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Introduction to Data Management

Review



Announcements

▪Please fill out the course evals:
https://uw.iasystem.org/survey/297000

▪HW 7 is due today.  NO LATE DAYS

▪Monday, Dec. 9, Final Review session
• CSE2 G10

• 10:30 – 12:20 (we may finish earlier)
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https://uw.iasystem.org/survey/297000
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Today

Review of this course
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Relational Data Model and SQL



Relational Data Model

▪Data is stored in simple, flat relations

▪ Is retrieved via a set-at-a-time query language

▪No prescription for the physical representation
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First Normal Form

1NF



Physical Data Independence

▪User writes SQL query:
• Says what they want

▪System responsible for optimizing SQL query
• How to do it
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Physical Data Independence is the main reason

why relational model is the most widely used
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SQL

SELECT

FROM

WHERE

GROUP BY

HAVING

ORDER BY
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SQL

SELECT

FROM

WHERE

GROUP BY

HAVING

ORDER BY

Nested Loop

Semantics
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SQL

SELECT

FROM

WHERE

GROUP BY

HAVING

ORDER BY

Can use only

attributes,

no aggregates
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SQL

SELECT

FROM

WHERE

GROUP BY

HAVING

ORDER BY

May group by attributes, e.g. YEAR

or expressions, e.g. YEAR/10
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SQL

SELECT

FROM

WHERE

GROUP BY

HAVING

ORDER BY

Only attributes or exrepssions

mentioned in GROUPY may

be used here…
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SQL

SELECT

FROM

WHERE

GROUP BY

HAVING

ORDER BY

Only attributes or exrepssions

mentioned in GROUPY may

be used here…

Plus, any aggregates
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SQL

SELECT

FROM

WHERE

GROUP BY

HAVING

ORDER BY

We may use aggregates

(same as in SELECT)
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SQL

SELECT

FROM

WHERE

GROUP BY

HAVING

ORDER BY

Finally, we can

order the output
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SQL Aggregates

count

sum

min

max

avg

We can apply min/max

to numbers or text
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SQL Aggregates

count

sum

min

max

avg

We can apply min/max

to numbers or text

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

select min(Name), max(Name)

from Payroll;

Payroll

What does

this return?
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SQL Aggregates

count

sum

min

max

avg

We can apply min/max

to numbers or text

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

select min(Name), max(Name)

from Payroll;

Payroll

What does

this return?

min max

Allison Magda



SQL: NULLs

▪ Three-valued logic:

 

 false = 0;    unknown = 0.5;     true = 1

  x AND y = min(x,y);

  x OR y = max(x,y);

  not x = 1-x

Examples:

▪ true AND unknown =  unknown

▪ true OR unknown =   true

▪ unknown AND false =  false

▪ unknown OR (NOT unknown) = 
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SQL: Outer Joins

SELECT

FROM Table1 LEFT OUTER JOIN Table2 ON …

INNER JOIN

LEFT OUTER JOIN

RIGHT OUTER JOIN

FULL OUTER JOIN

Very useful for GROUP BY

queries when we need aggregates

on empty groups, e.g. count(*)=0 



SQL: Witness or Argmin/Argmax

▪SQL has the aggregates min(…) and max(…)

▪SQL does not have argmin(…) or argmax(…)
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SQL: Witness or Argmin/Argmax

▪SQL has the aggregates min(…) and max(…)

▪SQL does not have argmin(…) or argmax(…)

▪Solution 1 using WITH:
• Compute min or max in temporary table

• Join main table with temp table to find argmin/argmax 
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SQL: Witness or Argmin/Argmax

▪SQL has the aggregates min(…) and max(…)

▪SQL does not have argmin(…) or argmax(…)

▪Solution 1 using WITH:
• Compute min or max in temporary table

• Join main table with temp table to find argmin/argmax 

▪Solution 2 using self-joins:
• Compute min/max from one copy of the table

• Join with the other table in the HAVING clause

December 6, 2024 Review 22



SQL: Subqueries

▪ In the FROM clause: better use WITH
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SQL: Subqueries

▪ In the FROM clause: better use WITH

▪ In the SELECT clause: must return single value
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SQL: Subqueries

▪ In the FROM clause: better use WITH

▪ In the SELECT clause: must return single value

▪ In the WHERE clause:
• EXISTS or NOT EXISTS

• IN or NOT IN

• ALL or ANY

• They express mathematical quantifiers: ∀, ∃
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SQL: Subqueries

▪ In the FROM clause: better use WITH

▪ In the SELECT clause: must return single value

▪ In the WHERE clause:
• EXISTS or NOT EXISTS

• IN or NOT IN

• ALL or ANY

• They express mathematical quantifiers: ∀, ∃

▪Non-monotone* queries require subqueries
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* A query with an aggregate is non-monotone
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Relational Algebra



Relational Algebra

The 5 basic operations:

1. Selection σcondition(S)

2. Projection Πattrs(S)

3. Join R ⋈θ S = σθ(R × S)

4. Union ∪

5. Set difference − 

Add renaming ρ, but we use variables instead
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Relational Algebra

The 5 basic operations:

1. Selection σcondition(S)

2. Projection Πattrs(S)

3. Join R ⋈θ S = σθ(R × S)

4. Union ∪

5. Set difference − 

Add renaming ρ, but we use variables instead
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Monotone

Non-monotone



Relational Algebra

Two extended operator

▪Duplicate elimination δ

▪Group-by aggregate γattr1,attr2,…,agg1,…
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SQL to Relational Algebra Plan

SELECT P.Name, count(*) as C

FROM Payroll P, Regist R

WHERE P.UserID = R.UserID

  and P.Job = ‘TA’

GROUP BY P.UserID, P.Name;

Payroll P Regist R

⋈P.UserID=R.UserID

σP.Job=‘TA’

ΠP.Name,c

𝛾P.UserId,P.Name,count ∗ →c
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SQL to Relational Algebra Plan
When the query has subqueries then we need to unnest first

SELECT P.UserID

FROM Payroll P

WHERE not exists

      (SELECT *

       FROM Regist R

       WHERE P.UserID = R.UserID);
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SQL to Relational Algebra Plan
When the query has subqueries then we need to unnest first

SELECT P.UserID

FROM Payroll P

WHERE not exists

      (SELECT *

       FROM Regist R

       WHERE P.UserID = R.UserID);

SELECT P.UserID

FROM Payroll P

WHERE P.UserID not in

      (SELECT R.UserID

       FROM Regist R);

First

de-correlate
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SQL to Relational Algebra Plan
When the query has subqueries then we need to unnest first

SELECT P.UserID

FROM Payroll P

WHERE not exists

      (SELECT *

       FROM Regist R

       WHERE P.UserID = R.UserID);

SELECT P.UserID

FROM Payroll P

WHERE P.UserID not in

      (SELECT R.UserID

       FROM Regist R);

SELECT P.UserID

FROM Payroll P

   EXCEPT

SELECT R.UserID

FROM Regist R;

First

de-correlate

Then unnest

using set difference
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SQL to Relational Algebra Plan
When the query has subqueries then we need to unnest first

SELECT P.UserID

FROM Payroll P

WHERE not exists

      (SELECT *

       FROM Regist R

       WHERE P.UserID = R.UserID);

SELECT P.UserID

FROM Payroll P

WHERE P.UserID not in

      (SELECT R.UserID

       FROM Regist R);

SELECT P.UserID

FROM Payroll P

   EXCEPT

SELECT R.UserID

FROM Regist R;

Payroll P Regist R

ΠP.UserID ΠR.UserID

−

First

de-correlate

Then unnest

using set difference

Finally,

rewrite to RA
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Design Theory



37

The Database Design Process

Conceptual Model

Relational Model
+ Schema

+ Constraints

Conceptual Schema
+ Normalization

Physical Schema
+ Partitioning

+ Indexing

December 6, 2024 Review
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ER Diagrams

isA

Subclass

AttributeEntity set

Relationship

Weak Entity



ER Diagrams to Tables

▪Each entity set → a table

▪Each relationship → a table with two FKs
• Except for many-one (or one-one): then add FK

▪Each IS_A → a FK
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ER Diagrams to Tables: A Problem

Employee Project

worksOn

eid

…
pid

…reviewedBy
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ER Diagrams to Tables: A Problem

Employee Project

worksOn

eid

…
pid

…reviewedBy

CREATE TABLE Empolyee

  (eid int PRIMARY KEY,

   worksOn int REFERENCES Project);

CREATE TABLE Project

   (pid int PRIMARY KEY,

    reviewedBy int REFERENCES Empolyee);
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ER Diagrams to Tables: A Problem

Employee Project

worksOn

eid

…
pid

…reviewedBy

CREATE TABLE Empolyee

  (eid int PRIMARY KEY,

   worksOn int REFERENCES Project);

CREATE TABLE Project

   (pid int PRIMARY KEY,

    reviewedBy int REFERENCES Empolyee);

ERROR!

(why??)



December 6, 2024 Review 43

ER Diagrams to Tables: A Problem

Employee Project

worksOn

eid

…
pid

…reviewedBy

CREATE TABLE Empolyee

  (eid int PRIMARY KEY,

   worksOn int REFERENCES Project);

CREATE TABLE Project

   (pid int PRIMARY KEY,

    reviewedBy int REFERENCES Empolyee);

ERROR!

(why??)

BUT OK

in our class!!!
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ER Diagrams to Tables: A Problem

Employee Project

worksOn

eid

…
pid

…reviewedBy

CREATE TABLE Empolyee

  (eid int PRIMARY KEY,

   worksOn int REFERENCES Project);

CREATE TABLE Project

   (pid int PRIMARY KEY,

    reviewedBy int REFERENCES Empolyee);

ERROR!

(why??)

BUT OK

in our class!!!
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ER Diagrams to Tables: A Problem

Employee Project

worksOn

eid

…
pid

…reviewedBy
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ER Diagrams to Tables: A Problem

Employee Project

worksOn

eid

…
pid

…reviewedBy

CREATE TABLE Empolyee

  (eid int PRIMARY KEY,

   worksOn int);

CREATE TABLE Project

   (pid int PRIMARY KEY,

    reviewedBy int REFERENCES Empolyee);

ALTER TABLE Employee

 ADD Constraint fk_e FOREIGN KEY (worksOn)

                     REFERENCES Project;

This works
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ER Diagrams to Tables: A Problem

Employee Project

worksOn

eid

…
pid

…reviewedBy

CREATE TABLE Empolyee

  (eid int PRIMARY KEY,

   worksOn int);

CREATE TABLE Project

   (pid int PRIMARY KEY,

    reviewedBy int REFERENCES Empolyee);

ALTER TABLE Employee

 ADD Constraint fk_e FOREIGN KEY (worksOn)

                     REFERENCES Project;

But we don’t ask

for this on exams.

This works
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ER Diagrams to Tables: A Problem

Employee Project

worksOn

eid

…
pid

…reviewedBy

CREATE TABLE Empolyee

  (eid int PRIMARY KEY,

   worksOn int REFERENCES Project);

CREATE TABLE Project

   (pid int PRIMARY KEY,

    reviewedBy int REFERENCES Empolyee);

This is fine

on exam



Anomalies

The three types of anomalies

▪Redundancy anomaly

▪Update anomaly

▪Deletion anomaly

All happen because  A → B, where A is no super-key
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Functional Dependencies

Definition: 

▪A→ B holds if:

any 2 tuples that have same values of A attributes, 

also have the same values in the B attribute

▪Always think about this definition!
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Functional Dependencies

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Payroll

FD:

UserID → Name, Job, Salary
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Functional Dependencies

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Payroll

SELECT *

FROM Payroll

WHERE Job = ‘TA’

FD:

UserID → Name, Job, Salary
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Functional Dependencies

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Payroll

SELECT *

FROM Payroll

WHERE Job = ‘TA’

FD:

UserID → Name, Job, Salary

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000
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Functional Dependencies

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Payroll

SELECT *

FROM Payroll

WHERE Job = ‘TA’

FD:

UserID → Name, Job, Salary

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

FDs:

UserID → Name, Job, Salary

Name → Job

Salary → Job



BCNF

▪Goal: remove anomalies

▪How:

• Find set of attributes 𝑋 such that 𝑋 ⊊ 𝑋+ ⊊ [all−attrs]

• Split relation into two relation

• Remember to continue with both relations!
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BCNF

UID Name Phone City

234 Fred 206-555-9999 Seattle

234 Fred 206-555-8888 Seattle

987 Joe 415-555-7777 SF

UID Name City

234 Fred Seattle

987 Joe SF

UID Phone

234 206-555-9999

234 206-555-8888

987 415-555-7777
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UID → Name, City



BCNF v.s. 3NF

We do not discuss 3NF.  In case you are curious:

▪BCNF removes all anomalies, may lose some FDs

▪ 3NF keeps all FDs, may still have some anomalies
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BCNF v.s. 3NF

We do not discuss 3NF.  In case you are curious:

▪BCNF removes all anomalies, may lose some FDs

▪ 3NF keeps all FDs, may still have some anomalies
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City,State → Zip

Zip → State

R(City, State, Zip)



BCNF v.s. 3NF

We do not discuss 3NF.  In case you are curious:

▪BCNF removes all anomalies, may lose some FDs

▪ 3NF keeps all FDs, may still have some anomalies
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City,State → Zip

Zip → State

R(City, State, Zip)

BCNF:

R1(Zip,State)

R2(Zip,City)

We lost:

City,State → Zip



BCNF v.s. 3NF

We do not discuss 3NF.  In case you are curious:

▪BCNF removes all anomalies, may lose some FDs

▪ 3NF keeps all FDs, may still have some anomalies
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City,State → Zip

Zip → State

R(City, State, Zip)

BCNF:

R1(Zip,State)

R2(Zip,City)

We lost:

City,State → Zip

3NF:

R(City, State, Zip)

We have anomalies
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Transactions



Transactions

Two types of SQL workloads:

▪Online Analytical Processing (OLAP)
• Lots of joins, aggregates

• Rarely any updates

• Great for data analysis, decision support

▪Online Transaction Processing (OLTP)
• Lots of updates

• Usually few joins or aggregates

• Great for data-intensive applications (banking, …)
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Transactions

Problem: concurrent updates may corrupt the DB

▪ Transactions: DB remains consistent

▪ACID: A and I matter most.  C is a consequence.

▪ Transactions slow down DBMS
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Transactions

▪Using TXNs is easy:

 BEGIN TRANSACTION
 …
 COMMIT.  (or ROLLBACK)

▪ Implementing TXNs: must have ACID properties
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Transactions

Static database:

▪A fixed set of elements: A1, A2, …

▪A TXN is a sequence of Read/Write operations

Dynamic database:

▪ The set of elements may increase or decrease
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Schedules

ST1, R1(A), ST2, R2(B), W2(A), R1(B), CO1, R2(C), CO2

Start TXN 1 Commit TXN 2
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Schedules

ST1, R1(A), ST2, R2(B), W2(A), R1(B), CO1, R2(C), CO2

Start TXN 1 Commit TXN 2

ST1, R1(A), ST2, R2(B), W2(A), R1(B), CO1, R2(C), CO2

ST1, R1(A), ST2, R2(B), W2(A), R1(B), CO1, R2(C), CO2

time

Maybe this is easier to read: 



Schedules

Things to know:

▪Serial Schedule

▪Serializable Schedule

▪Conflict Serializable Schedule

▪What happens in a static v.s. a dynamic database
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Locks, 2PL, Strict 2PL

ST1, L1(A), R1(A), ST2, L2(B), R2(B), L2(A), L1(C), R1(C), CO1, W2(A), R2(C), L2(C), CO2

ST1, L1(A), R1(A), ST2, L2(B), R2(B), L2(A), L1(C), R1(B), CO1, W2(A), CO2
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Locks, 2PL, Strict 2PL

ST1, L1(A), R1(A), ST2, L2(B), R2(B), L2(A), L1(C), R1(C), CO1, W2(A), R2(C), L2(C), CO2

ST1, L1(A), R1(A), ST2, L2(B), R2(B), L2(A), L1(C), R1(B), CO1, W2(A), CO2

Denied:

put on WAIT
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Locks, 2PL, Strict 2PL

ST1, L1(A), R1(A), ST2, L2(B), R2(B), L2(A), L1(C), R1(C), CO1, W2(A), R2(C), L2(C), CO2

ST1, L1(A), R1(A), ST2, L2(B), R2(B), L2(A), L1(C), R1(B), CO1, W2(A), CO2

Denied:

put on WAIT

Release all locks:

U1(A), U1(C)



December 6, 2024 Review 72

Locks, 2PL, Strict 2PL

ST1, L1(A), R1(A), ST2, L2(B), R2(B), L2(A), L1(C), R1(C), CO1, W2(A), R2(C), L2(C), CO2

ST1, L1(A), R1(A), ST2, L2(B), R2(B), L2(A), L1(C), R1(B), CO1, W2(A), CO2

Denied:

put on WAIT

Release all locks:

U1(A), U1(C)

Granted:

TXN2 proceeds
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Locks, 2PL, Strict 2PL

ST1, L1(A), R1(A), ST2, L2(B), R2(B), L2(A), L1(C), R1(C), CO1, W2(A), R2(C), L2(C), CO2

ST1, L1(A), R1(A), ST2, L2(B), R2(B), L2(A), L1(C), R1(B), CO1, W2(A), CO2

Denied:

put on WAIT

Release all locks:

U1(A), U1(C)

Granted:

TXN2 proceeds
Release all locks:

U2(A), U2(B)



Locks, 2PL, Strict 2PL

▪Strict 2PL ensures conflict serializability
• In particular, it ensures serializability

▪But only in a static database

▪ In a dynamic database need to handle phantoms 
in order to ensure serializability
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Types of Locks

▪Shared Locks, or Read Locks:
• Many TXNs can hold a Read Lock

▪Exclusive Locks, or Write Locks:
• Only one TXN can hold a Write Lock

No other TXN can hold either a Read or Write Lock

▪ L(A) replaced by either S(A) or X(A)
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Weaker Isolation Levels

CORRECTFAST
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(Review in class what they are)
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The Query Engine



The Query Engine

RDBMS

⋈
⋈

T R S

SELECT *

  FROM T, R, S

 WHERE …

⋈
⋈

T R S

⋈
⋈

R T S

⋈
⋈

S R T

…

⋈ℎ𝑗

⋈𝑛𝑙𝑗

T R S

⋈ℎ𝑗

⋈ℎ𝑗

R T S

⋈𝑛𝑙𝑗

⋈𝑠𝑚𝑗

S R T

⋈𝑠𝑚𝑗

⋈ℎ𝑗

T R S

⋈𝑛𝑙𝑗

⋈𝑛𝑙𝑗

R T S

⋈𝑠𝑚𝑗

⋈𝑠𝑚𝑗

S R T

…

…

… … …

SQL Logical Plan Eq. Logical Plans

⋈𝑠𝑚𝑗

⋈ℎ𝑗

T R S

100101010110

000101111010

100010101000

001010010100

Least Cost

Plan
Execution

Physical Plans
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Physical Operators

Join ⋈
▪ Nested loop join

▪ Hash-join

▪Merge-join

Group-by 𝛾
▪ Nested loop group-by

▪ Hash-based group-by

▪ Sort-based group-by

Selection, projection 𝜎, Π
▪On-the-fly
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Optimization

Query rewrite rules:

▪Selection pushdown:
 𝜎𝐶 𝑅 ⋈ 𝑆 = 𝜎𝐶 𝑅 ⋈ 𝑆 
 when 𝐶 refers only to 𝑅

▪ Join associativity:
 𝑅 ⋈ 𝑆 ⋈ 𝑇 = 𝑅 ⋈ 𝑆 ⋈ 𝑇

▪Many, many others
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Cardinality Estimation

Basic statistics

▪ T(R) = number of tuples

▪V(R,A) = number of distinct values in R.A

▪Histograms
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Cardinality Estimation

Basic estimation formulas

EST σA=const(R) = θA=const ⋅ T(R) =
T(R)

V(R,A)
 

θC1and C2
= θC1

⋅ θC2
 

EST R ⋈A=B S =
T(R)⋅T(S)

max(V(R,A),V(S,B))
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Cardinality Estimation

Assumptions:

▪Uniformity

▪ Independence

▪Containment of values

▪Preservation of values
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Cardinality Estimation

SELECT *

FROM Payroll x, Regist y, Brand z

WHERE x.UserID = y.UserID

  and y.car = z.car

  and x.Job = ‘TA’;

T Payroll ⋅ T Regist ⋅ T(Brand)

max(V Payroll, UserID , V Regist, UserID ) ⋅ max V Regist, car , V Brand, car ⋅ V(Payroll, Job)

Est Q =

(In class: discuss preservation of values)



December 6, 2024 Review 85

Memory Hierarchy

Credit: https://15445.courses.cs.cmu.edu/fall2023/ 

https://15445.courses.cs.cmu.edu/fall2023/


Data on Disk

▪ The unit of disk read or write is a block

▪Once in main memory, we call it a page

▪Block size is fixed. Typically, 4k or 8k or 16k

▪Sequential access much faster than random 
access
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Indexes

▪ Index = an auxiliary file that facilitates faster 
access to the data

▪Usually a B+ tree, but can also be a hash-table

▪CREATE INDEX Idx1 ON Payroll(Name)

▪CREATE INDEX Idx2 ON Payroll(Salary, Job)

▪CREATE INDEX Idx3 ON Payroll(Job, Salary)
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What do these

commands do?
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Multi-attribute Index

CREATE INDEX Idx1 on Payroll(job,salary);

SELECT *

FROM Payroll

WHERE job=‘TA’;

SELECT *

FROM Payroll

WHERE salary=‘50000’;

SELECT *

FROM Payroll

WHERE job=‘TA’

 and salary=‘50000’;

(Discussed in class)
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SQL++

(we just finished it)



The End

We covered a lot of material this quarter!

▪Details: show your mastery on the final

▪High-level concepts: remember them throughout 
your career

Thanks for a great quarter!  
(Come on Monday to the final review!)
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