*

FROM regist r

WHERE p.user id = r.user id);

user_id | name salary

345

P mmm) 567

789

regist

user_id

R mmm) 123

567
567

January 24, 2025

Jack 50000
Allison TA 60000
Magda Prof 90000
Dan Prof 100000

Compute subquery
for p.user_id=567

345

Charger user_id

Car

Civic

Pinto

Subqueries

Output so far

user_id | name

Allison

Nested Loop Semantics

payroll

SELECT p.user id, p.name
FROM payroll p
WHERE not exists

(SELECT *

FROM regist r

WHERE p.user id = r.user id);

user_id | name salary

345

P mmm) 567

789

regist

user_id

123

R mmm) 567

567

January 24, 2025

Jack 50000
Allison TA 60000
Magda Prof 90000
Dan Prof 100000

Compute subquery
for p.user_id=567

345

Charger user_id | car
Civic 567 Civic
Pinto

Subqueries

Output so far

user_id | name

Allison

Nested Loop Semantics

SELECT p.user id, p.name
FROM payroll p
WHERE not exists OUtpUt so far
(SELECT ~*
FROM regist r
WHERE p.user id = r.user 1id);

payroII

m
Jack 50000

345 Allison TA 60000 345 Allison
P mmm) 567 Magda Prof 90000
789 Dan Prof 100000

: Compute subquery _ :
regist _
g for p.user _id=567 Skip user_id=567

user_id

123 Charger user_id | car
567 Civic 567 Civic None user id=56
567 Pinto 567 Pinto 5 o

January 24, 2025 Subqueries

Nested Loop Semantics

SELECT p.user id, p.name
FROM payroll p
WHERE not exists

(SELECT ~*

FROM regist r

WHERE p.user id = r.user id);

payroII
m
Jack 50000
345 Allison TA 60000
P mmm) 567 Magda Prof 90000
789 Dan Prof 100000
regist

user_id

123 Charger
567 Civic
567 Pinto

January 24, 2025 Subqueries

Output so far

user_id | name

345

Allison

Nested Loop Semantics

SELECT p.user id, p.name
FROM payroll p
WHERE not exists

(SELECT ~*

FROM regist r

WHERE p.user id = r.user id);

payroII
m
Jack 50000
345 Allison TA 60000
567 Magda Prof 90000
P mmm) 789 Dan Prof 100000
regist

user_id

123 Charger
567 Civic
567 Pinto

January 24, 2025 Subqueries

Output so far

user_id | name

345

Allison

Nested Loop Semantics

payroll

SELECT p.user id, p.name
FROM payroll p
WHERE not exists

(SELECT ~*

FROM regist r

WHERE p.user id = r.user id);

user_id | name salary

345
567

P mmm) 789

regist

user_id

R mmm) 123

567
567

January 24, 2025

Jack 50000
Allison TA 60000
Magda Prof 90000
Dan Prof 100000

Compute subquery
for p.user_id=789

345

Charger user_id

Car

Civic

Pinto

Subqueries

Output so far

user_id | name

Allison

Nested Loop Semantics

P o)

R)

January 24, 2025

payroll

SELECT p.user id, p.name
FROM payroll p
WHERE not exists

(SELECT ~*

FROM regist r

WHERE p.user id = r.user id);

user_id | name salary

345
567
789

regist

user_id

123
567
567

Jack 50000
Allison TA 60000
Magda Prof 90000
Dan Prof 100000

Compute subquery
for p.user_id=789

345

Charger user_id

Car

Civic

Pinto

Subqueries

Output so far

user_id | name

Allison

Nested Loop Semantics

payroll

SELECT p.user id, p.name
FROM payroll p
WHERE not exists

(SELECT ~*

FROM regist r

WHERE p.user id = r.user id);

user_id | name salary

345
567

P mmm) 789

regist

user_id

123
567

R mmm) 567

January 24, 2025

Jack 50000
Allison TA 60000
Magda Prof 90000
Dan Prof 100000

Compute subquery
for p.user_id=789

345

Charger user_id

Car

Civic

Pinto

Subqueries

Output so far

user_id | name

Allison

Nested Loop Semantics

payroll

SELECT p.user id, p.name
FROM payroll p
WHERE not exists

(SELECT ~*

FROM regist r

WHERE p.user id = r.user id);

user_id | name salary

345
567

P mmm) 789

regist

user_id

123
567
567

Jack 50000
Allison TA 60000
Magda Prof 90000
Dan Prof 100000

Compute subquery
for p.user_id=789

Output user_id= 567

Charger user_id

Car

Civic

Pinto

Output so far

user_id | name

345 Allison
789 Dan

Done user_id=567
Not exists answers

January 24, 2025

Subqueries

Nested Loop Semantics

SELECT p.user id, p.name
FROM payroll p
WHERE not exists

(SELECT ~*

FROM regist r

WHERE p.user id = r.user id);

payroII
m
Jack 50000
345 Allison TA 60000
567 Magda Prof 90000
P mmm) 789 Dan Prof 100000
regist

user_id

123 Charger
567 Civic
567 Pinto

January 24, 2025 Subqueries

user_id | name

345
789

Allison

Dan

= Subquery can occur in SELECT/FROM/WHERE

» Sometimes (not always) it is possible to unnest

» Keep in mind edge cases: zero counts

» Most difficult: Existential / universal quantifiers
Next lecture!

January 24, 2025 Subqueries

Predicates on Subqgueries

» EXISTS (SELECT) checks if it is not empty
NOT EXISTS (SELECT ...) checks if it is empty

» Xin (SELECT Y FROM ...) checks output has X
Xnotin (SELECTY ...) checks if it doesn’t have X

= X>ALL(SELECT ...)
X >ANY(SELECT ...)
checks if X i1s > than one or all values in output

January 24, 2025 Subqueries

Recap: EXISTS

Find people who do drive cars

SELECT p.user 1i1d, p.name
FROM pavyroll p
WHERE exists
(SELECT *
FROM regist r
WHERE p.user 1d = r.user 1d);

payroll

M regist
Jack TA 50000

345 Allison TA 60000 123 Charger
567 Magda Prof 90000 567 Civic
789 Dan Prof 100000 567 Pinto

January 24, 2025 SQL Review

Recap: EXISTS

Find people who do drive cars

SELECT p.user 1i1d, p.name
FROM pavyroll p
WHERE exists
(SELECT *
FROM regist r
WHERE p.user 1d = r.user 1d);

payroll

regist l
Jack TA 50000

345 Allison TA 60000 123 Charger

567 Magda Prof 90000 567 Civic 123 Jack
789 Dan Prof 100000 567 Pinto 567 Magda

January 24, 2025 SQL Review 197

Recap: EXISTS

Find people who do drive cars

SELECT p.user 1i1d, p.name

FROM pavyroll p

WHERE exists Same as
(SELECT * a semi-join
FROM regist r
WHERE p.user 1d = r.user 1d);

payroll

M regist 1
Jack TA 50000

345 Allison TA 60000 123 Charger

567 Magda Prof 90000 567 Civic 123 Jack
789 Dan Prof 100000 567 Pinto 567 Magda

January 24, 2025 SQL Review 198

Recap: NOT EXISTS

Find people who do not drive cars

payroll

M regist
Jack TA 50000

345 Allison TA 60000 123 Charger
567 Magda Prof 90000 567 Civic
789 Dan Prof 100000 567 Pinto

January 24, 2025 SQL Review

Recap: NOT EXISTS

Find people who do not drive cars

SELECT p.user 1i1d, p.name
FROM pavyroll p
WHERE exists Does this
work?
(SELECT *
FROM regist r
WHERE p.user id != r.user id);

payroll

M regist
Jack TA 50000

345 Allison TA 60000 123 Charger
567 Magda Prof 90000 567 Civic
789 Dan Prof 100000 567 Pinto

January 24, 2025 SQL Review

Recap: NOT EXISTS

Find people who do not drive cars

SELECT p.user 1i1d, p.name
FROM pavyroll p
WHERE exists Does this
work?
(SELECT *
FROM regist r
WHERE p.user id != r.user id);

payroll

returns

345 Allison TA 60000 123 Charger
567 Magda Prof 90000 567 Civic
789 Dan Prof 100000 567 Pinto

January 24, 2025 SQL Review

Recap: NOT EXISTS

Find people who do not drive cars

payroll

M regist
Jack TA 50000

345 Allison TA 60000 123 Charger
567 Magda Prof 90000 567 Civic
789 Dan Prof 100000 567 Pinto

January 24, 2025 SQL Review

Recap: NOT EXISTS

Find people who do not drive cars

SELECT p.user 1i1d, p.name
FROM pavyroll p
WHERE not exists
(SELECT *
FROM regist r
WHERE p.user 1d =

r.user 1d);

payroll

user_id | name salary regist

Jack TA 50000

345 Allison TA 60000 123
567 Magda Prof 90000 567
789 Dan Prof 100000 567

January 24, 2025 SQL Review

Charger
Civic
Pinto

Recap: NOT EXISTS

Find people who do not drive cars

SELECT p.user 1i1d, p.name
FROM pavyroll p
WHERE not exists
(SELECT *
FROM regist r
WHERE p.user 1d = r.user 1d);

payroll

regist l
Jack TA 50000

345 Allison TA 60000 123 Charger

567 Magda Prof 90000 567 Civic 345 Allison
789 Dan Prof 100000 567 Pinto 789 Dan

January 24, 2025 SQL Review

Unnesting EXISTS

Find people who do drive cars

SELECT p.user 1i1d, p.name
FROM pavyroll p
WHERE exists
(SELECT *
FROM regist r
WHERE p.user 1d = r.user 1d);

SELECT DISTINCT p.user 1d, p.name
FROM payroll p, regist r
WHERE p.user 1d = r.user 1d;

January 24, 2025 SQL Review

How do we unnest NOT EXISTS?

Find people who do not drive cars

SELECT p.user 1i1d, p.name

FROM payroll p
WHERE not exists
(SELECT *
FROM regist r

WHERE p.user 1d = r.user 1d)
This doesn’t
work...

SELECT DISTINCT p.user 1d, p.name
FROM payroll p, regist r
WHERE p.user i1d !'= r.user 1d;

January 24, 2025 SQL Review

How do we unnest NOT EXISTS?

Find people who do not drive cars

SELECT p.user 1i1d, p.name
FROM pavyroll p
WHERE not exists
(SELECT *
FROM regist r
WHERE p.user 1d = r.user 1d);

This query cannot be unnested without aggregates.

Proof next

January 24, 2025 SQL Review

Monotone Functions

"Definition

A function f: R — R is monotone if x < y implies f(x) < f(y)

\. J

Monotone: Non-Monotone:
x3 + %2, A x? —x?,
e* e %,
log(x), 1,
X

January 24, 2025 Subqueries

Monotone Queries

"Definition

A query Q is monotone if I € J implies q(1) € q(J)

January 24, 2025 Subqueries

Monotone Queries

"Definition

A query Q is monotone if I € J implies q(1) € q(J)

Adding tuples to the input does
not remove tuples from the output

A

January 24, 2025 Subqueries

Monotone Queries

Find people who do drive cars Is this query monotone?

January 24, 2025 SQL Review

Monotone Queries

Is this query monotone?

/———\

payroll reg|st

[EENCT N T [
Jack 50000 Charger

345 Allison TA 60000 567 Civic

567 Magda Prof 90000 567 Pinto

789 Dan Prof 100000 I

e

Find people who do drive cars

~N—_,———_—,e—,ee—_ee— e e e, e e —

January 24, 2025 SQL Review

—~ e o — — — — — — — — —

Monotone Queries

Find people who do drive cars Is this query monotone?
[payroll reglst \\ S
[h
 EECTETEETE ENEE | (S
I Jack 50000 Charger : : 123 Jack l
| | |
: 345 Allison TA 60000 567 Civic : : 567 Magda :
| I |
- 567 Magda Prof 90000 567 Pinto L I
' oq) |
. 789 Dan Prof 100000 I A /
\ N - 7
N /

~N—_,———_—,e—,ee—_ee— e e e, e e —

January 24, 2025 SQL Review

Monotone Queries

Find people who do drive cars Is this query monotone?
[payroll reglst \\ S
(7 =
| ,
CEICTECECTE U
I Jack TA 50000 Charger : : 123 Jack :
| I I
: 345 Allison TA 60000 567 Civic : : 567 Magda :
| I |
: 567 Magda Prof 90000 567 Pinto : : :
| I I q (I) l
\ 789 Dan Prof 100000 A /
\ N - e
N— 7/
7 payroll regist \\
I
user_id | name salar user_id
--M -- i
Jack 50000 Charger |
!
345 Allison TA 60000 567 Civic :
567 Magda Prof 90000 567 Pinto :
!
789 Dan Prof 100000 345 Tesla] ,'
/

January 24, 2025 SQL Review

Monotone Queries

Find people who do drive cars

|s this query monotone?

e e e e el e e

payroll

user_id | name m salary user_id -

Charger

e
—~ e o — — — — — — — — —

100000

~N—_,———_—,e—,ee—_ee— e e e, e e —

— —— — —— — —— — —— — — — — — — —— — — —

user_id | name m salary user_id -

Charger

100000

/i
Cuser id | name |
123 Jack

[

|

| |
| |
| |
| 567 Magda |
| |
| |
\]

oooq)

~— e — — ——————

123 Jack
567 Magda
345 Allison

January 24, 2025

SQL Review

Monotone Queries

Find people who do drive cars Is this query monotone?

Yes, It IS monotone

January 24, 2025 SQL Review

Monotone Queries

Find people who do not drive cars Is this query monotone?
: pé'chiF""'""'"""""'"?é@;{ """"""""
|
CEECTECEETE CEIEE }
| Jack TA 50000 Charger i | 345 Allison |
| | |
345 Allison TA 60000 567 Civic | 789 Dan |
|
i 567 Magda Prof 90000 567 Pinto : i i
| I I q (I) l
\ 789 Dan Prof 100000 /I N L/

~N—_,———_—,e—,ee—_ee— e e e, e e —

January 24, 2025 SQL Review

Monotone Queries

Find people who do not drive cars Is this query monotone?
[payroll reg|st \\
| /0 \
|)
RN ETICEN (T
I Jack TA 50000 Charger : : 345 Allison :
| I I
: 345 Allison TA 60000 567 Civic : : 789 Dan :
| L |
: 567 Magda Prof 90000 567 Pinto : : :
| I I q (I)]
\ 789 Dan Prof 100000 A /
\ N - 7
N— 7/
7 payroll regist \\
I
user_id | name salar user_id
--M -- i
Jack 50000 Charger |
!
345 Allison TA 60000 567 Civic :
567 Magda Prof 90000 567 Pinto :
|
789 Dan Prof 100000 345 Tesla] ,'
/

January 24, 2025 SQL Review

Monotone Queries

e

Find people who do not drive cars

payroll regist

user_id | name m salary user_id -

|s this query monotone?

e e e e el e e

—~ e o — — — — — — — — —

Jack TA 50000 Charger
345 Allison TA 60000 567 Civic
567 Magda Prof 90000 567 Pinto
789 Dan Prof 100000 I
~ payroll regist

user_id | name m salary user_id -

Jack 50000
345 Allison TA 60000 567
567 Magda Prof 90000 567
789 Dan Prof 100000 345

January 24, 2025 SQL Review

Charger
Civic
Pinto

Tesla

[
I
|
|
|
|
I
I
|
|
|

/ : \
user_id | name

\

345 Allison
789 Dan

ql)

~— e — — ——————

o ——— — — — —— — —

|
I
|
|
|
|
|
I
|
|
l

Monotone Queries

Find people who do not drive cars Is this query monotone?

No, this query Is not monotone

January 24, 2025 SQL Review

Monotone Queries

4 N
Theorem

.

Every SELECT-FROM-WHERE query without subqueries
and without aggregates is monotone

January 24, 2025 SQL Review

Monotone Queries

4 N
Theorem

Every SELECT-FROM-WHERE query without subqueries
and without aggregates is monotone

\. J

Proof. Consider a SQL query:

SELECT attrs
FROM T1, T2, ...
WHERE condition

January 24, 2025 SQL Review

Monotone Queries

4 N
Theorem

Every SELECT-FROM-WHERE query without subqueries
and without aggregates is monotone

~ J
Proof. Consider a SQL query: Its nested loop semantics is:
SELECT attrs for each rl in T1:
FROM T1, T2, ... for each t2 ianZ:
WHERE condition for each t3 in T3:

if (condition) :
output (rl,r2,..)

If we insert a tuple into one of the input relations T,
we will not remove any tuples from the output.

January 24, 2025 SQL Review

Monotone Queries

r N\
Consequence

The query “Find people who do not drive cars”
cannot be unnested without aggregates

. J

January 24, 2025 SQL Review

Discussion

* The property whether the query is monotone or not
does not depend on its SQL writeup

" Instead, it depends on the meaning of the query,
regardless of how we write it in SQL

January 24, 2025 Subqueries

Monotone Queries

Count the number of employees. SELECT count (*)
FROM payrol

Monotone?

January 24, 2025 SQL Review

Monotone Queries

SELECT count (*

Count the number of employees.

o —— — —————————————

FROM payrol

payroll

user_id name m salary

345
567

January 24, 2025

Monotone?

o —————— — —— — — —

————— — — —

100000

N e e o e e e —— e — e — e —— e ————————————— e — — . — — — — — — — — — — =

SQL Review

Monotone Queries

)

——— —— — — — — — — — —

l
|
|
|
|
|
|
|
|
|
|
\

January 24, 2025

Count the number of employees.

o —— — —————————————

payroll

user_id name m salary

345

,___________________________________\

payroll

Jack
Allison
Magda

50000
60000
90000
100000

—— — — — — — — — e e s

user_id name m salary

345
567
789
555

Jack
Allison
Magda
Dan

TA
Prof
Prof
TA

50000
60000
90000
100000
80000

SQL Review

SELECT count (*

FROM payrol

Monotone?

o —————— — —— — — —

o ———————— — — ——

————— — — —

————— — — —

Monotone Queries

)

l
|
|
|
|
|
|
|
|
|
|
|
|

Count the number of employees.

o —— — —————————————

payroll

l
|
|
|
|
|
|
|
|
|
|
\

,___________________________________\

payroll

Jack
Allison
Magda

user_id name m salary

50000
60000
90000
100000

—— — — — — — — — e e s

user_id name m salary

345
567
789

Jack
Allison
Magda
Dan

TA
Prof
Prof

50000
60000
90000
100000

SELECT count (*

FROM payrol

Monotone?

o —————— — —— — — —

o ———————— — — ——

————— — — —

————— — — —

January 24, 2025

SQL Review

Monotone Queries

Count the number of employees.

o i — — — — — ————— ———— ——

{ payroII
i m-
| Jack 50000
| 345 Allison TA 60000
i 567 Magda Prof 90000
‘\\ 789 Dan Prof 100000
5£y'r5u" """""""""""""""""""""
/ Iﬂ_
i Jack 50000
| 345 Allison TA 60000
i 567 Magda Prof 90000
: 789 Dan Prof 100000
|

January 24, 2025 SQL Review

—~_ | FROM payrol

SELECT count (*)

‘, Monotone?
|

————— — — —

—

= Not

monotone

IN and NOT IN

January 24, 2025 Subqueries

Subqueries In WHERE/HAVING

X in (SELECT Y FROM ...)

= Compute the subquery
» Check if X € Output

January 24, 2025 Subqueries

Subqueries In WHERE/HAVING

X in (SELECT Y FROM ...)

» Compute the subquery
» Check if X € Output

X not in (SELECTY ...) not(Xin (SELECTY ...))

= Compute the subquery
» Check If X € Output

January 24, 2025 Subqueries

EXISTS v.s. IN

Find people who do drive cars

SELECT p.user 1d, p.name
FROM payroll p
WHERE exists
(SELECT *
FROM regist r
WHERE p.user 1d = r.user 1id);

SELECT p.user 1id, p.name

FROM payroll p

WHERE p.user 1d in
(SELECT r.user 1d
FROM regist r);

Same output

January 24, 2025 SQL Review

NOT EXISTS v.s. NOT IN

Find people who do not drive cars

SELECT p.user 1i1d, p.name
FROM pavyroll p
WHERE not exists
(SELECT *
FROM regist r
WHERE p.user 1d = r.user 1d);

SELECT p.user 1id, p.name

FROM payroll p
WHERE p.user 1d not 1in
(SELECT r.user 1d

FROM regist r);

Same output

January 24, 2025 SQL Review

Computing NOT IN

Find people who do not drive cars

SELECT p.user id, p.name 1. Compute subquery

FROM payroll p

WHERE p.user 1d not 1in
(SELECT r.user 1d
FROM regist r);

payroll
Jack TA 50000 123 Charger
345 Allison TA 60000 567 Civic
567 Magda Prof 90000 567 Pinto
789 Dan Prof 100000 .
SQL Review

Computing NOT IN

Find people who do not drive cars

SELECT p.user id, p.name 1. Compute subquery

FROM payroll p 123

WHERE p.user 1d not 1in 567
(SELECT r.user 1d 567

FROM regist r);

payroll
Jack TA 50000 123 Charger
345 Allison TA 60000 567 Civic
567 Magda Prof 90000 567 Pinto
789 Dan Prof 100000 .
SQL Review

Computing NOT IN

Find people who do not drive cars

SELECT p.user id, p.name 1. Compute subquery
FROM payroll p

WHERE p.user 1d not in 567
(SELECT r.user 1d 567
FROM regist r);

2. For each payrall,
check if user_id & subquery

payroll

RN

Jack TA 50000 123 Charger
345 Allison TA 60000 567 i d
567 Magda Prof 90000 567
789 Dan P 100000

345 Allison

Pinto

rof 789 Dan

SQL Review

NOT EXISTS v.s. NOT IN

Find people who do not drive cars

SELECT p.user 1d, p.name
FROM payroll p
WHERE not exists
(SELECT ~*
FROM regist r
WHERE p.user 1d = r.user 1d);

: : SELECT p.user 1id, p.name
Which query is FROM payroll o

more efficient? WHERE p.user id not in
(SELECT r.user 1d

FROM regist r);

January 24, 2025 SQL Review

NOT EXISTS v.s. NOT IN

Find people who do not drive cars

FROM payroll p
WHERE not exists
(SELECT *

FROM regist r
WHERE p.user id = r.user 1d);

SELECT p.user 1d, p.name Correlated subquery:

computed repeatedly,
once for each payroll

Which query Is
more efficient?

SELECT p.user 1id, p.name

FROM payroll p
WHERE p.user 1d not 1in

(SELECT r.user 1id
Computed only once , —
FROM regist r);

January 24, 2025

SQL Review

ANY and ALL

January 24, 2025

ANY and ALL

<Oor<=or=>or...

X <ANY (SELECT Y FROM ...)
= Compute the subquery
» Check if there exists Y € OQutput s.t. X<Y

January 24, 2025 Subqueries

ANY and ALL

<Oor<=or=>or...

X <ANY (SELECT Y FROM ..))
» Compute the subquery
» Check if there exists Y € OQutput s.t. X <Y

X <ALL (SELECT Y FROM ...)
= Compute the subquery

» Check if for all Y € Output, X <Y

January 24, 2025 Subqueries

ANY and ALL

Find people who drive some car made after 2017

payroll regist
m -
Jack TA 50000 Charger 2016
345 Allison TA 60000 123 Tesla 2018
567 Magda Prof 90000 567 Civic 2020
789 Dan Prof 100000 567 Pinto 2022

January 24, 2025 SQL Review

ANY and ALL

Find people who drive some car made after 2017

SELECT p.*
FROM payroll p
WHERE 2017 <
ANY (SELECT r.year
FROM regist r
WHERE p.user id = r.user 1id);

payroll regist
IEI -
Jack TA 50000 Charger 2016
345 Allison TA 60000 123 Tesla 2018
567 Magda Prof 90000 567 Civic 2020
789 Dan Prof 100000 567 Pinto 2022

January 24, 2025 SQL Review

ANY and ALL

Find people who drive some car made after 2017

SELECT p.*
FROM payroll p

WHERE 2017 <
ANY (SELECT r.year Jack:
FROM regist r 2016
WHERE p.user id = r.user id); 2018
payroll regist
user_id i salarv -
123 Jack TA 50000 Charger| 2016
345 Allison TA 60000 123 Tesla 2018 _
567 Magda Prof 90000 567 Civic 2020 LI
789 Dan Prof 100000 567 Pinto 2022

January 24, 2025 SQL Review

ANY and ALL

Find people who drive some car made after 2017

SELECT p.*
FROM payroll p
WHERE 2017 <
ANY (SELECT r.year Allison:
FROM regist r
WHERE p.user id = r.user 1id);

payroll regist

N A X [T T [
Jack TA 50000 Charger 2016

[345 Allison TA 60000] 123 Tesla 2018 name ...

567 Magda Prof 90000 567 Civic 2020 LI

789 Dan Prof 100000 567 Pinto 2022

January 24, 2025 SQL Review

ANY and ALL

Find people who drive some car made after 2017

SELECT p.*

FROM payroll p

WHERE 2017 <

ANY (SELECT r.year
FROM regist r
WHERE p.user id

r.user 1id);

regist

Magda:

user_id | name m salary J user_id - year

payroll
Jack 50000
345 Allison TA 60000
567 Magda Prof 90000

January 24, 2025

Charger
123 Tesla
567 Civic
789 Dan Prof 100000 567

SQL Review

Pinto

2016
2018
2020
2022

2020

2022

|

name |... _

Magda

ANY and ALL

Find people who drive some car made after 2017

SELECT p.*
FROM payroll p
WHERE 2017 <
ANY (SELECT r.year Dan:
FROM regist r
WHERE p.user id = r.user 1id);

payroll regist

N A X [T T [
Jack TA 50000 Charger 2016

345 Allison TA 60000 123 Tesla 2018 _

567 Magda Prof 90000 567 Civic 2020 LI

789 Dan Prof 1000000 567 Pinto 2022 Magda
January 24, 2025 SQL Review 249

ANY and ALL

Find people who drive some car made after 2017

SELECT p.*

FROM payroll p

WHERE 2017 <

ANY (SELECT r.year
FROM regist r

WHERE p.user id = r.user id);

Same as

a semi-join

payroll regist

SELECT DISTINCT p.*

FROM payroll p, regist r

WHERE p.user 1d = r.user 1
and r.year > 2017

user_id | name m salary J user_id - year

Jack TA 50000

345 Allison TA 60000 123
567 Magda Prof 90000 567
789 Dan Prof 100000 567

Charger 2016

Tesla 2018 LALLM

Civic 2020 Jack
Pinto 2022 Magda

January 24, 2025 SQL Review

ANY and ALL

Find people who drive only cars made after 2017

SELECT p.*
FROM payroll p
WHERE 2017 <
ALL (SELECT r.year
FROM regist r
WHERE p.user i1d = r.user id);

payroll regist
IEI -
Jack TA 50000 Charger 2016
345 Allison TA 60000 123 Tesla 2018
567 Magda Prof 90000 567 Civic 2020
789 Dan Prof 100000 567 Pinto 2022

January 24, 2025 SQL Review

ANY and ALL

Find people who drive only cars made after 2017

SELECT p.*
FROM payroll p
WHERE 2017 <
ALL (SELECT r.vyear Jack:
FROM regist r
WHERE p.user_ id = r.user_1id); Qo we output Jack? 2018

2016

payroll regist
user_id iob | salary - <
123 Jack TA 50000 Charger(2016] [l

345 Allison TA 60000 123 Tesla 2018
567 Magda Prof 90000 567 Civic 2020
789 Dan Prof 100000 567 Pinto 2022

January 24, 2025 SQL Review

ANY and ALL

Find people who drive only cars made after 2017

SELECT p.*
FROM payroll p
WHERE 2017 <
ALL (SELECT r.vyear Jack:
FROM regist r
WHERE p.user_ id = r.user_1id); Qo we output Jack? 2018

The test 2017 < ALL(...)
fails for 2016

2016

payroll regist
user_id iob | salary - <
123 Jack TA 50000 Charger(2016] [l

345 Allison TA 60000 123 Tesla 2018
567 Magda Prof 90000 567 Civic 2020
789 Dan Prof 100000 567 Pinto 2022

January 24, 2025 SQL Review

ANY and ALL

Find people who drive only cars made after 2017

SELECT p. *
FROM payroll p
WHERE 2017 <
ALL (SELECT r.year Allison:
FROM regist r
WHERE p.user_id = r.user_id); Do we output Allison?

payroll regist
user_id | name |job | salary _ - <
Jack TA 50000 Charger 2016 _

[345 Allison TA 60000] 123 Tesla 2018 Allison
567 Magda Prof 90000 567 Civic 2020
789 Dan Prof 100000 567 Pinto 2022

January 24, 2025 SQL Review

ANY and ALL

Find people who drive only cars made after 2017

SELECT p. *
FROM payroll p
WHERE 2017 <
ALL (SELECT r.year Allison:
FROM regist r
WHERE p.user_id = r.user_id); Do we output Allison?

The test 2017 < ALL(...)
does not fail anywhere.
Hence it holds!!

payroll regist
user_id | name |job | salary _ - <
Jack TA 50000 Charger 2016 _

[345 Allison TA 60000] 123 Tesla 2018 Allison
567 Magda Prof 90000 567 Civic 2020
789 Dan Prof 100000 567 Pinto 2022

January 24, 2025 SQL Review

ANY and ALL

Find people who drive only cars made after 2017

SELECT p.*
FROM payroll p
WHERE 2017 <
ALL (SELECT r.year
FROM regist r

WHERE p.user 1id =

r.user 1id);

Magda:

2020

2022

payroll

regist

The test 2017 < ALL(...)
does not fail anywhere.

user_id | name m salary J user_id - year

Jack 50000 Charger 2016
345 Alison TA 60000 123 Tesla 2018 Allison
567 Magda Prof 90000 | 567 Civic 2020 Magda
789 Dan Prof 100000 567 Pinto 2022

January 24, 2025

SQL Review

name | ... _

ANY and ALL

Find people who drive only cars made after 2017

SELECT p.*
FROM payroll p
WHERE 2017 <
ALL (SELECT r.year Dan:
FROM regist r
WHERE p.user i1d = r.user id);

The test 2017 < ALL(...)
does not fail anywhere.
Hence it holds!!

payroll regist
m - <
Jack TA 50000 Charger 2016 _

345 Allison TA 60000 123 Tesla 2018 Allison
567 Magda Prof 90000 567 Civic 2020 Magda
789 Dan Prof 100000 567 Pinto 2022 Dan

January 24, 2025 SQL Review

ANY and ALL

Find people who drive only cars made after 2017

SELECT p.*
FROM payroll p ,
WHERE 2017 < Can we unnest this query?
ALL (SELECT r.year
FROM regist r
WHERE p.user i1d = r.user id);

payroll regist

m -
Jack TA 50000 Charger 2016 _

345 Allison TA 60000 123 Tesla 2018 Allison
567 Magda Prof 90000 567 Civic 2020 Magda
789 Dan Prof 100000 567 Pinto 2022 Dan

January 24, 2025 SQL Review

ANY and ALL

Find people who drive only cars made after 2017

SELECT p.*
FROM payroll p ,
WHERE 2017 < Can we unnest this query?
ALL (SELECT r.year
FROM regist r
WHERE p.user i1d = r.user id);

NO!

Non-monotone

payroll regist

m -
Jack TA 50000 Charger 2016 _

345 Allison TA 60000 123 Tesla 2018 Allison
567 Magda Prof 90000 567 Civic 2020 Magda
789 Dan Prof 100000 567 Pinto 2022 Dan

January 24, 2025 SQL Review

Recap: Predicates on Subqueries

" EXISTS / NOT EXISTS
= IN/NOT IN
= ANY /ALL

The are “equivalent” meaning that a query that you
can write using one, you can also write using the

others

They express QUANTIFIERS

January 24, 2025 Subqueries

Find people who drive only cars made after 2017

SELECT p. *

FROM payroll p

WHERE 2017 <

ALL (SELECT r.year
FROM regist r
WHERE p.user id

r.user 1id);

January 24, 2025

SQL Review

Find people who drive only cars made after 2017

SELECT p.*

FROM payroll p

WHERE 2017 <

ALL (SELECT r.year
FROM regist r

WHERE p.user id = r.user 1id);

SELECT p.*
FROM payroll p
WHERE NOT EXISTS
(SELECT *
FROM regist r

and r.year <= 2017);

WHERE p.user id = r.user id

January 24, 2025

SQL Review

Find people who drive only cars made after 2017

SELECT p.*

FROM payroll p

WHERE 2017 <

ALL (SELECT r.year
FROM regist r

WHERE p.user id = r.user 1id);

SELECT p.*
FROM payroll p
WHERE NOT EXISTS
(SELECT ~*
FROM regist r

and r.year <= 2017);

SELECT p.*

FROM payroll p

WHERE p.user id NOT IN
(SELECT r.user 1id

WHERE p.user id = r.user id FROM regist r

WHERE r.year <= 2017);

January 24, 2025

SQL Review

Find people who drive only cars made after 2017

SELECT p.*

FROM payroll p

WHERE 2017 <

ALL (SELECT r.year
FROM regist r

WHERE p.user id = r.user 1id);

All these

compute the
same thing

SELECT p.*
FROM payroll p
WHERE NOT EXISTS
(SELECT *
FROM regist r

and r.year <= 2017);

SELECT p.*

FROM payroll p

WHERE p.user id NOT IN
(SELECT r.user id

WHERE p.user id = r.user id FROM regist r

WHERE r.year <= 2017);

January 24, 2025

SQL Review

Discussion

» SQL can express naturally queries that represent
existential quantifiers

» To write a query that uses a universal quantifier,
use DeMorgan’s laws (next)

January 24, 2025 Subqueries

Quantifiers

January 24, 2025

There are two types of quantifiers:
= Exists (3x, ... there is at least 1 that satisfies predicate
= Forall: (Vx, ...) all elements satisfy the predicate

January 24, 2025 Subqueries

There are two types of quantifiers:

= Exists (3x, ... there is at least 1 that satisfies predicate
= Forall: (Vx, ...) all elements satisfy the predicate

SQL makes it easy to write exists

January 24, 2025

Subqueries

There are two types of quantifiers:
= Exists (3x, ... there is at least 1 that satisfies predicate
= Forall: (Vx, ...) all elements satisfy the predicate

SQL makes it easy to write exists
To write forall, use double negation

predicate holds forall elements
If and only if
not (exists element where not(predicate) holds)

January 24, 2025 Subqueries

Using First Order Logic

Query: persons P that drive only cars made after 2017:

VR € regist, (P.user_id = r.user_id) = (r.year > 2017)

January 24, 2025 Subqueries

Using First Order Logic

Query: persons P that drive only cars made after 2017:

VR € regist, (P.user_id = r.user_id) = (r.year > 2017)

Negation: persons P that drive some car made on/before 2017

3R € regist, (P.user_id = r.user_id) and (r.year < 2017)

January 24, 2025 Subqueries

Using First Order Logic

Query: persons P that drive only cars made after 2017:

VR € regist, (P.user_id = r.user_id) = (r.year > 2017)

Negation: persons P that drive some car made on/before 2017

3R € regist, (P.user_id = r.user_id) and (r.year < 2017)

Let’s review this slowly

January 24, 2025 Subqueries

Brief Review of Logic

" Implication: A->B Issame as: not(A) or B

January 24, 2025 Subqueries

Brief Review of Logic

" Implication: A->B Issame as: not(A) or B

» DeMorgan’s Laws:

not(A and B) = not(A) or not(B)
not(A or B) = not(A) and not(B)

January 24, 2025 Subqueries

Brief Review of Logic

" Implication: A->B Issame as: not(A) or B

» DeMorgan’s Laws:

not(A and B) = not(A) or not(B) not(EIX, P(x)) = VX, not(P(x))
not(A or B) = not(A) and not(B) not(‘v’x, P(X)) = 3%, not(P(X))

January 24, 2025 Subqueries

Brief Review of Logic

" Implication: A->B Issame as: not(A) or B

» DeMorgan’s Laws:

not(A and B) = not(A) or not(B) not(EIX, P(x)) = VX, not(P(x))
not(A or B) = not(A) and not(B) not(‘v’x, P(X)) = 3%, not(P(X))

= Consequences

not(A - B) = (A and not(B))

January 24, 2025 Subqueries

Brief Review of Logic

" Implication: A->B Issame as: not(A) or B

» DeMorgan’s Laws:

not(A and B) = not(A) or not(B) not(EIX, P(x)) = VX, not(P(x))
not(A or B) = not(A) and not(B) not(‘v’x, P(x)) = 3%, not(P(X))

= Consequences

not(A - B) = (A and not(B)) not(Vx, (A(x) = B(x)))=3x,(A(x) A not(B(x)))

January 24, 2025 Subqueries

Using First Order Logic

Query: persons P that drive only cars made after 2017:

VR € regist, (P.user_id = r.user_id) = (r.year > 2017)

Negation: persons P that drive some car made on/before 2017

3R € regist, (P.user_id = r.user_id) and (r.year < 2017)

January 24, 2025 Subqueries

How to Write FORALL in SQL

Find person P drives only cars made after 2017

January 24, 2025 Subqueries

How to Write FORALL in SQL

Find person P drives only cars made after 2017

Negate: find the other persons
Find person P drives some car made on or before 2017

January 24, 2025 Subqueries

How to Write FORALL in SQL

Find person P drives only cars made after 2017

Negate: find the other persons
Find person P drives some car made on or before 2017

SELECT p.~*
FROM payroll p
WHERE EXISTS
(SELECT r.year
FROM regist r
WHERE p.user id = r.user id
and r.year <= 2017);

January 24, 2025 Subqueries

How to Write FORALL in SQL

Find person P drives only cars made after 2017

Negate: find the other persons
Find person P drives some car made on or before 2017

SELECT p. * Negate again:

FROM payroll p .

T oy rens find the other other persons
(SELECT r.year SELECT p.*
FROM regist r FROM payroll p

WHERE p.user id = r.user id
and r.year <= 2017);

WHERE NOT EXISTS
(SELECT r.year
FROM regist r
WHERE p.user id = r.user 1id
and r.year <= 2017);

January 24, 2025 Subqueries

How to Write FORALL in SQL

Find person P drives only cars made after 2017

. Unive_r]f’al Existential
Negate: find the other persons. g« quantifier

Find person P drives some car made on or before 2017

SELECT p. * Negate again:

FROM payroll p .

T oy rens find the other other persons
(SELECT r.year SELECT p.*
FROM regist r FROM payroll p

WHERE p.user id = r.user id
and r.year <= 2017);

WHERE NOT EXISTS
(SELECT r.year
FROM regist r
WHERE p.user id = r.user 1id
and r.year <= 2017);

January 24, 2025 Subqueries

Discussion

Writing universally quantified queries in SQL
requires creativity

* Try using DeMorgan’s laws: not exists, not in

* Try using ALL

* Try using aggregates, checking count=0

January 24, 2025 Relational Algebra

Relational Algebra

» SQL is a declarative language:
we say what, we don’t say how

» The query optimizer needs to convert the query
Into some intermediate language that can be both
optimized, and executed

» That language Is Relational Algebra

January 24, 2025 Relational Algebra

The Five Basic Relational Operators

1. Selection 6,4pngition (S)
2. Projection Il ;05 (S)

3. JoiInR g S =0g(R XS)
4. Union U

5. Set difference —

Rename p

Let’s discuss them one by one

January 24, 2025 Relational Algebra

1. Selection

Ocondition (T)

Returns those tuplesin T
that satisfy the condition:

SELECT *

FROM T
WHERE condition;

January 24, 2025

Relational Algebra

1. Selection

Ocondition (T)

Returns those tuplesin T

that satisfy the condition:
Osalary=55000 (payroll) —

SELECT *
FROM T
WHERE condition; payroll
m_
Jack 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

January 24, 2025 Relational Algebra

1. Selection

user_id |name m salary

Allison TA 60000
Gcondition (T) 567 Magda Prof 90000
789 Dan Prof 100000
Returns those tuplesin T
that satisfy the condition: J
SELECT * GsalaryZSSOOO(paerlD —
FROM T
WHERE condition; payfo"
na_
Jack 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

January 24, 2025 Relational Algebra

1. Selection

Ocondition (T)

Returns those tuplesin T
that satisfy the condition:

Osalary=55000 and job=’TA/(payr01D —

SELECT *
FROM T
WHERE condition; payroll
m_
Jack 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

January 24, 2025 Relational Algebra

1. Selection

user_id | name m salary

Gcondition(T) 345 Alison TA 60000
Returns those tuplesin T
that satisfy the condition: J
Osalary=55000 and job=’TA/(payr01D —
SELECT *
FROM T
WHERE condition; payroll
Iﬂ_
Jack 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

January 24, 2025 Relational Algebra

2. Projection

Hattrs (T)

Returns all tuples in T keeping
only the attributes in the subscript:

SELECT attrs
FROM T;

January 24, 2025 Relational Algebra

2. Projection

Hattrs (T)

Returns all tuples in T keeping
only the attributes in the subscript:

SELECT attrs
FROM T;

Hname,salary(payron) =

payroll

123
345
567
789

Jack
Allison
Magda

kDan

J

TA
TA
Prof
Prof

50000
60000
90000

_ 100000

January 24, 2025

Relational Algebra

2. Projection

name salary

Jack 50000
Hattrs (T) Allison 60000

Magda 90000
Dan 100000

Returns all tuples in T keeping
only the attributes in the subscript: ,

Hname,salary(payron) =

SELECT attrs

payroll
FROM T;
123 Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000
789 \Dan) Prof 100000

January 24, 2025 Relational Algebra 295

2. Projection

Hattrs (T)

Returns all tuples in T keeping
only the attributes in the subscript:

[Tjop (payroll) =

SELECT attrs

payroll
FROM T; ame
123 Jack
345 Allison
567 Magda
789 Dan

job

TA
TA
Prof
Prof

salary
50000
60000
90000
100000

January 24, 2025 Relational Algebra

2. Projection

TA
Hattrs (T) TA
Prof
Prof
Returns all tuples in T keeping
only the attributes in the subscript: ,

[T, (payroll) =

SELECT attrs
payroll

FROM T;]
name job salary

123 Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan kProf) 100000

January 24, 2025 Relational Algebra

2. Projection

TA TA
[1 attrs (T) TA RA can be defined Prof
using bag semantics
Prof or set semantics.
Prof We always need to say
, , which one we mean.
Returns all tuples in T keeping
only the attributes in the subscript: ,

[Tjop (payroll) =

SELECT attrs

payroll

FROM T; name job salary
123 Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan \Prof) 100000

January 24, 2025 Relational Algebra

S[XIQT

Join S and T using condition 0

SELECT *
FROM S, T
WHERE 0;

January 24, 2025 Relational Algebra

S[XIGT

Join S and T using condition 0

SELECT *
FROM S, T
WHERE 0;

payroll Myuser id=user.id regist =

payroll

345 Allison TA 60000 123 Charger
567 Magda Prof 90000 567 Civic
789 Dan Prof 100000 567 Pinto

January 24, 2025

Relational Algebra

S[XIGT

Join S and T using condition 0

SELECT *
FROM S, T
WHERE 0;

user_id | name m salary | user_id -

Jack TA 50000 Charger
567 Magda Prof 90000 567 Civic
567 Magda Prof 90000 567 Pinto

J

payroll Myuser id=user.id regist =

payroll

345 Allison TA 60000 123 Charger
567 Magda Prof 90000 567 Civic
789 Dan Prof 100000 567 Pinto

January 24, 2025

Relational Algebra

Many Variants of Join

- Eq-join: payroll Muser_id=user_id regist
= Theta-join: payroll ™M ger jd<user id I'€gist
= cartesian product: payroll X regist

= Natural Join: payroll x regist

January 24, 2025 Relational Algebra

Many Variants of Join

/@

- Eq-join: payroll Muser_id=user_id regist

Any condition

= Theta-join: payroll ™M ger jq<user id I'€gist
= cartesian product: payroll X regist

= Natural Join: payroll x regist

January 24, 2025 Relational Algebra

Many Variants of Join

/@

- Eq'jOin: payroll Muser_id=user_id regist

Any condition

= Theta-join: payroll ™M ger jq<user id I'€gist

= cartesian product: payroll X regist |

~ [T

= Natural Join: payroll x regist

January 24, 2025 Relational Algebra

cartesian Product / Cross Product

SXT

Cross productof Sand T

SELECT *
FROM S, T

January 24, 2025 Relational Algebra

cartesian Product / Cross Product

SXT

Cross productof Sand T

SELECT *
FROM S, T

payroll X regist =

payroll

USGI’ [name salary

regist

user_i | car
d

345 Allison TA 60000 123 Charger
567 Magda Prof 90000 567 Civic
789 Dan Prof 100000 567 Pinto

Jack TA 50000

January 24, 2025

Relational Algebra

cartesian Product / Cross Product

user_id | name m salary | user_id -

SXT

12 tuples <<

Cross productof Sand T

SELECT *
FROM S, T

Jack TA 50000 Charger
123 Jack TA 50000 567 Civic
_ 789 Dan Prof 100000 567 Pinto
payroll X regist = J

payroll

345 Allison TA 60000 123 Charger
567 Magda Prof 90000 567 Civic
789 Dan Prof 100000 567 Pinto

January 24, 2025

Relational Algebra

cartesian Product / Cross Product

SXT

Cross productof Sand T

SELECT * Join = cartesian product + selection
FROM S, T

RNGS:GG(RXS)

January 24, 2025 Relational Algebra

Natural Join

ST

Join S, T on
common attributes,
retain only one copy
of those attributes

January 24, 2025

Relational Algebra

Natural Join

ST

Join S, T on
common attributes,
retain only one copy
of those attributes

payroll X regist =

payroll

345 Allison TA 60000 123 Charger
567 Magda Prof 90000 567 Civic
789 Dan Prof 100000 567 Pinto

January 24, 2025

Relational Algebra

Natural Join

ST

Join S, T on
common attributes,
retain only one copy
of those attributes

user | o Salary -

Jack TA 50000 Charger
567 Magda Prof 90000 Civic

567 Magda Prof 90000 Pinto

Only one
user id attr

payroll X regist = J
payroll

345 Allison TA 60000 123 Charger
567 Magda Prof 90000 567 Civic
789 Dan Prof 100000 567 Pinto

January 24, 2025

Relational Algebra

Natural Join

What do these natural joins output?
* R(4,B) =« S(B, C)

*R(4,B) x S(C,D)

* R(4,B) x S(4, B)

January 24, 2025 Relational Algebra

Natural Join

What do these natural joins output?

= R(A,B) x S(B, C)

*R(4,B) x S(C,D)

* R(4,B) x S(4, B)

R INER s Bkl
1 10 10 8
2 10 10 9
2 20 20 8
50 7

January 24, 2025

Relational Algebra

Natural Join

What do these natural joins output?

= R(A,B) x S(B, C)

egjoin on attribute B (5 tuples)

*R(4,B) x S(C,D)

* R(4,B) x S(4, B)

R INER s Bkl
1 10 10 8
2 10 10 9
2 20 20 8
50 7

January 24, 2025

Relational Algebra

Natural Join

What do these natural joins output? INEN s BN

1 10 10 8
= R(4,B) = S(B,C) T
eqgjoin on attribute B (5 tuples) 2 20 20 8
S50 7
A S
= R(A,B) x S(C,D) 1-? -Il::l
2 10 9 v
2 20 8 v
7w

* R(4,B) x S(4, B)

January 24, 2025 Relational Algebra

Natural Join

What do these natural joins output? INEN s BN

* R(4,B) =« S(B, C) ; ig 12 3
egjoin on attribute B (5 tuples) > | 2 B
50 7

« R(A, B) » S(C, D) < ENEN - e
cross product (12 tuples) 2 10 9 v
2 20 8 v
7 W

* R(4,B) x S(4, B)

January 24, 2025 Relational Algebra

Natural Join

What do these natural joins output? INEN s BN

*R(4,B) = S(B,C) T
eqgjoin on attribute B (5 tuples) 2 20 20 8

50 7

R NEN s EIEN

= R(A,B) x S(C,D) 1 10 8 u
cross product (12 tuples) 2 10 9 v

2 20 8 v

7 W
s INER

* R(4,B) x S(4, B) N < KR

January 24, 2025 Relational Algebra

Natural Join

What do these natural joins output? INEN s BN

"R(A,B) = S(B,C) —— .
eqgjoin on attribute B (5 tuples) 2 20 20 8
50 7
R NEH < BN
*R(A,B) x S(C,D) 1 10 8 u
cross product (12 tuples) 2 10 9 v
2 20 8 v
7w
s INER
* R(A, B) ™ S(4,B) N
intersection (2 tuples) 2 10 2 20

January 24, 2025 Relational Algebra

Even More Joins

" Inner join
« EQg-join, theta-join, cross product, natural join

= Quter join
 Left outer join <
 Right outer join <
 Full outer join <

= Semi join X

January 24, 2025 Relational Algebra

SUT

The unionof Sand T

S UNION T;

o

January 24, 2025 Relational Algebra

SUT

The unionof Sand T

S UNION T;

regist U Bicycle =

regist Bicycle

123 Charger 345 Schwinn
567 Civic 567 Sirrus
567 Pinto

January 24, 2025

Relational Algebra

SUT

The unionof Sand T
regist U Bicycle =

Must have

S UNION T,; same schema

regist Bicycle

Charger Schwinn
567 Civic 567 Sirrus
567 Pinto

January 24, 2025 Relational Algebra

4. Union

user_id | model

123 Charger
SUT 567 Civic
567 Pinto
345 Schwinn
567 Sirrus
The unionof Sand T J
regist U Bicycle =
Must have
g UNION T,’ same schema
regist Bicycle
123 Charger Schwinn
567 Civic 567 Sirrus
567 Pinto

January 24, 2025 Relational Algebra

S—T

The set differenceof Sand T

S EXCEPT T;

o

January 24, 2025 Relational Algebra

S—T

The set differenceof Sand T
regist — Bicycle =

Must have

S EXCEPT T,’ same schema

regist Bicycle

Charger Schwinn
567 Civic 567 Civic
567 Pinto

January 24, 2025 Relational Algebra

S—T

user_id | model

123 Charger
567 Pinto

The set differenceof Sand T ’
regist — Bicycle =

S EXCEPT T;

Must have

same schema

regist Bicycle

Charger Schwinn
567 Civic 567 Civic
567 Pinto

January 24, 2025

Relational Algebra

Pattrsi(T)

Rename attributes

SELECT al as al’,
a2 as az’,

FROM T;

January 24, 2025 Relational Algebra

Pattrsi(T)

Rename attributes

SELECT al as al’,
a2 as az’,

FROM T;

puser_id,model(regiSt) —

regist

123 Charger
567 Civic
567 Pinto

January 24, 2025

Relational Algebra

user_id | model

123 Charger
,0 attrs’ (T) 567 Civic
567 Pinto
Rename attributes Puser_idmodel (I€gist) = ‘]
regist
SELECT al as al’, 123 Charger
a’?2 as a2’ , 567 Civic
. o o 567 Pinto
FROM T;

January 24, 2025 Relational Algebra

user_id | model

123 Charger
,0 attrs’ (T) 567 Civic
567 Pinto
Rename attributes Puser_idmodel (I€gist) = ‘J
regist
SELECT al as al’, 123 Charger
a’?2 as a2’ , 567 Civic
. o o 567 Pinto
FROM T;

Corrected union:

Puser_id,model (regiSt) U BiCyCle

January 24, 2025 Relational Algebra

The Five Basic Relational Operators

D.

Selection 6.4ngition (S)

Projection I1,5(S)

. JoIn R Xg S = 0g(R X S)

Union U

Set difference —

Rename p

Which operators are monotone?

January 24, 2025 Relational Algebra

The Five Basic Relational Operators

1. Selection 6.ongition(S) O

2. Projection Il ;05 (S)

3. JoiInR g S =0g(R XS)

4. Union U

5. Set difference —

g onotone

J

} Non-monotone

Rename P Monotone, but doesn’t do anything

Which operators are monotone?

January 24, 2025

Relational Algebra

Query Plans

January 24, 2025 Relational Algebra

Relational Algebra Plan, or Query Plan

SELECT p.name

and p.job =

FROM payroll p,
WHERE p.user 1d =
‘TA’,’

regist r

r.user 1d

payroll

Jack TA
345 Allison TA
567 Magda Prof
789 Dan Prof

user_id | name salary regist

60000 123 Charger
90000 567 Civic
100000 567 Pinto

January 24, 2025

Relational Algebra

Relational Algebra Plan, or Query Plan

SELECT p.name

and p.job =

FROM payroll p,
WHERE p.user 1d =
\TAI;

regist r

r.user 1d

|

Mhame (Ojob="Ta’ (Payroll ™ regist))

payroll

Jack TA
345 Allison TA
567 Magda Prof
789 Dan Prof

user_id | name salary regist

60000
90000
100000

123 Charger
567 Civic
567 Pinto

January 24, 2025

Relational Algebra

Relational Algebra Plan, or Query Plan

SELECT p.name
FROM payroll p,

WHERE p.user 1d
and p.job = ‘TA’;

regist r
r.user 1d

|

Mhame (Ojob="Ta’ (Payroll ™ regist))

January 24, 2025

We write it as

a query plan

Magda Prof

Relational Algebra

Hname

GmbTA

/\

payroll

regist

user_id | name salary regist

60000 123 Charger
90000 567 Civic
100000 567 Pinto

Relational Algebra Plan, or Query Plan

SELECT p.name

and p.job = ‘TA’;

FROM payroll p, regist r
WHERE p.user 1d = r.user 1id

|

Mhame (Ojob="Ta’ (Payroll ™ regist))

We write it as

a query plan

payroll

Jack
345 Allison
567 Magda
789 Dan

Hname
Gjob ‘TA’ Data
flows
this

/ e

payroll

TA
Prof
Prof

regist

user_id | name salary regist

60000 123 Charger
90000 567 Civic
100000 567 Pinto

January 24, 2025

Relational Algebra

Query Plan: Attribute names

Managing attribute names Better: use aliases,
correctly is tedious much like in SQL
Hname H
p.name
) Now it's
Ojob="TA’ clear which

Op.job="TA’ user_id

Rename |
X user_id=Uid user_id to Uid

to distinguish X p.user_id=r.user_id
from payroll

1 Puid,car
ayro
bay ‘ payroll p reqgist r

regist

January 24, 2025 Relational Algebra

Query Plan: Execution Order

SELECT p.name

FROM payroll p, regist r

WHERE p.user 1d = r.user 1id
and p.job = ‘TA’;

We say what we want,
not how to get it

January 24, 2025 Relational Algebra

Query Plan: Execution Order

SELECT p.name

FROM payroll p, regist r

WHERE p.user 1d = r.user 1id
and p.job = ‘TA’;

[1
S p.-name
how to get it

Op.job="TA’

We say what we want,
not how to get it

Np.user_id=r.user_id

payroll p reqgist r

January 24, 2025 Relational Algebra

Query Plan: Execution Order

SELECT p.name

FROM payroll p, regist r

WHERE p.user 1d = r.user 1id
and p.job = ‘TA’;

We say what we want,
not how to get it

Another way
how to get it

I1
Hp.name p.name

One way
how to get it

4 . :
Op.job="TA’ p.user_id=r.user_id

Np.user_id=r.user_id
Op.job="TA’

payroll p regist r payroll p regist r

January 24, 2025 Relational Algebra

Query Plan: Execution Order

SELECT p.name

FROM payroll p, regist r

WHERE p.user 1d = r.user 1id
and p.job = ‘TA’;

We say what we want,
not how to get it

Another way
how to get it
Which one
I IS more l_[p.name
.name . .
One way P efficient?
how to get it
: D<]p.user id=r.user_id
Op.job="TA’ - -

Np.user_id=r.user_id
Op.job="TA’

payroll p regist r payroll p regist r

January 24, 2025 Relational Algebra 342

Query Plan: Execution Order

SELECT p.name

FROM payroll p, regist r

WHERE p.user 1d = r.user 1id
and p.job = ‘TA’;

We say what we want,
not how to get it

Another way

how to get it
Which one

I1 IS more Hp_name
.name . .
Ol W P efficient?
how to get it
X ‘1— -
Op.job="TA’ p.user_id=r.user_id

Np.user_id=r.user_id
Op.job="TA’ _
‘ Most likely

this one

payroll p regist r payroll p regist r

January 24, 2025 Relational Algebra

Discussion

» Database system converts a SQL query to a
Relational Algebra Plan

January 24, 2025 Relational Algebra

Discussion

» Database system converts a SQL query to a
Relational Algebra Plan

* Then It optimizes the plan by exploring equivalent
plans, using simple algebraic identities:
RxS=S5SXR
Rx(SXT)=(RxS) T
O'Q(R X S) = O'Q(R) XS
... many others*

*over 500 rules in SQL Server

January 24, 2025 Relational Algebra 345

Discussion

» Database system converts a SQL query to a
Relational Algebra Plan

* Then It optimizes the plan by exploring equivalent
plans, using simple algebraic identities:
RxS=S5SXR
Rx(SXT)=(RxS) T
O'Q(R X S) = O'Q(R) XS
... many others*

» Next lecture: how to convert SQL to RA plan

*over 500 rules in SQL Server

January 24, 2025 Relational Algebra 346

	Slide 1
	Slide 2
	Slide 3: The WITH Clause
	Slide 4: The WITH Clause
	Slide 5: The WITH Clause
	Slide 6: The WITH Clause
	Slide 7: The WITH Clause
	Slide 8: The WITH Clause
	Slide 9: The WITH Clause
	Slide 10: The WITH Clause
	Slide 11: The WITH Clause
	Slide 12: The WITH Clause
	Slide 13: The WITH Clause
	Slide 14: The WITH Clause
	Slide 15: The WITH Clause
	Slide 16: The WITH Clause
	Slide 17: Discussion
	Slide 18
	Slide 19: Views
	Slide 20: Views
	Slide 21: Views
	Slide 22: Views
	Slide 23: Views
	Slide 24: Views
	Slide 25: Views
	Slide 26: Views
	Slide 27: Views
	Slide 28: Views
	Slide 29: Views
	Slide 30: Views
	Slide 31: Views
	Slide 32: Views
	Slide 33: Views
	Slide 34: Views
	Slide 35: Views
	Slide 36: Views
	Slide 37: Views
	Slide 38
	Slide 39: Materializing Query Outputs
	Slide 40: Materializing Query Outputs
	Slide 41: Materializing Query Outputs
	Slide 42: Materializing Query Outputs
	Slide 43: Materializing Query Outputs
	Slide 44: Materializing Query Outputs
	Slide 45: Materializing Query Outputs
	Slide 46: Materializing Query Outputs
	Slide 47: Materializing Query Outputs
	Slide 48: Materializing Query Outputs
	Slide 49
	Slide 50: More GROUP BY
	Slide 51: More GROUP BY
	Slide 52: More GROUP BY
	Slide 53: More GROUP BY
	Slide 54: More GROUP BY
	Slide 55: More GROUP BY
	Slide 56: More GROUP BY
	Slide 57: More GROUP BY
	Slide 58: More GROUP BY
	Slide 59: More GROUP BY
	Slide 60: More GROUP BY
	Slide 61: More GROUP BY
	Slide 62: More GROUP BY
	Slide 63: More GROUP BY
	Slide 64: Discussion
	Slide 65
	Slide 66: The Witness
	Slide 67: The Witnessing Problem
	Slide 68: The Witnessing Problem
	Slide 69: The Witnessing Problem
	Slide 70: The Witnessing Problem
	Slide 71: The Witnessing Problem
	Slide 72: The Witnessing Problem
	Slide 73: The Witnessing Problem
	Slide 74: The Witnessing Problem
	Slide 75: The Witnessing Problem
	Slide 76: The Witnessing Problem
	Slide 77: The Witnessing Problem
	Slide 78: The Witnessing Problem
	Slide 79: The Witnessing Problem
	Slide 80: The Witnessing Problem
	Slide 81: The Witnessing Problem
	Slide 82: The Witnessing Problem
	Slide 83: The Witnessing Problem
	Slide 84: The Witnessing Problem
	Slide 85: The Witnessing Problem
	Slide 86: The Witnessing Problem
	Slide 87: The Witnessing Problem
	Slide 88: The Witnessing Problem
	Slide 89: The Witnessing Problem
	Slide 90: The Witnessing Problem
	Slide 91: The Witnessing Problem
	Slide 92: The Witnessing Problem
	Slide 93: The Witnessing Problem
	Slide 94: The Witnessing Problem
	Slide 95: The Witnessing Problem
	Slide 96: The Witnessing Problem
	Slide 97
	Slide 98: Subqueries in FROM
	Slide 99: Subqueries in FROM
	Slide 100: Subqueries in FROM
	Slide 101: Subqueries in FROM
	Slide 102: Subqueries in FROM
	Slide 103: Subqueries in FROM
	Slide 104: Subqueries in FROM
	Slide 105: Discussion
	Slide 106
	Slide 107: Subqueries in SELECT
	Slide 108: Subqueries in SELECT
	Slide 109: Subqueries in SELECT
	Slide 110: Subqueries in SELECT
	Slide 111: Subqueries in SELECT
	Slide 112: Subqueries in SELECT
	Slide 113: Subqueries in SELECT
	Slide 114: Subqueries in SELECT
	Slide 115: Subqueries in SELECT
	Slide 116: Subqueries in SELECT
	Slide 117: Subqueries in SELECT
	Slide 118: Subqueries in SELECT
	Slide 119: Subqueries in SELECT
	Slide 120: Subqueries in SELECT
	Slide 121: Subqueries in SELECT
	Slide 122: Subqueries in SELECT
	Slide 123: Subqueries in SELECT
	Slide 124: Subqueries in SELECT
	Slide 125: Subqueries in SELECT
	Slide 126: Subqueries in SELECT
	Slide 127: Subqueries in SELECT
	Slide 128: Subqueries in SELECT
	Slide 129: Subqueries in SELECT
	Slide 130: Subqueries in SELECT
	Slide 131: Subqueries in SELECT
	Slide 132: Subqueries in SELECT
	Slide 133: Subqueries in SELECT
	Slide 134: Subqueries in SELECT
	Slide 135: Subqueries in SELECT
	Slide 136: Subqueries in SELECT
	Slide 137: Subqueries in SELECT
	Slide 138: Subqueries in SELECT
	Slide 139: Subqueries in SELECT
	Slide 140: Subqueries in SELECT
	Slide 141: Subqueries in SELECT
	Slide 142: Subqueries in SELECT
	Slide 143: Subqueries in SELECT
	Slide 144: Subqueries in SELECT
	Slide 145: Subqueries in SELECT
	Slide 146: Subqueries in SELECT
	Slide 147: Subqueries in SELECT
	Slide 148: Discussion
	Slide 149
	Slide 150: Subqueries in WHERE/HAVING
	Slide 151: Subqueries in WHERE/HAVING
	Slide 152: Subqueries in WHERE/HAVING
	Slide 153: Subqueries in WHERE/HAVING
	Slide 154: Subqueries in WHERE/HAVING
	Slide 155: Subqueries in WHERE/HAVING
	Slide 156: Subqueries in WHERE/HAVING
	Slide 157: Subqueries in WHERE/HAVING
	Slide 158: Subqueries in WHERE/HAVING
	Slide 159: Subqueries in WHERE/HAVING
	Slide 160: Subqueries in WHERE/HAVING
	Slide 161: Subqueries in WHERE/HAVING
	Slide 162: Subqueries in WHERE/HAVING
	Slide 163: Subqueries in WHERE/HAVING
	Slide 164: Subqueries in WHERE/HAVING
	Slide 165: Subqueries in WHERE/HAVING
	Slide 166: Nested Loop Semantics
	Slide 167: Nested Loop Semantics
	Slide 168: Nested Loop Semantics
	Slide 169: Nested Loop Semantics
	Slide 170: Nested Loop Semantics
	Slide 171: Nested Loop Semantics
	Slide 172: Nested Loop Semantics
	Slide 173: Nested Loop Semantics
	Slide 174: Nested Loop Semantics
	Slide 175: Nested Loop Semantics
	Slide 176: Nested Loop Semantics
	Slide 177: Nested Loop Semantics
	Slide 178: Nested Loop Semantics
	Slide 179: Nested Loop Semantics
	Slide 180: Nested Loop Semantics
	Slide 181: Nested Loop Semantics
	Slide 182: Nested Loop Semantics
	Slide 183: Nested Loop Semantics
	Slide 184: Nested Loop Semantics
	Slide 185: Nested Loop Semantics
	Slide 186: Nested Loop Semantics
	Slide 187: Nested Loop Semantics
	Slide 188: Nested Loop Semantics
	Slide 189: Nested Loop Semantics
	Slide 190: Nested Loop Semantics
	Slide 191: Nested Loop Semantics
	Slide 192: Nested Loop Semantics
	Slide 193: Nested Loop Semantics
	Slide 194: Summary
	Slide 195: Predicates on Subqueries
	Slide 196: Recap: EXISTS
	Slide 197: Recap: EXISTS
	Slide 198: Recap: EXISTS
	Slide 199: Recap: NOT EXISTS
	Slide 200: Recap: NOT EXISTS
	Slide 201: Recap: NOT EXISTS
	Slide 202: Recap: NOT EXISTS
	Slide 203: Recap: NOT EXISTS
	Slide 204: Recap: NOT EXISTS
	Slide 205: Unnesting EXISTS
	Slide 206: How do we unnest NOT EXISTS?
	Slide 207: How do we unnest NOT EXISTS?
	Slide 208: Monotone Functions
	Slide 209: Monotone Queries
	Slide 210: Monotone Queries
	Slide 211: Monotone Queries
	Slide 212: Monotone Queries
	Slide 213: Monotone Queries
	Slide 214: Monotone Queries
	Slide 215: Monotone Queries
	Slide 216: Monotone Queries
	Slide 217: Monotone Queries
	Slide 218: Monotone Queries
	Slide 219: Monotone Queries
	Slide 220: Monotone Queries
	Slide 221: Monotone Queries
	Slide 222: Monotone Queries
	Slide 223: Monotone Queries
	Slide 224: Monotone Queries
	Slide 225: Discussion
	Slide 226: Monotone Queries
	Slide 227: Monotone Queries
	Slide 228: Monotone Queries
	Slide 229: Monotone Queries
	Slide 230: Monotone Queries
	Slide 231
	Slide 232: Subqueries in WHERE/HAVING
	Slide 233: Subqueries in WHERE/HAVING
	Slide 234: EXISTS v.s. IN
	Slide 235: NOT EXISTS v.s. NOT IN
	Slide 236: Computing NOT IN
	Slide 237: Computing NOT IN
	Slide 238: Computing NOT IN
	Slide 239: NOT EXISTS v.s. NOT IN
	Slide 240: NOT EXISTS v.s. NOT IN
	Slide 241
	Slide 242: ANY and ALL
	Slide 243: ANY and ALL
	Slide 244: ANY and ALL
	Slide 245: ANY and ALL
	Slide 246: ANY and ALL
	Slide 247: ANY and ALL
	Slide 248: ANY and ALL
	Slide 249: ANY and ALL
	Slide 250: ANY and ALL
	Slide 251: ANY and ALL
	Slide 252: ANY and ALL
	Slide 253: ANY and ALL
	Slide 254: ANY and ALL
	Slide 255: ANY and ALL
	Slide 256: ANY and ALL
	Slide 257: ANY and ALL
	Slide 258: ANY and ALL
	Slide 259: ANY and ALL
	Slide 260: Recap: Predicates on Subqueries
	Slide 261: Quantifiers
	Slide 262: Quantifiers
	Slide 263: Quantifiers
	Slide 264: Quantifiers
	Slide 265: Discussion
	Slide 266
	Slide 267: Quantifiers
	Slide 268: Quantifiers
	Slide 269: Quantifiers
	Slide 270: Using First Order Logic
	Slide 271: Using First Order Logic
	Slide 272: Using First Order Logic
	Slide 273: Brief Review of Logic
	Slide 274: Brief Review of Logic
	Slide 275: Brief Review of Logic
	Slide 276: Brief Review of Logic
	Slide 277: Brief Review of Logic
	Slide 278: Using First Order Logic
	Slide 279: How to Write FORALL in SQL
	Slide 280: How to Write FORALL in SQL
	Slide 281: How to Write FORALL in SQL
	Slide 282: How to Write FORALL in SQL
	Slide 283: How to Write FORALL in SQL
	Slide 284: Discussion
	Slide 285
	Slide 286: Motivation
	Slide 287: The Five Basic Relational Operators
	Slide 288: 1. Selection
	Slide 289: 1. Selection
	Slide 290: 1. Selection
	Slide 291: 1. Selection
	Slide 292: 1. Selection
	Slide 293: 2. Projection
	Slide 294: 2. Projection
	Slide 295: 2. Projection
	Slide 296: 2. Projection
	Slide 297: 2. Projection
	Slide 298: 2. Projection
	Slide 299: 3. Join
	Slide 300: 3. Join
	Slide 301: 3. Join
	Slide 302: Many Variants of Join
	Slide 303: Many Variants of Join
	Slide 304: Many Variants of Join
	Slide 305: cartesian Product / Cross Product
	Slide 306: cartesian Product / Cross Product
	Slide 307: cartesian Product / Cross Product
	Slide 308: cartesian Product / Cross Product
	Slide 309: Natural Join
	Slide 310: Natural Join
	Slide 311: Natural Join
	Slide 312: Natural Join
	Slide 313: Natural Join
	Slide 314: Natural Join
	Slide 315: Natural Join
	Slide 316: Natural Join
	Slide 317: Natural Join
	Slide 318: Natural Join
	Slide 319: Even More Joins
	Slide 320: 4. Union
	Slide 321: 4. Union
	Slide 322: 4. Union
	Slide 323: 4. Union
	Slide 324: 5. Difference
	Slide 325: 5. Difference
	Slide 326: 5. Difference
	Slide 327: Renaming
	Slide 328: Renaming
	Slide 329: Renaming
	Slide 330: Renaming
	Slide 331: The Five Basic Relational Operators
	Slide 332: The Five Basic Relational Operators
	Slide 333
	Slide 334: Relational Algebra Plan, or Query Plan
	Slide 335: Relational Algebra Plan, or Query Plan
	Slide 336: Relational Algebra Plan, or Query Plan
	Slide 337: Relational Algebra Plan, or Query Plan
	Slide 338: Query Plan: Attribute names
	Slide 339: Query Plan: Execution Order
	Slide 340: Query Plan: Execution Order
	Slide 341: Query Plan: Execution Order
	Slide 342: Query Plan: Execution Order
	Slide 343: Query Plan: Execution Order
	Slide 344: Discussion
	Slide 345: Discussion
	Slide 346: Discussion

