

CSE 344: Intro to Data Management Aggregates

Paul G. Allen School of Computer Science and Engineering University of Washington, Seattle

January 17, 2025

Aggregates

Aggregates in SQL: sum(1, 4, 3, 4) = 1+4+3+4 = 12

Aggregates in SQL:

- sum(1, 4, 3, 4) = 1+4+3+4 = 12
- max(1, 4, 3, 4) = 4
- min(1, 4, 3, 4) = 1

Aggregates in SQL:

- sum(1, 4, 3, 4) = 1+4+3+4 = 12
- max(1, 4, 3, 4) = 4
- min(1, 4, 3, 4) = 1
- count(1, 4, 3, 4) = 4

Aggregates in SQL:

- sum(1, 4, 3, 4) = 1+4+3+4 = 12
- max(1, 4, 3, 4) = 4
- min(1, 4, 3, 4) = 1
- count(1, 4, 3, 4) = 4
- avg(1, 4, 3, 4) = 3

Aggregates in SQL:

- sum(1, 4, 3, 4) = 1+4+3+4 = 12
- max(1, 4, 3, 4) = 4
- min(1, 4, 3, 4) = 1
- count(1, 4, 3, 4) = 4

• avg(1, 4, 3, 4) = 3

The collection may have duplicates!

How many records are in payroll?

SELECT count(*) as C FROM payroll;

1						
user_id	name	job	salary		regist	
123	Jack	ТА	50000		user_ic	l car
345	Allison	ТА	60000		123	Charger
567	Magda	Prof	90000		567	Civic
789	Dan	Prof	100000		567	Pinto
January 17, 2025			Aggregate	es		

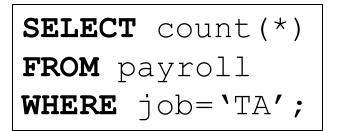
How many records are in payroll?

1 7						
user_id	name	job	salary		regist	
123	Jack	TA	50000		user_id	car
345	Allison	ТА	60000		123	Charger
567	Magda	Prof	90000		567	Civic
789	Dan	Prof	100000		567	Pinto
January 17, 2025			Aggregate	es		

How many records are in payroll?

How many cars are in the database?

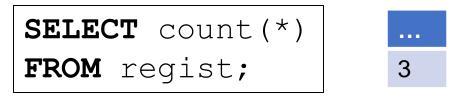
SELECT count(*)
FROM regist;


user_id	name	job	salary	re	egist	
123	Jack	TA	50000	u	ser_id	car
345	Allison	TA	60000	1	23	Charger
567	Magda	Prof	90000	5	67	Civic
789	Dan	Prof	100000	5	67	Pinto
January 17, 202	5		Aggregates	6		

How many records are in payroll?

SELECT count(*)
FROM payroll;

How many TA's are there?



payroll

user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

How many cars are in the database?

car

Civic

Pinto

Charger

regist

123

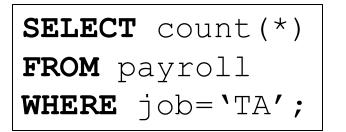
567

567

user_id

-

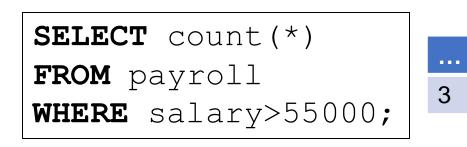
11


January	17,	2025
---------	-----	------

How many records are in payroll?

SELECT count(*)
FROM payroll;

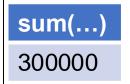
How many TA's are there?



How many cars are in the database?

SELECT CO	ount(*)	-
FROM reg	ist;	3

How many people have salary > 55000?



user_id	name	job	salary	regist	
123	Jack	TA	50000	user_id	car
345	Allison	TA	60000	123	Charger
567	Magda	Prof	90000	567	Civic
789	Dan	Prof	100000	567	Pinto

SUM, MIN, MAX, AVG

What is the sum of all salaries?

SELECT sum(salary)
FROM payroll;

upor id	nomo	ich			odict	
user_id	name	job	salary		egist	
123	Jack	TA	50000	u	iser_id	car
345	Allison	ТА	60000	1	23	Charge
567	Magda	Prof	90000	5	67	Civic
789	Dan	Prof	100000	5	67	Pinto

SUM, MIN, MAX, AVG

What is the sum of all salaries?

SELECT sum(salary)sum(...)FROM payroll;300000

What is the average salary?

SELECT avg(salary)avFROM payroll;75

avg(...) 75000

1						
user_id	name	job	salary		regist	
123	Jack	TA	50000		user_id	car
345	Allison	TA	60000		123	Charger
567	Magda	Prof	90000		567	Civic
789	Dan	Prof	100000		567	Pinto
January 17, 202	5		Aggregate	es		

SUM, MIN, MAX, AVG

What is the sum of all salaries?

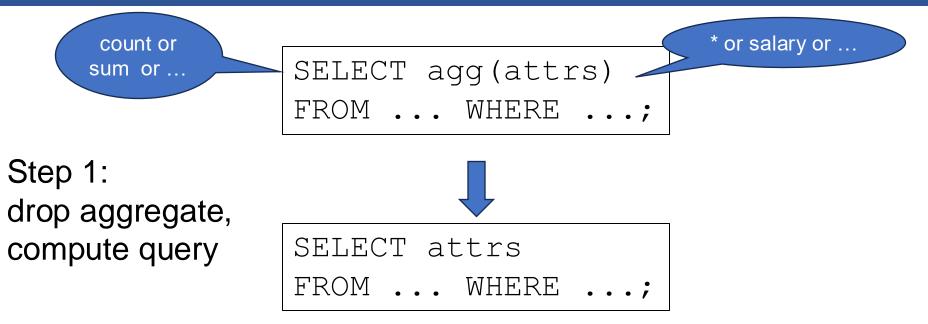
SELECT sum(salary)
FROM payroll;

sum(...) 300000

What is the average salary?

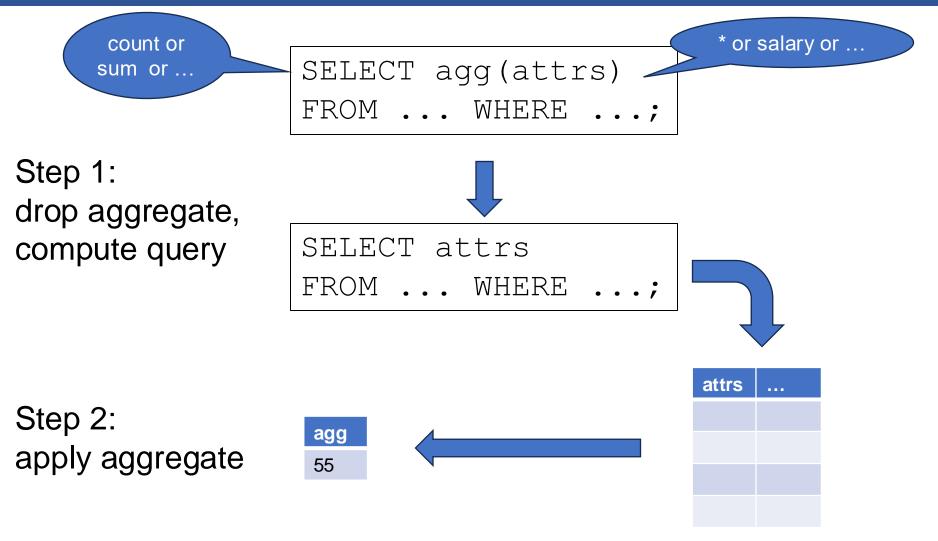
SELECT avg(salary)
FROM payroll;


avg(...) 75000 What is the smallest salary? What is the largest salary?


user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000


regist				
user_id	car			
123	Charger			
567	Civic			
567	Pinto			

SELECT agg(attrs) FROM ... WHERE ...;



attrs	

SELECT count(*) FROM payroll;

user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

 SELECT count(*)
 SELECT *

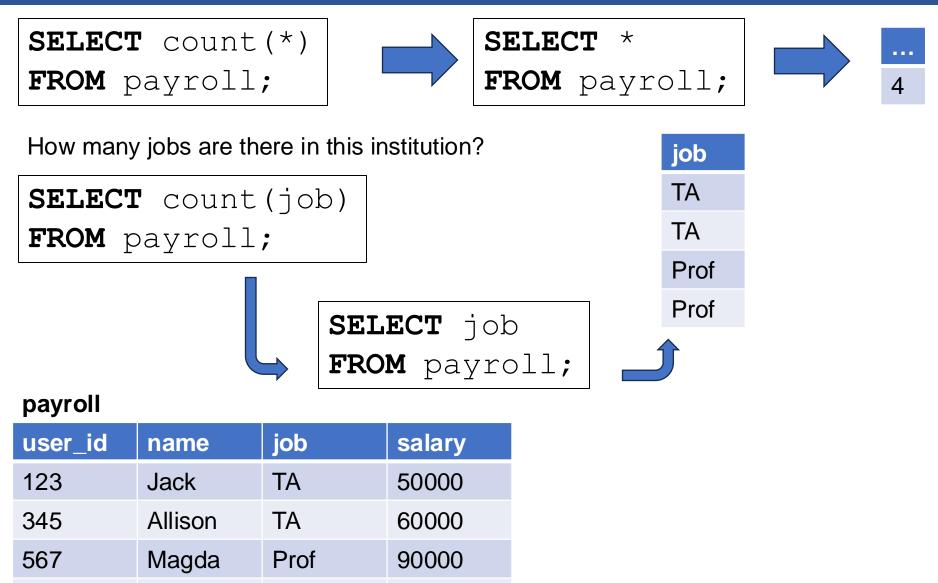
 FROM payroll;
 FROM payroll;

user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

How many jobs are there in this institution?

SELECT count(job)
FROM payroll;

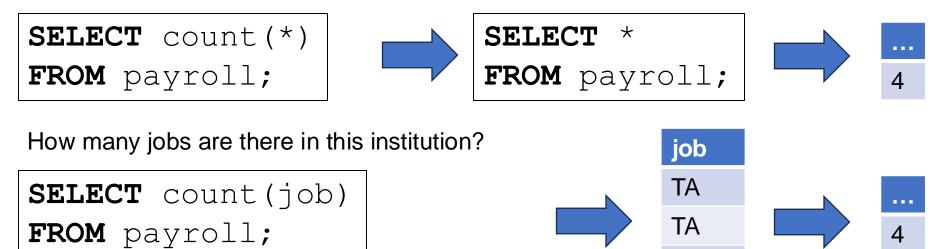
user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000


How many jobs are there in this institution?

SELECT count(job)
FROM payroll;

SELECT job FROM payroll;

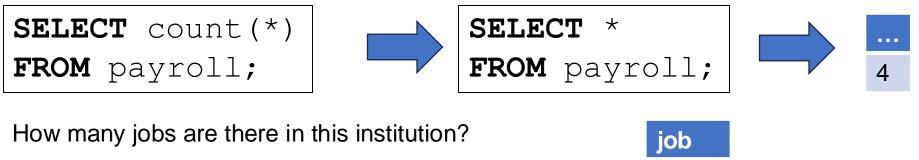
user_id	name	job	salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

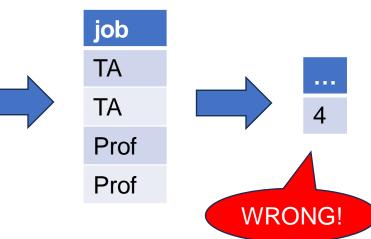


Dan

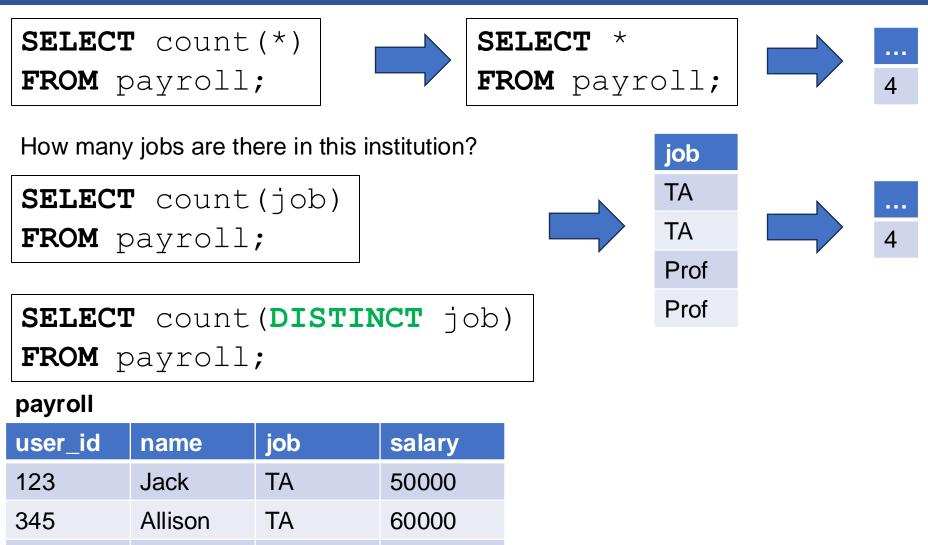
Prof

789


100000


Prof

Prof


user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

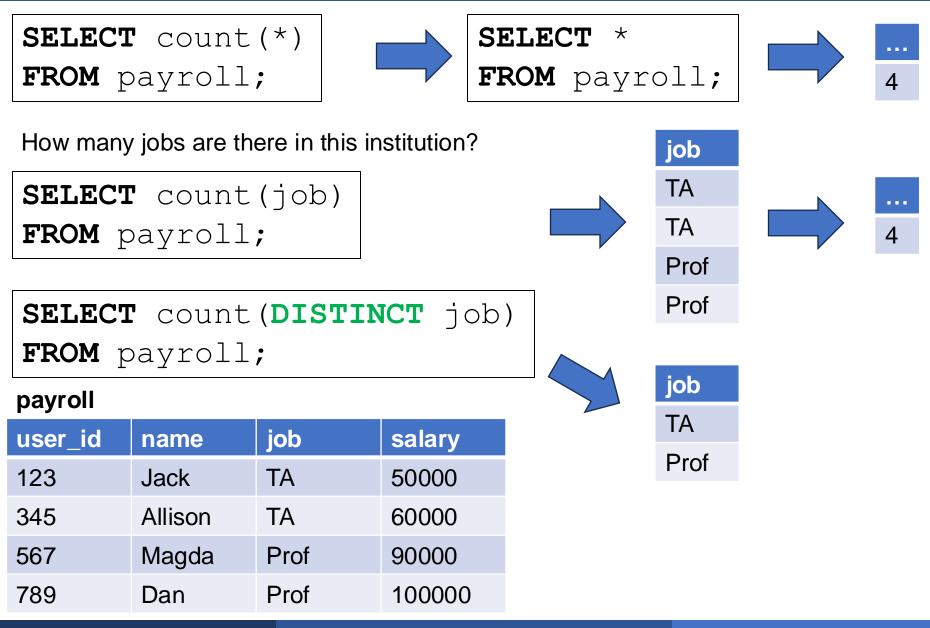
SELECT count(job)
FROM payroll;

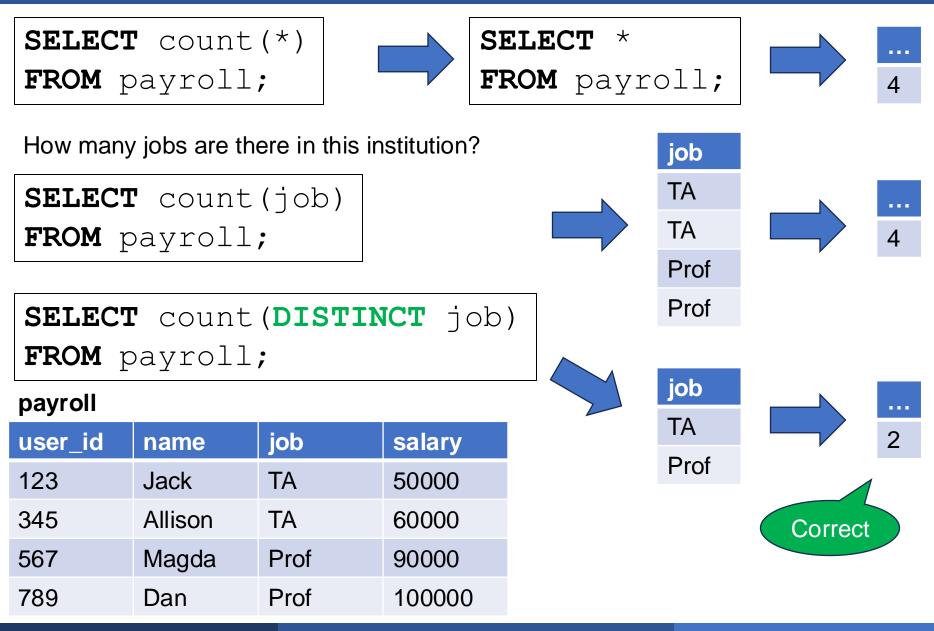
user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

567

789

Magda

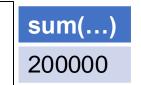

Dan


Prof

Prof

90000

100000


Aggregates and NULLs

Aggregates ignore NULLs:

- Sum: same as 0
- Avg: NOT the same as 0
- Min/max: same as $+\infty, -\infty$
- count: doesn't include them, but it's more subtle

Aggregates and NULLs

SELECT sum(salary) FROM payroll;

50000 + 60000 + 90000

user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	NULL	60000
567	Magda	Prof	90000
789	Dan	Prof	NULL
432	NULL	Prof	NULL

Aggregates and NULLs

SELECT sum (salary) **FROM** payroll;

sum(...) 200000

50000 + 60000 + 90000

SELECT avg(salary)	avg()
FROM payroll;	66667

NULLs are just ignored. Just as you expected.

user_id	name	job	salary
123	Jack	TA	50000
345	Allison	NULL	60000
567	Magda	Prof	90000
789	Dan	Prof	NULL
432	NULL	Prof	NULL
January 17, 202	25		Aggregat

Semantics: two steps

NULLs are ignored

Aggregates and Joins

Joins combine records from multiple tables

Aggregates: many values to one value

Together they form a very powerful SQL tool

Find the average salary of people driving a Pinto

	payroll			regist		
	user_id	name	job	salary	user_id	car
	<mark>123</mark>	Jack	ТА	50000	123	Charger
	345	Allison	ТА	60000	<mark>123</mark>	Pinto
	<mark>567</mark>	Magda	Prof	90000	567	Civic
	789	Dan	Prof	100000	<mark>567</mark>	Pinto
January 1	7, 2025		Ag	gregates		

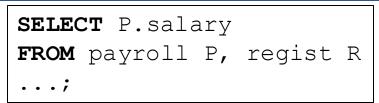
Find the average salary of people driving a Pinto

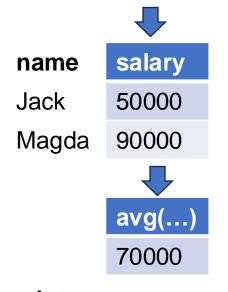
```
SELECT avg(P.salary)
FROM payroll P, regist R
WHERE P.user_id = R.user_id
and R.car = `Pinto';
```

	payroll					regist		
	user_id	name	job	salary		user_id	car	
	<mark>123</mark>	Jack	ТА	50000		123	Charger	
	345	Allison	ТА	60000		<mark>123</mark>	Pinto	
	<mark>567</mark>	Magda	Prof	90000		567	Civic	
	789	Dan	Prof	100000		<mark>567</mark>	Pinto	
January 17	ıary 17, 2025		Ag	gregates				

39

Find the average salary of people driving a Pinto


```
SELECT avg(P.salary)
FROM payroll P, regist R
WHERE P.user id = R.user id
  and R.car = 'Pinto';
```


SELECT P.s	alary		
FROM payro	ll P, 1	regist	R
•••;			
	\checkmark		
name	salary		
Jack	50000		
Magda	90000		

	payroll					regist		
	user_id	name	job	salary		user_id	car	
	<mark>123</mark>	Jack	TA	50000		123	Charger	
	345	Allison	ТА	60000		<mark>123</mark>	Pinto	
	<mark>567</mark>	Magda	Prof	90000		567	Civic	
	789	Dan	Prof	100000		<mark>567</mark>	Pinto	
January 1	7, 2025		Aç	gregates				

Find the average salary of people driving a Pinto

SELECT avg(P.salary)
FROM payroll P, regist R
WHERE P.user_id = R.user_id
and R.car = `Pinto';

payron			
user_id	name	job	salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

regist

user_id	car
123	Charger
<mark>123</mark>	Pinto
567	Civic
<mark>567</mark>	Pinto

navroll

- Need to watch for duplicates introduced when we join two tables
- Sometimes duplicates are easy to deal with, e.g. COUNT(DISTINCT ...)
- Sometimes they are much harder to deal with, and we will discuss this in future lectures

How many people drive a car?

user_id	name	job	salary	regist	
<mark>123</mark>	Jack	ТА	50000	user_id	car
345	Allison	ТА	60000	<mark>123</mark>	Charger
<mark>567</mark>	Magda	Prof	90000	<mark>567</mark>	Civic
789	Dan	Prof	100000	<mark>567</mark>	Pinto

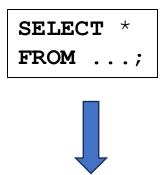

How many people drive a car?

```
SELECT count(*)
FROM payroll P, regist R
WHERE P.user_id = R.user_id;
```

user_id nam	e job	salary	regist	
123 Jack	TA	50000	user_id	car
345 Allise	on TA	60000	<mark>123</mark>	Charger
567 Mag	da Prof	90000	<mark>567</mark>	Civic
789 Dan	Prof	100000	<mark>567</mark>	Pinto

How many people drive a car?

SELECT count(*)
FROM payroll P, regist R
WHERE P.user id = R.user id;



user_i d	name	job	salary	user_i d	car
123	Jack	TA	50000	123	Charger
567	Magda	Prof	90000	567	Civic
567	Magda	Prof	90000	567	Pinto

user_id n	name	job	salary	regist	
<mark>123</mark> J	lack	TA	50000	user_id	car
345 A	Allison	ТА	60000	<mark>123</mark>	Charger
<mark>567</mark> №	<i>M</i> agda	Prof	90000	<mark>567</mark>	Civic
789 D	Dan	Prof	100000	<mark>567</mark>	Pinto

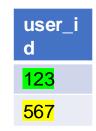
How many people drive a car?

SELECT count(*)
FROM payroll P, regist R
WHERE P.user id = R.user id;

user_i d	name	job	salary	user_i d	car
123	Jack	TA	50000	123	Charger
567	Magda	Prof	90000	567	Civic
567	Magda	Prof	90000	567	Pinto

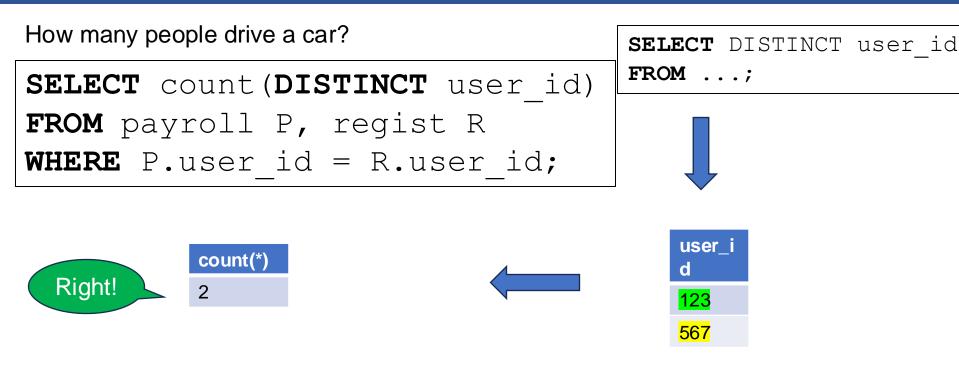
user_id	name	job	salary	regist	
<mark>123</mark>	Jack	ТА	50000	user_id	car
345	Allison	ТА	60000	<mark>123</mark>	Charger
<mark>567</mark>	Magda	Prof	90000	<mark>567</mark>	Civic
789	Dan	Prof	100000	<mark>567</mark>	Pinto

How many people drive a car?


```
SELECT count(DISTINCT user_id)
FROM payroll P, regist R
WHERE P.user_id = R.user_id;
```

user_id n	name	job	salary	regist	
<mark>123</mark> Ja	lack	TA	50000	user_id	car
345 A	Allison	ТА	60000	<mark>123</mark>	Charger
<mark>567</mark> M	/lagda	Prof	90000	<mark>567</mark>	Civic
789 D	Dan	Prof	100000	<mark>567</mark>	Pinto

How many people drive a car?


SELECT count(DISTINCT user_id)
FROM payroll P, regist R
WHERE P.user_id = R.user_id;

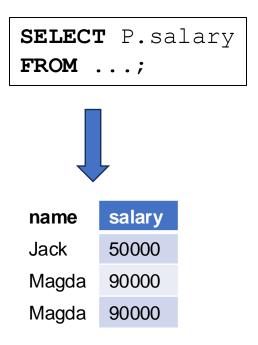
SELECT DISTINCT user_id
FROM ...;

payroll

123 Jack TA 50000 user_id car 345 Allison TA 60000 123 Charger 567 Magda Prof 90000 567 Civic 789 Dan Prof 100000 567 Pinto	user_id	name	job	salary	regist	
545 Magda Prof 90000 567 Civic 567 Magda Prof 90000 567 Civic	<mark>123</mark>	Jack	TA	50000	user_id	car
	345	Allison	ТА	60000	<mark>123</mark>	Charger
789 Dan Prof 100000 567 Pinto	<mark>567</mark>	Magda	Prof	90000	<mark>567</mark>	Civic
	789	Dan	Prof	100000	<mark>567</mark>	Pinto

payroll

user_id	name	job	salary	regist	
<mark>123</mark>	Jack	ТА	50000	user_id	car
345	Allison	ТА	60000	<mark>123</mark>	Charger
<mark>567</mark>	Magda	Prof	90000	<mark>567</mark>	Civic
789	Dan	Prof	100000	<mark>567</mark>	Pinto

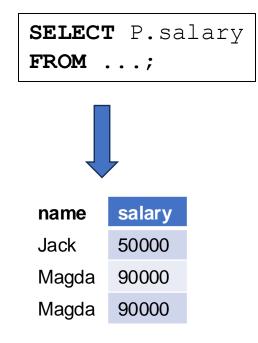

What is the average salary of car drivers?

```
SELECT avg(P.salary)
FROM payroll P, regist R
WHERE P.user_id = R.user_id;
```

123 Jack TA 50000 user_id ca 345 Allison TA 60000 123 Ch	ar
245 Alliean TA $coooo$ 123 Ch	
345 Allison TA 60000 123 Ch	Charger
567 Magda Prof 90000 567 Cive	Civic
789 Dan Prof 10000 567 Pir	Pinto

What is the average salary of car drivers?

SELECT avg(P.salary)
FROM payroll P, regist R
WHERE P.user_id = R.user_id;

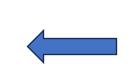

user_id	name	job	salary	re	egist	
<mark>123</mark>	Jack	TA	50000	U	user_id	car
345	Allison	TA	60000	1	23	Charger
<mark>567</mark>	Magda	Prof	90000	<mark>5</mark>	5 <mark>67</mark>	Civic
789	Dan	Prof	100000	5	5 <mark>67</mark>	Pinto

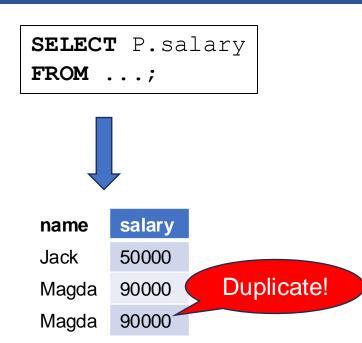
What is the average salary of car drivers?

avg(...)

76667

```
SELECT avg(P.salary)
FROM payroll P, regist R
WHERE P.user_id = R.user_id;
```



payroll


user_id	name	job	salary	regist	
<mark>123</mark>	Jack	ТА	50000	user_id	car
345	Allison	ТА	60000	<mark>123</mark>	Charger
<mark>567</mark>	Magda	Prof	90000	<mark>567</mark>	Civic
789	Dan	Prof	100000	<mark>567</mark>	Pinto

What is the average salary of car drivers?

```
SELECT avg(P.salary)
FROM payroll P, regist R
WHERE P.user_id = R.user_id;
```


payroll

123 Jack	ТА	50000	user_id	l car
345 Allisc	n TA	60000	<mark>123</mark>	Charger
567 Mago	la Prof	90000	<mark>567</mark>	Civic
789 Dan	Prof	100000	<mark>567</mark>	Pinto

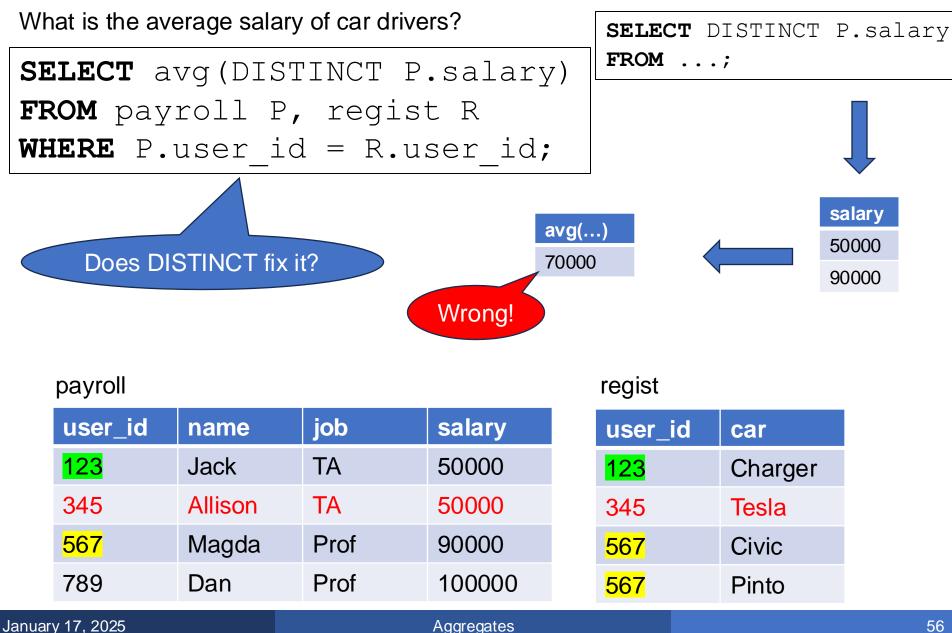
What is the average salary of car drivers?

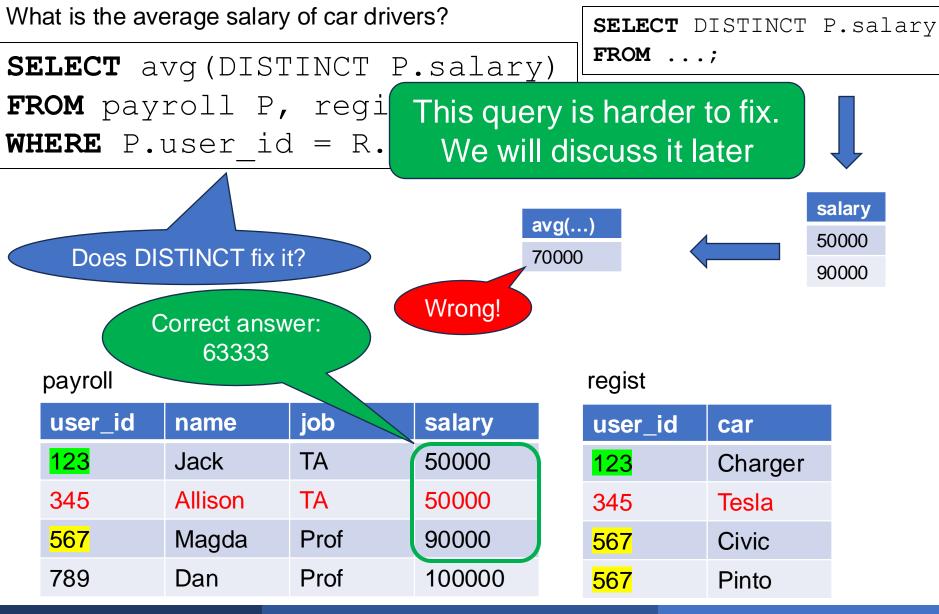
SELECT avg(DISTINCT P.salary)
FROM payroll P, regist R
WHERE P.user_id = R.user_id;

user_id	name	job	salary	regist	
<mark>123</mark>	Jack	ТА	50000	user_id	car
345	Allison	TA	60000	<mark>123</mark>	Charger
<mark>567</mark>	Magda	Prof	90000	<mark>567</mark>	Civic
789	Dan	Prof	100000	<mark>567</mark>	Pinto

What is the average salary of car drivers?

SELECT avg(DISTINCT P.salary)
FROM payroll P, regist R
WHERE P.user id = R.user id;

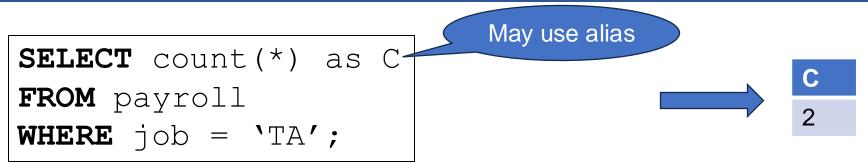

SELECT DISTINCT P.salary
FROM ...;


Does DISTINCT fix it?

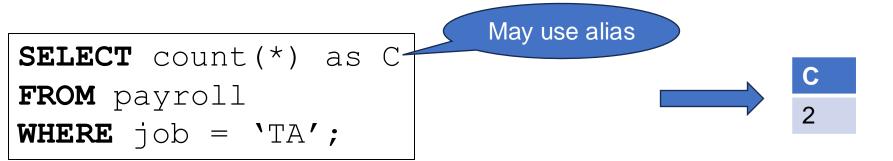
payroll

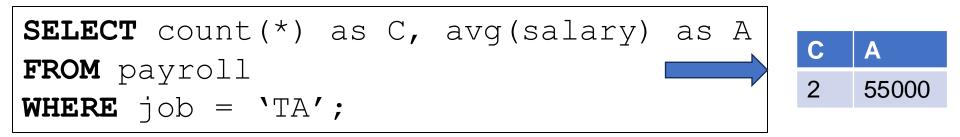
regist

user_id	name	job	salary	user_id	car
<mark>123</mark>	Jack	TA	50000	<mark>123</mark>	Char
345	Allison	TA	50000	345	Tesla
<mark>567</mark>	Magda	Prof	90000	<mark>567</mark>	Civic
789	Dan	Prof	100000	<mark>567</mark>	Pinto



Summary so far


- sum, min, max, count, avg
- Two steps semantics
- Subtle interactions with joins, duplicates, nulls


Aggregates

user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Aggregates

payroll

user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

We may compute several aggreges

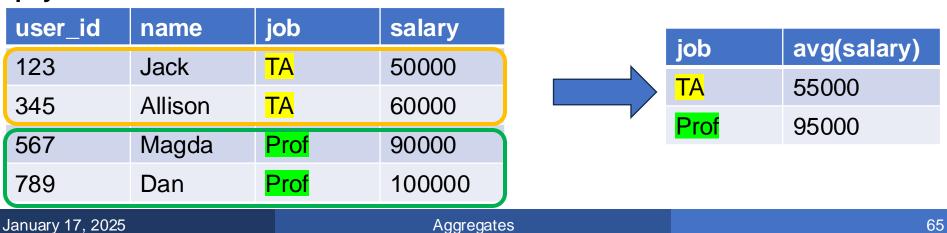
GROUP BY

So far, a single aggregate, or a tuple of aggregates

count(*)	avg(salary)	count(distinct job)

Next: compute a set of aggregates, one per group:

 count(*)


SELECT job, avg(salary) FROM payroll GROUP BY job;

user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

SELECT job, avg(salary) FROM payroll GROUP BY job;

user_id	name	job	salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

SELECT job, avg(salary) FROM payroll GROUP BY job;

Find total revenue for each product.

product	price	quant	month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Find total revenue for each product.

```
SELECT product, sum(price*quant)as rev
FROM sales
GROUP BY product;
```

product	price	quant	month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Find total revenue for each product.

```
SELECT product, sum(price*quant)as rev
FROM sales
GROUP BY product;
```

product	price	quant	month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Find total revenue for each product.

```
SELECT product, sum(price*quant)as rev
FROM sales
GROUP BY product;
```

				ne row for e	ach nro	
product	price	quant	month			duct
Bagel	3	20	Jan			
Bagel	5	10	Jan	product	rev	
Bagel	1.50	20	March	Bagel	140	60+50+30
Banana	0.5	50	Feb	Banana	75	25+50
Banana	5	10	Feb	Apple	40	40
Apple	4	10	March			

Find total revenue for each month.

product	price	quant	month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Find total revenue for each month.

```
SELECT month, sum(price*quant)as rev
FROM sales
GROUP BY month;
```

product	price	quant	month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Find total revenue for each month.

```
SELECT month, sum(price*quant)as rev
FROM sales
GROUP BY month;
```

sales

product	price	quant	month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

GROUP BY month

product	price	quant	month
Bagel	3	20	Jan
Bagel	5	10	Jan
Banana	0.5	50	Feb
Banana	5	10	Feb
Bagel	1.50	20	March
Apple	4	10	March

Find total revenue for each month.

```
SELECT month, sum(price*quant)as rev
FROM sales
GROUP BY month;
```

sales

product	price	quant	month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

GROUP BY month

	product	price	quant	month
ſ	Bagel	3	20	Jan
l	Bagel	5	10	<mark>Jan</mark>
	Banana	0.5	50	Feb
	Banana	5	10	Feb
ſ	Bagel	1.50	20	March
l	Apple	4	10	March

Find total revenue for each month.							(e row for ch month
SELECT	SELECT month, sum(price*quant)as rev							
FROM S	FROM sales							
GROUP	BY mo	onth;				month Jan	rev 140	60+50
						Feb	75	25+50
						March	40	40+30
sales							10	10100
product	price	quant	month		GROUP BY	price	quant	month
Bagel	3	20	Jan	í	Bagel	3	20	Jan
Bagel	5	10	Jan		Bagel	5	10	Jan
Bagel	1.50	20	March		Banana	0.5	50	Feb
Banana	0.5	50	Feb		Banana	5	10	Feb
Banana	5	10	Feb	ſ	Bagel	1.50	20	March
Apple	4	10	March		Apple	4	10	March

Find total revenue per month, for sales over 2.50

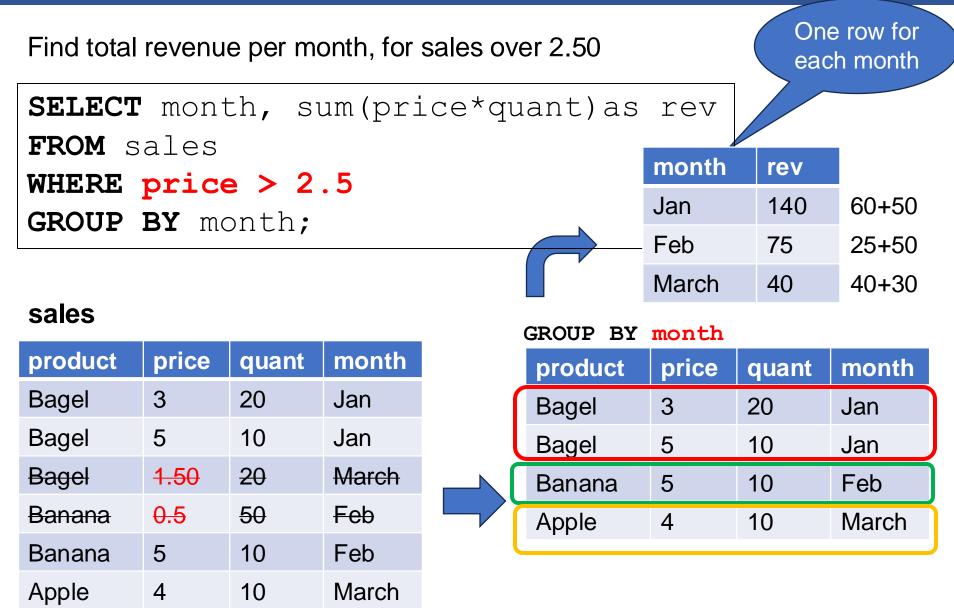
```
SELECT month, sum(price*quant)as rev
FROM sales
WHERE price > 2.5
GROUP BY month;
```

product	price	quant	month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Find total revenue per month, for sales over 2.50

```
SELECT month, sum(price*quant)as rev
FROM sales
WHERE price > 2.5
GROUP BY month;
```

product	price	quant	month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March


Find total revenue per month, for sales over 2.50

```
SELECT month, sum(price*quant)as rev
FROM sales
WHERE price > 2.5
GROUP BY month;
```

product	price	quant	month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

GROUP BY month

product	price	quant	month
Bagel	3	20	Jan
Bagel	5	10	Jan
Banana	5	10	Feb
Apple	4	10	March

Find total revenue for each product and each month.

```
SELECT product, month, sum(price*quant) as rev
FROM sales
GROUP BY product, month;
```

product	price	quant	month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Find total revenue for each product and each month.

```
SELECT product, month, sum(price*quant) as rev
FROM sales
GROUP BY product, month;
```

product	price	quant	month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

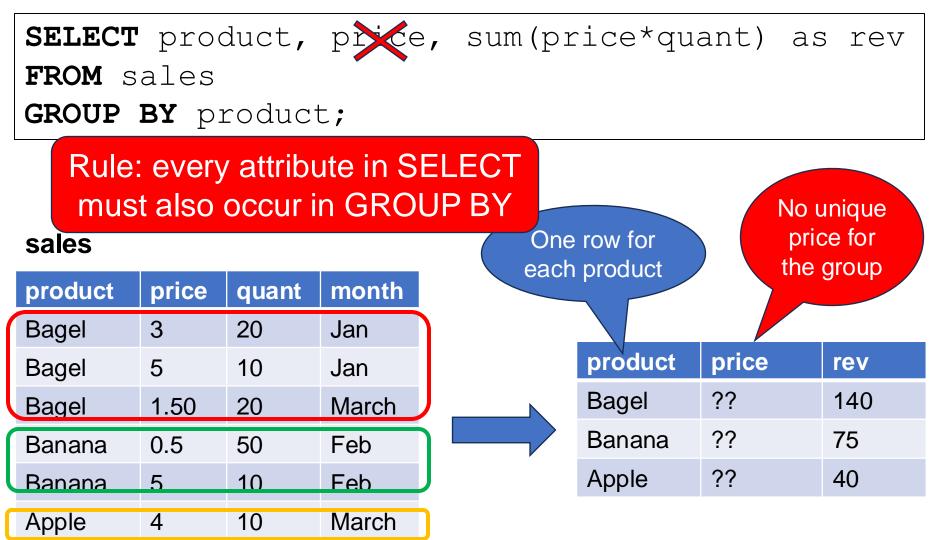
A Source of Errors

What does this query return?

```
SELECT product, price, sum(price*quant) as rev
FROM sales
GROUP BY product;
```

product	price	quant	month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

A Source of Errors


What does this query return?

```
SELECT product, price, sum(price*quant) as rev
FROM sales
GROUP BY product;
```

sales				(row for product	pri	uniqu ce for grou
product	price	quant	month	ouon			9.00
Bagel	3	20	Jan				
Bagel	5	10	Jan		product	price	rev
Bagel	1.50	20	March		Bagel	??	140
Banana	0.5	50	Feb		Banana	??	75
Banana	5	10	Feb		Apple	??	40
Apple	4	10	March				

A Source of Errors

What does this query return?

GROUP BY: list of attributes

SELECT: some group-by attrs, and aggregates

One output tuple for each group

Semantics

Semantics

```
SELECT attr1, attr2,.., agg1(..), agg2(..),..
FROM Tables
WHERE Condition
GROUP BY attr1, attr2,..;
```

- Step 1: compute SELECT * FROM .. WHERE..
- Step 2: GROUP BY
- Step 3: for each group emit 1 output

SELECT month, sum(quant)
FROM sales
WHERE price < 4.5
GROUP BY month;</pre>

product	price	quant	month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

```
SELECT month, sum(quant)
FROM sales
WHERE price < 4.5
GROUP BY month;</pre>
```

product	price	quant	month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Ctop 1				
Step 1	product	price	quant	month
•	Bagel	3	20	Jan
SELECT * FROM sales	Bagel	1.50	20	March
	Banana	0.5	50	Feb
WHERE price < 4.5;	Apple	4	10	March

```
SELECT month, sum(quant)
FROM sales
WHERE price < 4.5
GROUP BY month;</pre>
```

product	price	quant	month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Step 1			
<	4.5;		
	<		

	product	price	quant	month
٦	Bagel	3	20	Jan
	Bagel	1.50	20	March
	Banana	0.5	50	Feb
	Apple	4	10	March

Step 2 Group-by

product	price	quant	month
Bagel	3	20	Jan
Banana	0.5	50	Feb
Bagel	1.50	20	March
Apple	4	10	March

SELECT month, sum(quant)
FROM sales
WHERE price < 4.5
GROUP BY month;</pre>

Each group, one output

product	price	quant	month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Step 1

SELECT *		
FROM sales		
WHERE price	<	4.5;

	product	price	quant	month
]	Bagel	3	20	Jan
	Bagel	1.50	20	March
	Banana	0.5	50	Feb
	Apple	4	10	March

product	price	quant	month		month	quant
Bagel	3	20	Jan) —>	Jan	20
Banana	0.5	50	Feb		Feb	50
Bagel	1.50	20	March		March	30
Apple	4	10	March			

Step 3

<pre>SELECT product, count(*),</pre>	sum(quant)
FROM sales	
GROUP BY product;	

product	count	sum
Bagel	3	50
Banana	2	60
Apple	1	10

product	price	quant	month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

SELECT product,	count(*),	sum(quant)
FROM sales		
GROUP BY product	- •	

product	count	sum
Bagel	3	50
Banana	2	60
Apple	1	10

SELECT product, count(*)
FROM sales

GROUP BY product;

product	price	quant	month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

SELECT product, count(*), sum(quant)		product	count	sum
FROM sales	_	Bagel	3	50
GROUP BY product;		Banana	2	60
-		Apple	1	10
SELECT product, count(*)		product	count	
SELECT product, count(*) FROM sales		product Bagel	count 3	

price	quant	month
3	20	Jan
5	10	Jan
1.50	20	March
0.5	50	Feb
5	10	Feb
4	10	March
	3 5 1.50 0.5	3205101.50200.550510

SELECT product, count(*), sum(quant)
FROM sales
GROUP BY product;

SELECT	product,	count(*)
FROM Sa	ales	

GROUP BY product;

SELECT pr	roduct
FROM sale	es
GROUP BY	product;

product	price	quant	month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

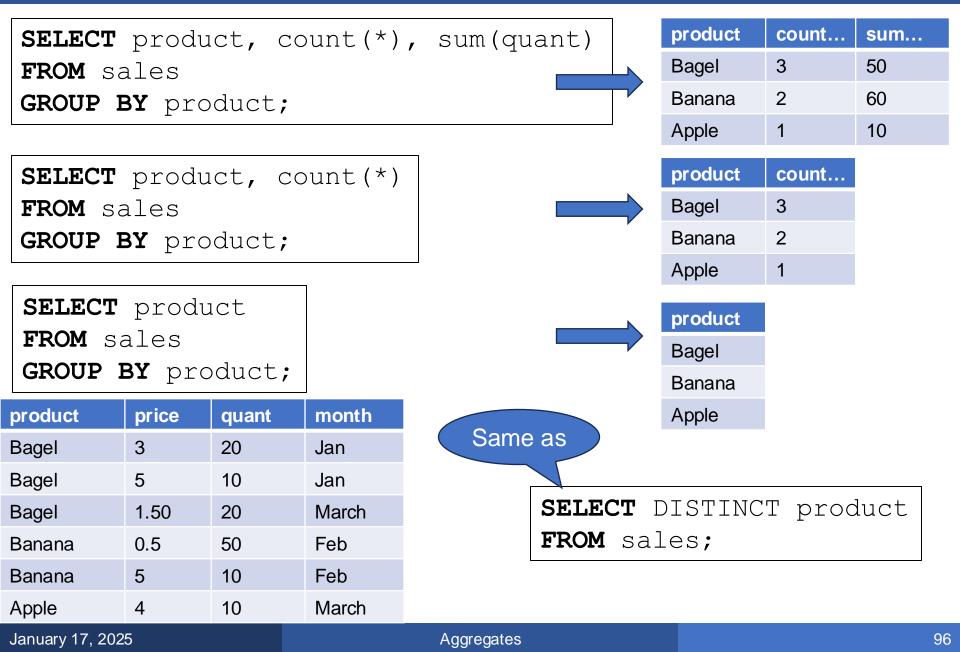
product	count	sum
Bagel	3	50
Banana	2	60
Apple	1	10

product	count
Bagel	3
Banana	2
Apple	1

SELECT product,	count(*) ,	sum(quant)
FROM sales		
GROUP BY produc	t;	

SELECT	product,	count(*)
FROM Sa	ales	

GROUP BY product;


SELECT product				
FROM sales				
GROUP BY product;				

product	price	quant	month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

product	count	sum
Bagel	3	50
Banana	2	60
Apple	1	10

	product	count
>	Bagel	3
	Banana	2
	Apple	1

_	product
	Bagel
	Banana
	Apple

- A group is never empty, by definition!
- Therefore $count(*) \ge 1$
- Sometimes we want answers with count(...)=0
- Then we use outer-joins

<pre>SELECT job, count(*)</pre>
FROM payroll
GROUP BY job;

job	count(*)
ТА	2
Prof	2

count people per job

user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000
January 17, 2			

SELECT job,	count(*)
FROM payrol.	1
GROUP BY jol	b;

job	count(*)
ТА	2
Prof	2

SELECT job, count(*)
FROM payroll
WHERE salary > 55000
GROUP BY job;

user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000
January 17, 2025			

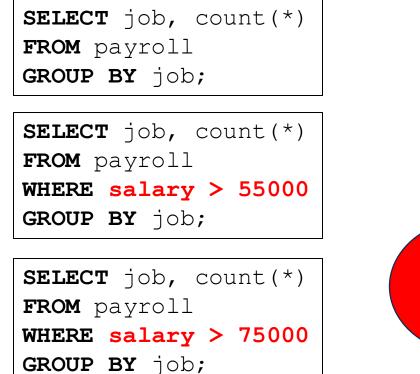
SELECT job, count(*)
FROM payroll
GROUP BY job;

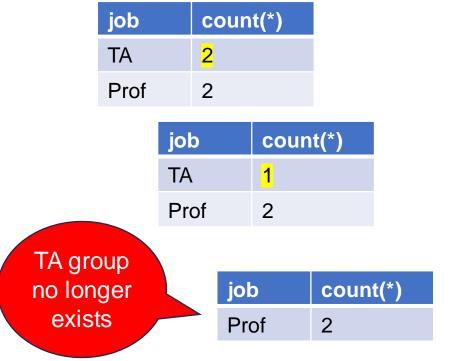
<pre>SELECT job, count(*)</pre>
FROM payroll
WHERE salary > 55000
GROUP BY job;

job		coun	it(*)	
TA		<mark>2</mark>		
Prof		2		
	jol	0	count(*)
	TA		1	
	Pr	of	2	

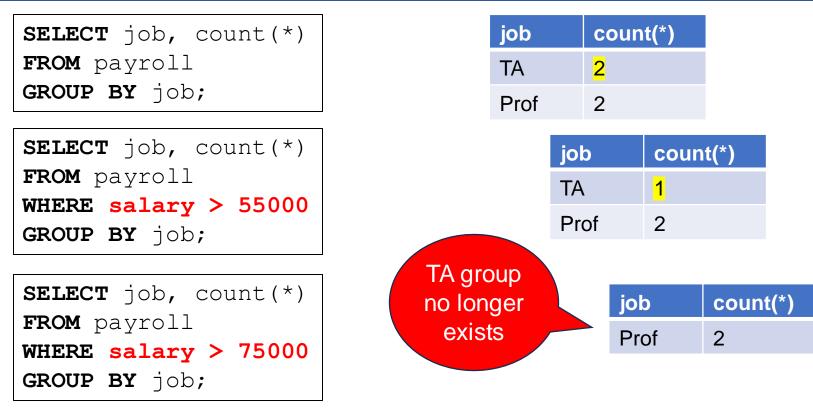
user_id	name	job	salary		
123	Jack	ŦA	50000		
345	Allison	ТА	60000		
567	Magda	Prof	90000		
789	Dan	Prof	100000		
January 17, 2025					

SELECT job, count(*)
FROM payroll
GROUP BY job;


<pre>SELECT job, count(*)</pre>
FROM payroll
WHERE salary > 55000
GROUP BY job;


```
SELECT job, count(*)
FROM payroll
WHERE salary > 75000
GROUP BY job;
```

-			
user_id	name	job	salary
123	Jack	ŦA	50000
345	Allison	ŦA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000


job	count(*)
ТА	<mark>2</mark>
Prof	2

job	count(*)
ТА	1
Prof	2

user_id	name	job	salary
123	Jack	ŦA	50000
345	Allison	ŦA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000
	2 4.1.		

payroll

				_
user_id	name	job	salary	C
123	Jack	ŦA	50000	
345	Allison	ŦA	60000	lf
567	Magda	Prof	90000	
789	Dan	Prof	100000	
January 17, 2	2025			Aggregates

Can never have count(*)=0 If we want them: outer joins!

How many cars does each person drive?

Let's start with a simpler example

payroll

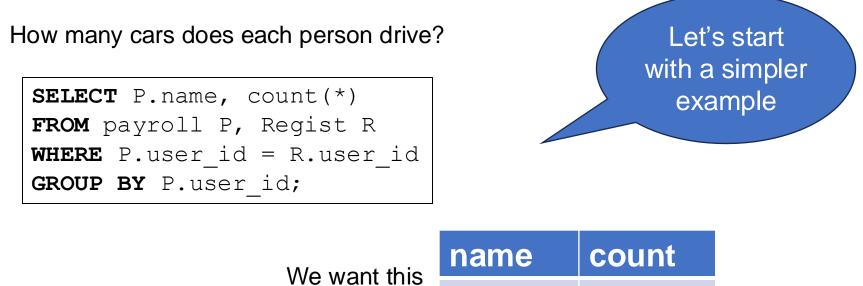
user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000
January 17 2025			

Regist

user_i d	Car
123	Charger
567	Civic
567	Pinto

How many cars does each person drive?

```
SELECT P.name, count(*)
FROM payroll P, Regist R
WHERE P.user id = R.user id
GROUP BY P.user id;
```



payroll

user_id	name	job	salary
<mark>123</mark>	Jack	ТА	50000
345	Allison	ТА	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000
January 17, 2	2025		

Regist

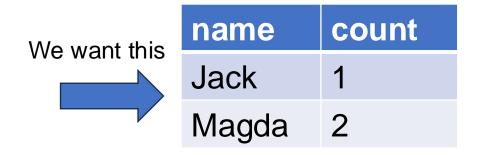
user_i d	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

Jack

Magda

payroll

user_id	name	job	salary	
<mark>123</mark>	Jack	ТА	50000	
345	Allison	TA	60000	
<mark>567</mark>	Magda	Prof	90000	
789	Dan	Prof	100000	
January 17, 2025				A


Regist

2

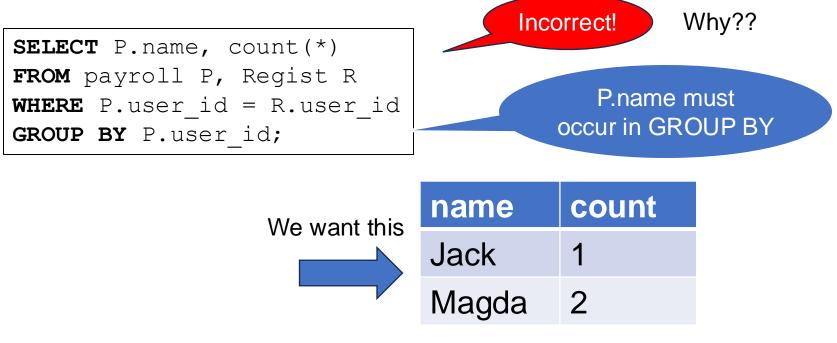
user_i d	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

How many cars does each person drive?

```
SELECT P.name, count(*)
FROM payroll P, Regist R
WHERE P.user_id = R.user_id
GROUP BY P.user id;
```


payroll

user_id	name	job	salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000
January 17, 2	2025		


Regist

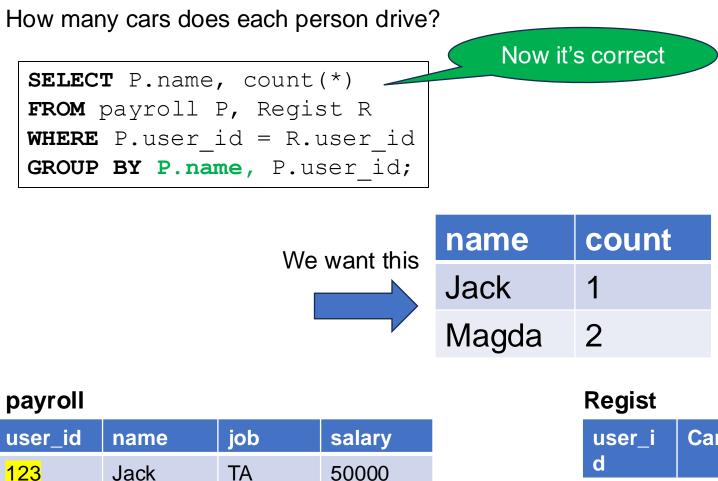
Incorrect!

Why??

user_i d	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

How many cars does each person drive?

payroll


user_id	name	job	salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

user_i d	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

TA

Prof

Prof

60000

90000

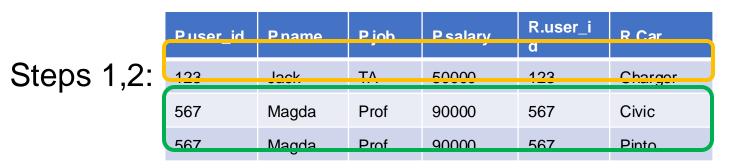
100000

i egiot	
user_i d	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

Allison

Magda

Dan

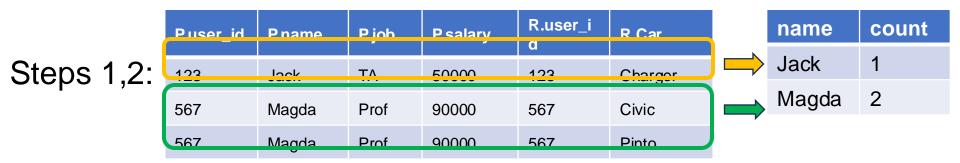

345

567

789

How many cars does each person drive?

<pre>SELECT P.name, count(*)</pre>			
FROM payroll P, Regist R			
WHERE P.user_id = R.user_id			
GROUP BY P.name, P.user_id;			


payroll

user_id	name	job	salary
<mark>123</mark>	Jack	ТА	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000
1	005		

user_i d	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

How many cars does each person drive?

```
SELECT P.name, count(*)
FROM payroll P, Regist R
WHERE P.user_id = R.user_id
GROUP BY P.name, P.user_id;
```


payroll

user_id	name	job	salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000
January 17, 2	2025		

user_i d	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

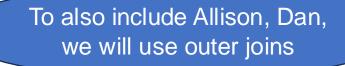
How many cars does each person drive?

SELECT P.name, count(*)
FROM payroll P, Regist R
WHERE P.user_id = R.user_id
GROUP BY P.name, P.user id;

To also include Allison, Dan, we will use outer joins

	Puser_id	Pname	Pjoh	Psalary	R.user_i	R Car	name	count
Steps 1,2:	123	Jack	ТЛ	50000	a 1 <u>23</u>	Chargor	Jack	1
	567	Magda	Prof	90000	567	Civic	Magda	2
	567	Magda	Prof	90000	567	Pinto		

payroll


user_id	name	job	salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000
January 17, 2	2025		

Regist

user_i d	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

113

How many cars does each person drive?

payroll

user_id	name	job	salary
<mark>123</mark>	Jack	ТА	50000
345	Allison	ТА	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000
lonuory 17 0	0.05		

user_i d	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

How many cars does each person drive?

```
SELECT P.name, count(*)
FROM payroll P LEFT OUTER JOIN Regist R ON P.user_id = R.user_id
GROUP BY P.name, P.user id;
```

payroll

user_id	name	job	salary
<mark>123</mark>	Jack	ТА	50000
345	Allison	ТА	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000
January 17 2	0.25		

user_i d	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

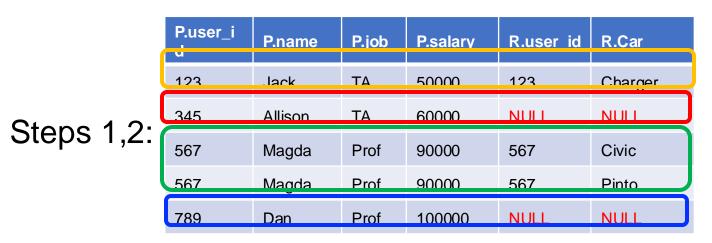
How many cars does each person drive?

SELECT P.name, count(*)
FROM payroll P LEFT OUTER JOIN Regist R ON P.user_id = R.user_id
GROUP BY P.name, P.user_id;

Aggregates

		P.user_i d	P.name	P.job	P.salary	R.user_id	R.Car
		123	Jack	ТА	50000	123	Charger
Stop	1	345	Allison	ТА	60000	NULL	NULL
Step	1	567	Magda	Prof	90000	567	Civic
		567	Magda	Prof	90000	567	Pinto
		789	Dan	Prof	100000	NULL	NULL

payroll

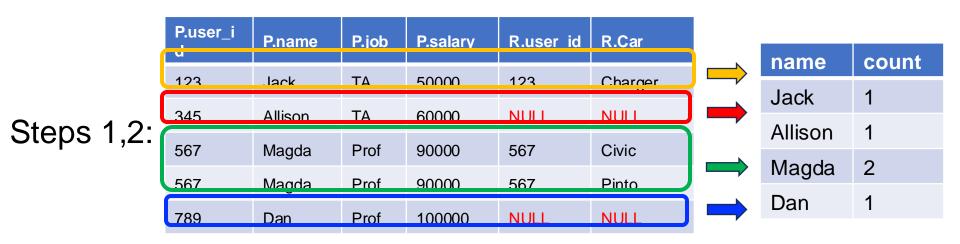

user_id	name	job	salary
<mark>123</mark>	Jack	TA	50000
345	Allison	ТА	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000
January 17, 2025			

user_i d	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

How many cars does each person drive?

SELECT P.name, count(*)
FROM payroll P LEFT OUTER JOIN Regist R ON P.user_id = R.user_id
GROUP BY P.name, P.user id;

Aggregates


payroll

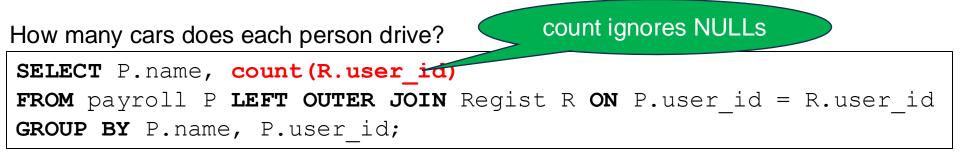
user_id	name	job	salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000
January 17, 2025			

user_i d	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

How many cars does each person drive?

SELECT P.name, count(*)
FROM payroll P LEFT OUTER JOIN Regist R ON P.user_id = R.user_id
GROUP BY P.name, P.user_id;


payroll


user_id	name	job	salary
<mark>123</mark>	Jack	ТА	50000
345	Allison	ТА	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

user_i d	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

How many cars does each person drive?

SELECT P.name, count(*)
FROM payroll P LEFT OUTER JOIN Regist R ON P.user_id = R.user_id
GROUP BY P.name, P.user_id;

For each job, how many people earn more than 75000?

payroll

-			
user_id	name	job	salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000
January 17, 2	2025		

For each job, how many people earn more than 75000?

```
SELECT job, count(*)
FROM payroll
WHERE salary > 75000
GROUP BY job;
```

job	count(*)
Prof	2

payroll

user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000
January 17, 2	2025		

For each job, how many people earn more than 75000?

```
SELECT job, count(*)
FROM payroll
WHERE salary > 75000
GROUP BY job;
```

job	count(*)
Prof	2

payroll

January 17, 2025

user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

To include users where count(*)=0, we will use a self-outer-join

For each job, how many people earn more than 75000?

SELECT P1.job, count()
FROM payroll P1 LEFT OUTER JOIN payroll P2
ON P1.job = P2.job and P2.salary > 75000
GROUP BY P1.job;

Aggregates

payroll

January 17, 2025

user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

To include users where count(*)=0, we will use a self-outer-join

For each job, how many people earn more than 75000?	What goes here?
SELECT P1.job, count()	
FROM payroll P1 LEFT OUTER JOIN payroll P2	
ON P1.job = P2.job and P2.salary > 75000	
GROUP BY Pl.job;	

payroll

user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000
January 17, 2	025		

For each job, how many people earn more than 75000?

SELECT P1.job, count(FROM payroll P1 LEFT OUTER JOIN payroll P2 **ON** P1.job = P2.job and P2.salary > 75000 Left Outer Join GROUP BY P1.job; P1.user id P1.name P1.job P2.user id P2.job P2.salary P1.salary P2.name 123 Jack TA 50000 NULL NULL NULL NULL 345 Allison TA NULL NULL NULL NULL 60000 Magda Prof Magda Prof 567 90000 567 90000 789 Dan Prof 100000 567 Magda Prof 90000 567 Magda Prof 90000 789 Dan Prof 100000 789 Dan Prof 100000 789 Dan Prof 100000

Aggregates

payroll

January 17, 2025

user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

We want to include <u>*all*</u> jobs, even when the count is 0. Need an outer join with the jobs

For each job, how many people earn more than 75000?

SELECT P1.job, count()
FROM payroll P1 LEFT OUTER JOIN payroll P2
ON P1.job = P2.job and P2.salary > 75000
GROUP BY P1.job;

Group by P1.job

P1.user_id	P1.name	P1.job	P1.salary	P2.user_id	P2.name	P2.job	P2.salary
123	Jack	ТА	50000	NULL	NULL	NULL	NULL
345	Allison	ТА	60000	NULL	NULL	NULL	NULL
567	Magda	Prof	90000	567	Magda	Prof	90000
789	Dan	Prof	100000	567	Magda	Prof	90000
567	Magda	Prof	90000	789	Dan	Prof	100000
789	Dan	Prof	100000	789	Dan	Prof	100000

payroll

January 17, 2025

user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

We want to include <u>*all*</u> jobs, even when the count is 0. Need an outer join with the jobs

For each j	job, how m	any peo	ple earn m	ore than 7	5000	What do	we w	rite he	ere?
SELECT	Pl.job,	count ()				
FROM pa	yroll P1	LEFT	OUTER JC)IN payr	oll P2			job	
ON P1	.job = F	2.job	and P2.s	alary >	75000	Want	this:	TA	0
GROUP B	Y P1.job	;						Prof	2
P1.user_id	P1.name	P1.job	P1.salary	P2.user_id	P2.name	P2.job	P2.sal	ary	
123	Jack	TA	50000	NULL	NULL	NULL	NULL		
345	Allison	ТА	60000	NULL	NULL	NULL	NULL		
567	Magda	Prof	90000	567	Magda	Prof	90000		

567

789

789

Magda

Dan

Dan

payroll

789

567

789

Dan

Dan

Magda

user_id	name	job	salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000
January 17, 2	2025		

Prof

Prof

Prof

100000

90000

100000

We want to include <u>*all*</u> jobs, even when the count is 0. Need an outer join with the jobs

90000

100000

100000

Prof

Prof

Prof

For each job, how many people earn more than 75000?

SELECT P1.job, count(DISTINCT P2.user_id)
FROM payroll P1 LEFT OUTER JOIN payroll P2
ON P1.job = P2.job and P2.salary > 75000
GROUP BY P1.job;
Count this

P1.user_id	P1.name	P1.job	P1.salary	P2.user_id	P2.name	P2.job	P2.salary
123	Jack	ТА	50000	NUL	NULL	NULL	NULL
345	Allison	ТА	60000	NULI	NULL	NULL	NULL
567	Magda	Prof	90000	567	Magda	Prof	90000
789	Dan	Prof	100000	567	Magda	Prof	90000
567	Magda	Prof	90000	789	Dan	Prof	100000
789	Dan	Prof	100000	789	Dan	Prof	100000

payroll

user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000
January 17, 2	2025		

We want to include <u>*all*</u> jobs, even when the count is 0. Need an outer join with the jobs

For each job, how many people earn more than 75000?

<pre>SELECT P1.job, count(DISTINCT P2.user_id)</pre>
FROM payroll P1 LEFT OUTER JOIN payroll P2
ON P1.job = P2.job and P2.salary > 75000
GROUP BY Pl.job;

job	count()
ТА	0
Prof	2

P1.user_id	P1.name	P1.job	P1.salary	P2.user_id	P2.name	P2.job	P2.salary	
123	Jack	ТА	50000	NULL	NULL	NULL	NULL	
345	Allison	TA	60000	NUL	NULL	NULL	NULL	
567	Magda	Prof	90000	567	Magda	Prof	90000	
789	Dan	Prof	100000	567	Magda	Prof	90000	
567	Magda	Prof	90000	789	Dan	Prof	100000	
789	Dan	Prof	100000	789	Dan	Prof	100000	

payroll

user_id	name	job	salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000
January 17, 2	2025		

We want to include <u>*all*</u> jobs, even when the count is 0. Need an outer join with the jobs Coping with empty groups requires some creativity

Use Left-outer-join

Sometimes, you need a self-left-outer-join

• WHERE:

- Applies a predicate to a single tuple*
- Cannot use any aggregate operation

HAVING:

- Applies a predicate to an entire group
- May use aggregate operations
- Can only check attributes occurring in GROUP-BY

* Actually, to one tuple from each relation in the FROM clause

Find the total quantity of products that were sold ≥ 2 times.

product	price	quant	month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Find the total quantity of products that were sold ≥ 2 times.

SELECT product, sum(quant)
FROM sales
GROUP BY product
HAVING count(*) >= 2;

product	price	quant	month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Find the total quantity of products that were sold ≥ 2 times.

SELECT product, sum(quant)
FROM sales
GROUP BY product
HAVING count(*) >= 2;

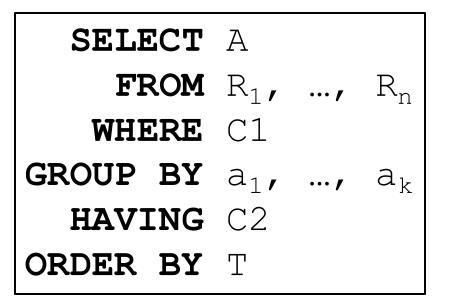
product	price	quant	month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Find the total quantity of products that were sold ≥ 2 times.

SELECT product, sum(quant)
FROM sales
GROUP BY product
HAVING count(*) >= 2;

sales

product	price	quant	month	
Bagel	3	20	Jan	
Bagel	5	10	Jan	count(*)=3
Bagel	1.50	20	March	
Banana	0.5	50	Feb	aguat/*) 0
Banana	5	10	Feb	count(*)=2
Apple	4	10	March	count(*)=1 NOT


included

Find the total quantity of products that were sold ≥ 2 times.

SELECT product, sum(quant)
FROM sales
GROUP BY product
HAVING count(*) >= 2;

product	price	quant	month			
Bagel	3	20	Jan			
Bagel	5	10	Jan	count(*)=3	product	sum
Bagel	1.50	20	March		Bagel	50
Banana	0.5	50	Feb	-2	Banana	60
Banana	5	10	Feb	count(*)=2		
Apple	4	10	March	count(*)=1 NC	T included	

SQL Query Summary

A = any attributes from $a_1, ..., a_k$ and/or any aggregates

 $C1 = any condition on the attributes in R_1, ..., R_n$

C2 = any condition on $a_1, ..., a_k$ and/or any aggregates

T = any attributes from $a_1, ..., a_k$ and/or any aggregates

Discussion: WHERE v.s. HAVING

• WHERE:

- Applies to single tuple from each table
- May decrease size of groups, even make them empty
- Cannot use aggregates (count(*)=5, sum(...) > 10)

HAVING:

- Applies to entire group: keep it or drop it
- May use aggregates (count(*)=5, sum(...) > 10)
- May only use attributes in GROUP-BY

The Witness

The Witness

- SQL provides the aggregate operators min, max
- SQL does not have argmin or argmax
- Often we want to find the record that achieves that minimum or maximum: we call it The Witness
- One way to compute it is using the HAVING clause
- A simpler way discussed later

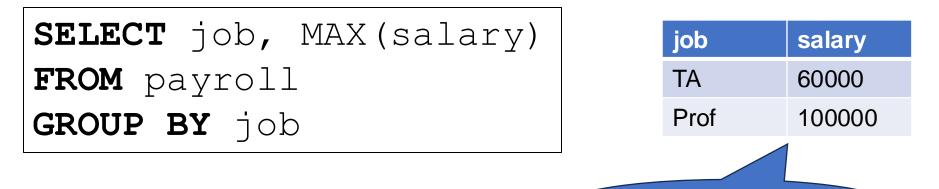
The Witnessing Problem

Find the person with highest salary for each job

payroll

user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

The Witnessing Problem

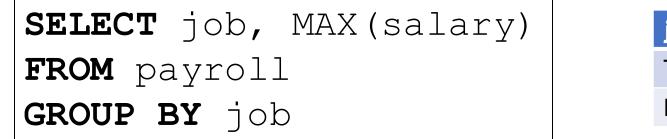

Find the person with highest salary for each job

	job	name	salary
Desired answer:	ТА	Allison	60000
	Prof	Dan	100000

payroll

user_id	name	job	salary
123	Jack	TA	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find the person with highest salary for each job

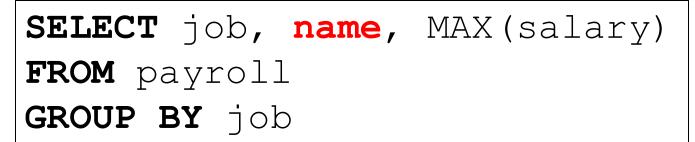



payroll

user_id	name	job	salary
123	Jack	TA	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Finding max is easy.

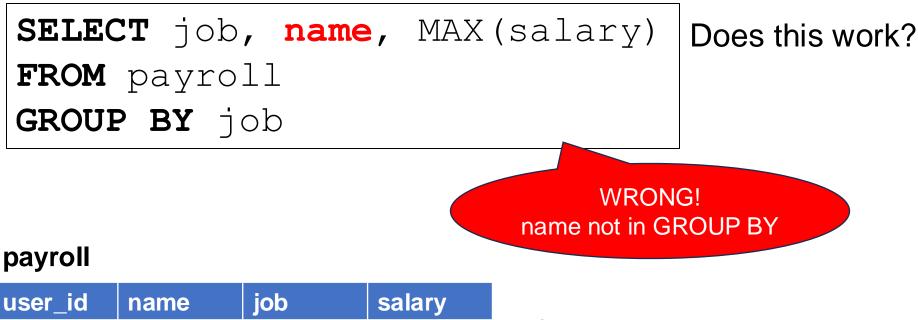
Find the person with highest salary for each job



payroll

user_id	name	job	salary
123	Jack	TA	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

But we want argmax. How do we find the witness?


Find the person with highest salary for each job

Does this work?

user_id	name	job	salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find the person with highest salary for each job

	name	JOD	Salary
123	Jack	TA	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Sqlite does not return an error, but returns junk outputs. Don't use this.

Find the person with highest salary for each job

Plan:

Compute the max(salary) for each job
 Join back with payroll on job
 Deturn the upper where colors (color)

3. Return the users where salary = max(salary)

user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find the person with highest salary for each job

Plan: 1. Compute the max(salary) for each job 2. Join back with payroll on job 3. Return the users where salary = max(salary)

payroll

user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Goes in HAVING

Find the person with highest salary for each job

SELECT P1.job, MAX(P1.salary)
FROM payroll AS P1

GROUP BY Pl.job

user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find the person with highest salary for each job

SELECT P1.job, MAX(P1.salary)
FROM payroll AS P1

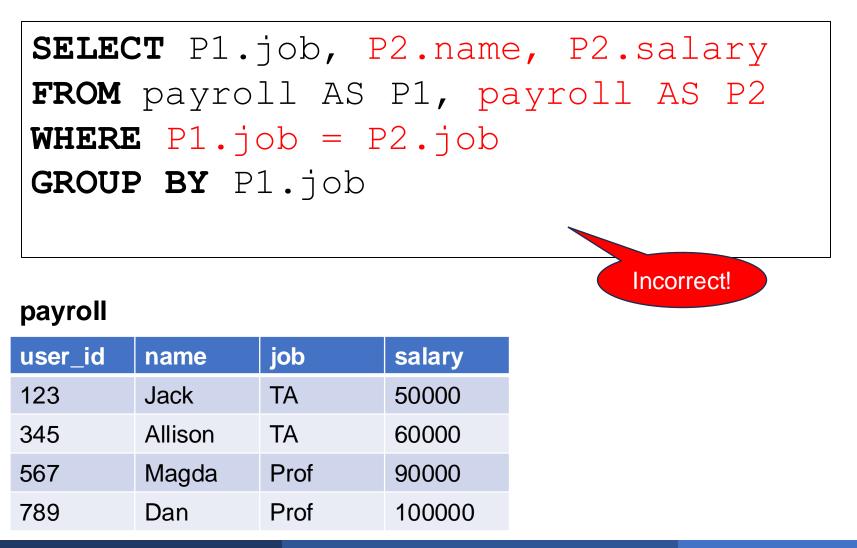
GROUP BY Pl.job

user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

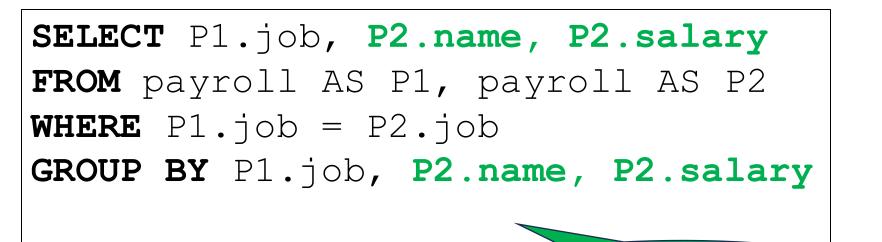
Find the person with highest salary for each job

SELECT Pl.job

FROM payroll AS P1


GROUP BY Pl.job

user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000


Find the person with highest salary for each job

SELECT P1.job, P2.name, P2.salary
FROM payroll AS P1, payroll AS P2
WHERE P1.job = P2.job
GROUP BY P1.job

user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find the person with highest salary for each job

Correct; but not done!

user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find the person with highest salary for each job

SELECT P1.job, P2.name, P2.salary
FROM payroll AS P1, payroll AS P2
WHERE P1.job = P2.job
GROUP BY P1.job, P2.name, P2.salary

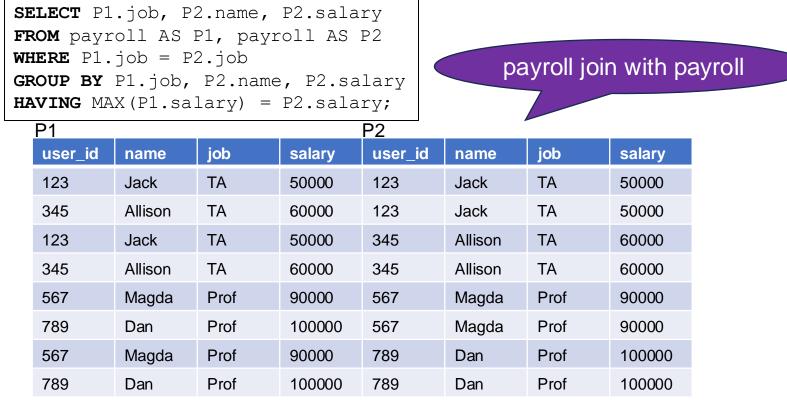
payroll

user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

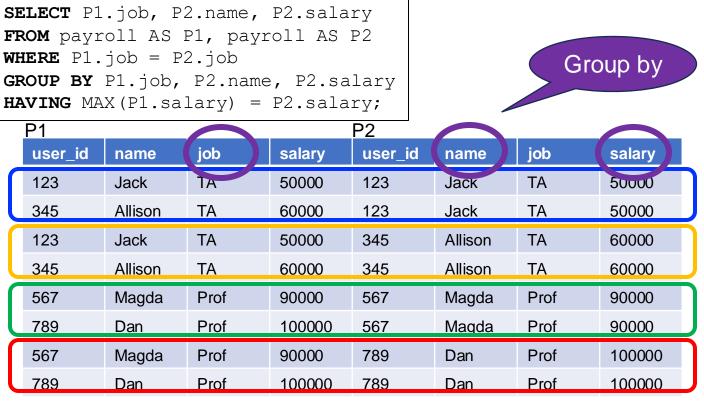
Which P2 should we return for each job?

Find the person with highest salary for each job

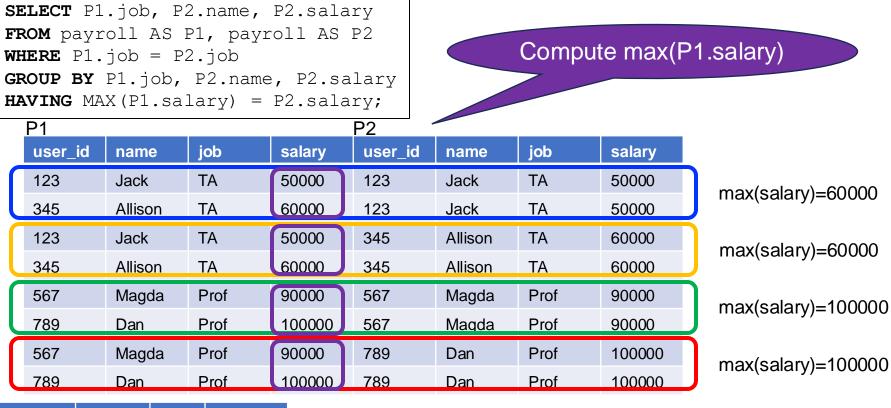
SELECT P1.job, P2.name, P2.salary
FROM payroll AS P1, payroll AS P2
WHERE P1.job = P2.job
GROUP BY P1.job, P2.name, P2.salary
HAVING P2.salary = MAX(P1.salary)

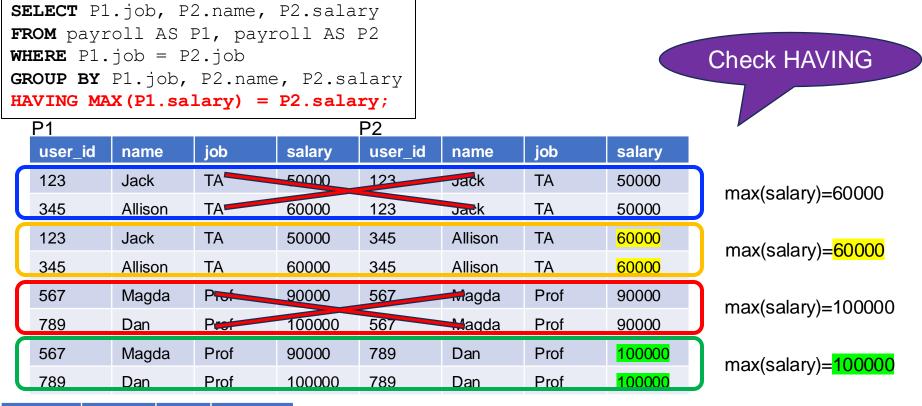

user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find the person with highest salary for each job

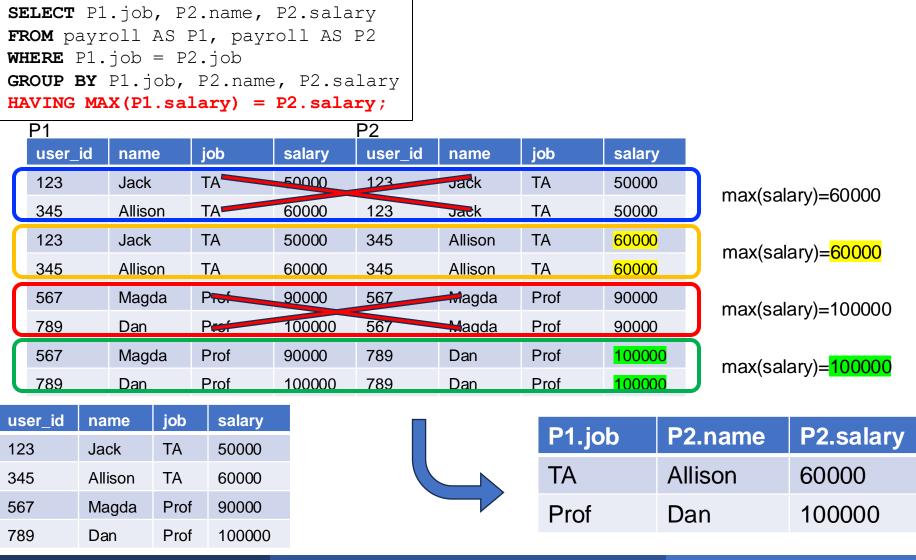

SELECT P1.job, P2.name, P2.salary
FROM payroll AS P1, payroll AS P2
WHERE P1.job = P2.job
GROUP BY P1.job, P2.name, P2.salary
HAVING MAX(P1.salary) = P2.salary;

user_id	name	job	salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000


January 17, 2025


user_id	name	job	salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

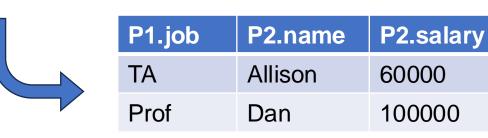
user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000



user_id	name	job	salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

user_id	name	job	salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find the person with highest salary for each job


January 17, 2025

Find the person with highest salary for each job

SELECT P1.job, P2.name, P2.salary
FROM payroll AS P1, payroll AS P2
WHERE P1.job = P2.job
GROUP BY P1.job, P2.name, P2.salary
HAVING MAX(P1.salary) = P2.salary;

Final output has the witnesses

user_id	name	job	salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

January 17, 2025

Aggregates

Summary

Group-by can be subtle!

- Empty groups
- Having clause
- Finding the witness