
1

Review

December 6, 2024

Introduction to Data Management

Review

Announcements

▪Please fill out the course evals:
https://uw.iasystem.org/survey/297000

▪HW 7 is due today. NO LATE DAYS

▪Monday, Dec. 9, Final Review session
• CSE2 G10

• 10:30 – 12:20 (we may finish earlier)

December 6, 2024 Cardinality Estimation 2

https://uw.iasystem.org/survey/297000

December 6, 2024 Review 3

Today

Review of this course

December 6, 2024 Review 4

Relational Data Model and SQL

Relational Data Model

▪Data is stored in simple, flat relations

▪ Is retrieved via a set-at-a-time query language

▪No prescription for the physical representation

December 6, 2024 Review 5

First Normal Form

1NF

Physical Data Independence

▪User writes SQL query:
• Says what they want

▪System responsible for optimizing SQL query
• How to do it

December 6, 2024 Review 6

Physical Data Independence is the main reason

why relational model is the most widely used

December 6, 2024 Review 7

SQL

SELECT

FROM

WHERE

GROUP BY

HAVING

ORDER BY

December 6, 2024 Review 8

SQL

SELECT

FROM

WHERE

GROUP BY

HAVING

ORDER BY

Nested Loop

Semantics

December 6, 2024 Review 9

SQL

SELECT

FROM

WHERE

GROUP BY

HAVING

ORDER BY

Can use only

attributes,

no aggregates

December 6, 2024 Review 10

SQL

SELECT

FROM

WHERE

GROUP BY

HAVING

ORDER BY

May group by attributes, e.g. YEAR

or expressions, e.g. YEAR/10

December 6, 2024 Review 11

SQL

SELECT

FROM

WHERE

GROUP BY

HAVING

ORDER BY

Only attributes or exrepssions

mentioned in GROUPY may

be used here…

December 6, 2024 Review 12

SQL

SELECT

FROM

WHERE

GROUP BY

HAVING

ORDER BY

Only attributes or exrepssions

mentioned in GROUPY may

be used here…

Plus, any aggregates

December 6, 2024 Review 13

SQL

SELECT

FROM

WHERE

GROUP BY

HAVING

ORDER BY

We may use aggregates

(same as in SELECT)

December 6, 2024 Review 14

SQL

SELECT

FROM

WHERE

GROUP BY

HAVING

ORDER BY

Finally, we can

order the output

December 6, 2024 Review 15

SQL Aggregates

count

sum

min

max

avg

We can apply min/max

to numbers or text

December 6, 2024 Review 16

SQL Aggregates

count

sum

min

max

avg

We can apply min/max

to numbers or text

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

select min(Name), max(Name)

from Payroll;

Payroll

What does

this return?

December 6, 2024 Review 17

SQL Aggregates

count

sum

min

max

avg

We can apply min/max

to numbers or text

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

select min(Name), max(Name)

from Payroll;

Payroll

What does

this return?

min max

Allison Magda

SQL: NULLs

▪ Three-valued logic:

 false = 0; unknown = 0.5; true = 1

 x AND y = min(x,y);

 x OR y = max(x,y);

 not x = 1-x

Examples:

▪ true AND unknown = unknown

▪ true OR unknown = true

▪ unknown AND false = false

▪ unknown OR (NOT unknown) =

December 6, 2024 Review 18

December 6, 2024 Review 19

SQL: Outer Joins

SELECT

FROM Table1 LEFT OUTER JOIN Table2 ON …

INNER JOIN

LEFT OUTER JOIN

RIGHT OUTER JOIN

FULL OUTER JOIN

Very useful for GROUP BY

queries when we need aggregates

on empty groups, e.g. count(*)=0

SQL: Witness or Argmin/Argmax

▪SQL has the aggregates min(…) and max(…)

▪SQL does not have argmin(…) or argmax(…)

December 6, 2024 Review 20

SQL: Witness or Argmin/Argmax

▪SQL has the aggregates min(…) and max(…)

▪SQL does not have argmin(…) or argmax(…)

▪Solution 1 using WITH:
• Compute min or max in temporary table

• Join main table with temp table to find argmin/argmax

December 6, 2024 Review 21

SQL: Witness or Argmin/Argmax

▪SQL has the aggregates min(…) and max(…)

▪SQL does not have argmin(…) or argmax(…)

▪Solution 1 using WITH:
• Compute min or max in temporary table

• Join main table with temp table to find argmin/argmax

▪Solution 2 using self-joins:
• Compute min/max from one copy of the table

• Join with the other table in the HAVING clause

December 6, 2024 Review 22

SQL: Subqueries

▪ In the FROM clause: better use WITH

December 6, 2024 Review 23

SQL: Subqueries

▪ In the FROM clause: better use WITH

▪ In the SELECT clause: must return single value

December 6, 2024 Review 24

SQL: Subqueries

▪ In the FROM clause: better use WITH

▪ In the SELECT clause: must return single value

▪ In the WHERE clause:
• EXISTS or NOT EXISTS

• IN or NOT IN

• ALL or ANY

• They express mathematical quantifiers: ∀, ∃

December 6, 2024 Review 25

SQL: Subqueries

▪ In the FROM clause: better use WITH

▪ In the SELECT clause: must return single value

▪ In the WHERE clause:
• EXISTS or NOT EXISTS

• IN or NOT IN

• ALL or ANY

• They express mathematical quantifiers: ∀, ∃

▪Non-monotone* queries require subqueries

December 6, 2024 Review 26

* A query with an aggregate is non-monotone

December 6, 2024 Review 27

Relational Algebra

Relational Algebra

The 5 basic operations:

1. Selection σcondition(S)

2. Projection Πattrs(S)

3. Join R ⋈θ S = σθ(R × S)

4. Union ∪

5. Set difference −

Add renaming ρ, but we use variables instead

December 6, 2024 Review 28

Relational Algebra

The 5 basic operations:

1. Selection σcondition(S)

2. Projection Πattrs(S)

3. Join R ⋈θ S = σθ(R × S)

4. Union ∪

5. Set difference −

Add renaming ρ, but we use variables instead

December 6, 2024 Review 29

Monotone

Non-monotone

Relational Algebra

Two extended operator

▪Duplicate elimination δ

▪Group-by aggregate γattr1,attr2,…,agg1,…

December 6, 2024 Review 30

December 6, 2024 Review 31

SQL to Relational Algebra Plan

SELECT P.Name, count(*) as C

FROM Payroll P, Regist R

WHERE P.UserID = R.UserID

 and P.Job = ‘TA’

GROUP BY P.UserID, P.Name;

Payroll P Regist R

⋈P.UserID=R.UserID

σP.Job=‘TA’

ΠP.Name,c

𝛾P.UserId,P.Name,count ∗ →c

December 6, 2024 Review 32

SQL to Relational Algebra Plan
When the query has subqueries then we need to unnest first

SELECT P.UserID

FROM Payroll P

WHERE not exists

 (SELECT *

 FROM Regist R

 WHERE P.UserID = R.UserID);

December 6, 2024 Review 33

SQL to Relational Algebra Plan
When the query has subqueries then we need to unnest first

SELECT P.UserID

FROM Payroll P

WHERE not exists

 (SELECT *

 FROM Regist R

 WHERE P.UserID = R.UserID);

SELECT P.UserID

FROM Payroll P

WHERE P.UserID not in

 (SELECT R.UserID

 FROM Regist R);

First

de-correlate

December 6, 2024 Review 34

SQL to Relational Algebra Plan
When the query has subqueries then we need to unnest first

SELECT P.UserID

FROM Payroll P

WHERE not exists

 (SELECT *

 FROM Regist R

 WHERE P.UserID = R.UserID);

SELECT P.UserID

FROM Payroll P

WHERE P.UserID not in

 (SELECT R.UserID

 FROM Regist R);

SELECT P.UserID

FROM Payroll P

 EXCEPT

SELECT R.UserID

FROM Regist R;

First

de-correlate

Then unnest

using set difference

December 6, 2024 Review 35

SQL to Relational Algebra Plan
When the query has subqueries then we need to unnest first

SELECT P.UserID

FROM Payroll P

WHERE not exists

 (SELECT *

 FROM Regist R

 WHERE P.UserID = R.UserID);

SELECT P.UserID

FROM Payroll P

WHERE P.UserID not in

 (SELECT R.UserID

 FROM Regist R);

SELECT P.UserID

FROM Payroll P

 EXCEPT

SELECT R.UserID

FROM Regist R;

Payroll P Regist R

ΠP.UserID ΠR.UserID

−

First

de-correlate

Then unnest

using set difference

Finally,

rewrite to RA

December 6, 2024 Review 36

Design Theory

37

The Database Design Process

Conceptual Model

Relational Model
+ Schema

+ Constraints

Conceptual Schema
+ Normalization

Physical Schema
+ Partitioning

+ Indexing

December 6, 2024 Review

December 6, 2024 Review 38

ER Diagrams

isA

Subclass

AttributeEntity set

Relationship

Weak Entity

ER Diagrams to Tables

▪Each entity set → a table

▪Each relationship → a table with two FKs
• Except for many-one (or one-one): then add FK

▪Each IS_A → a FK

December 6, 2024 Review 39

December 6, 2024 Review 40

ER Diagrams to Tables: A Problem

Employee Project

worksOn

eid

…
pid

…reviewedBy

December 6, 2024 Review 41

ER Diagrams to Tables: A Problem

Employee Project

worksOn

eid

…
pid

…reviewedBy

CREATE TABLE Empolyee

 (eid int PRIMARY KEY,

 worksOn int REFERENCES Project);

CREATE TABLE Project

 (pid int PRIMARY KEY,

 reviewedBy int REFERENCES Empolyee);

December 6, 2024 Review 42

ER Diagrams to Tables: A Problem

Employee Project

worksOn

eid

…
pid

…reviewedBy

CREATE TABLE Empolyee

 (eid int PRIMARY KEY,

 worksOn int REFERENCES Project);

CREATE TABLE Project

 (pid int PRIMARY KEY,

 reviewedBy int REFERENCES Empolyee);

ERROR!

(why??)

December 6, 2024 Review 43

ER Diagrams to Tables: A Problem

Employee Project

worksOn

eid

…
pid

…reviewedBy

CREATE TABLE Empolyee

 (eid int PRIMARY KEY,

 worksOn int REFERENCES Project);

CREATE TABLE Project

 (pid int PRIMARY KEY,

 reviewedBy int REFERENCES Empolyee);

ERROR!

(why??)

BUT OK

in our class!!!

December 6, 2024 Review 44

ER Diagrams to Tables: A Problem

Employee Project

worksOn

eid

…
pid

…reviewedBy

CREATE TABLE Empolyee

 (eid int PRIMARY KEY,

 worksOn int REFERENCES Project);

CREATE TABLE Project

 (pid int PRIMARY KEY,

 reviewedBy int REFERENCES Empolyee);

ERROR!

(why??)

BUT OK

in our class!!!

December 6, 2024 Review 45

ER Diagrams to Tables: A Problem

Employee Project

worksOn

eid

…
pid

…reviewedBy

December 6, 2024 Review 46

ER Diagrams to Tables: A Problem

Employee Project

worksOn

eid

…
pid

…reviewedBy

CREATE TABLE Empolyee

 (eid int PRIMARY KEY,

 worksOn int);

CREATE TABLE Project

 (pid int PRIMARY KEY,

 reviewedBy int REFERENCES Empolyee);

ALTER TABLE Employee

 ADD Constraint fk_e FOREIGN KEY (worksOn)

 REFERENCES Project;

This works

December 6, 2024 Review 47

ER Diagrams to Tables: A Problem

Employee Project

worksOn

eid

…
pid

…reviewedBy

CREATE TABLE Empolyee

 (eid int PRIMARY KEY,

 worksOn int);

CREATE TABLE Project

 (pid int PRIMARY KEY,

 reviewedBy int REFERENCES Empolyee);

ALTER TABLE Employee

 ADD Constraint fk_e FOREIGN KEY (worksOn)

 REFERENCES Project;

But we don’t ask

for this on exams.

This works

December 6, 2024 Review 48

ER Diagrams to Tables: A Problem

Employee Project

worksOn

eid

…
pid

…reviewedBy

CREATE TABLE Empolyee

 (eid int PRIMARY KEY,

 worksOn int REFERENCES Project);

CREATE TABLE Project

 (pid int PRIMARY KEY,

 reviewedBy int REFERENCES Empolyee);

This is fine

on exam

Anomalies

The three types of anomalies

▪Redundancy anomaly

▪Update anomaly

▪Deletion anomaly

All happen because A → B, where A is no super-key

December 6, 2024 Review 49

Functional Dependencies

Definition:

▪A→ B holds if:

any 2 tuples that have same values of A attributes,

also have the same values in the B attribute

▪Always think about this definition!

December 6, 2024 Review 50

December 6, 2024 Review 51

Functional Dependencies

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Payroll

FD:

UserID → Name, Job, Salary

December 6, 2024 Review 52

Functional Dependencies

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Payroll

SELECT *

FROM Payroll

WHERE Job = ‘TA’

FD:

UserID → Name, Job, Salary

December 6, 2024 Review 53

Functional Dependencies

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Payroll

SELECT *

FROM Payroll

WHERE Job = ‘TA’

FD:

UserID → Name, Job, Salary

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

December 6, 2024 Review 54

Functional Dependencies

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Payroll

SELECT *

FROM Payroll

WHERE Job = ‘TA’

FD:

UserID → Name, Job, Salary

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

FDs:

UserID → Name, Job, Salary

Name → Job

Salary → Job

BCNF

▪Goal: remove anomalies

▪How:

• Find set of attributes 𝑋 such that 𝑋 ⊊ 𝑋+ ⊊ [all−attrs]

• Split relation into two relation

• Remember to continue with both relations!

December 6, 2024 Review 55

BCNF

UID Name Phone City

234 Fred 206-555-9999 Seattle

234 Fred 206-555-8888 Seattle

987 Joe 415-555-7777 SF

UID Name City

234 Fred Seattle

987 Joe SF

UID Phone

234 206-555-9999

234 206-555-8888

987 415-555-7777

December 6, 2024 Review 56

UID → Name, City

BCNF v.s. 3NF

We do not discuss 3NF. In case you are curious:

▪BCNF removes all anomalies, may lose some FDs

▪ 3NF keeps all FDs, may still have some anomalies

December 6, 2024 Review 57

BCNF v.s. 3NF

We do not discuss 3NF. In case you are curious:

▪BCNF removes all anomalies, may lose some FDs

▪ 3NF keeps all FDs, may still have some anomalies

December 6, 2024 Review 58

City,State → Zip

Zip → State

R(City, State, Zip)

BCNF v.s. 3NF

We do not discuss 3NF. In case you are curious:

▪BCNF removes all anomalies, may lose some FDs

▪ 3NF keeps all FDs, may still have some anomalies

December 6, 2024 Review 59

City,State → Zip

Zip → State

R(City, State, Zip)

BCNF:

R1(Zip,State)

R2(Zip,City)

We lost:

City,State → Zip

BCNF v.s. 3NF

We do not discuss 3NF. In case you are curious:

▪BCNF removes all anomalies, may lose some FDs

▪ 3NF keeps all FDs, may still have some anomalies

December 6, 2024 Review 60

City,State → Zip

Zip → State

R(City, State, Zip)

BCNF:

R1(Zip,State)

R2(Zip,City)

We lost:

City,State → Zip

3NF:

R(City, State, Zip)

We have anomalies

December 6, 2024 Review 61

Transactions

Transactions

Two types of SQL workloads:

▪Online Analytical Processing (OLAP)
• Lots of joins, aggregates

• Rarely any updates

• Great for data analysis, decision support

▪Online Transaction Processing (OLTP)
• Lots of updates

• Usually few joins or aggregates

• Great for data-intensive applications (banking, …)

December 6, 2024 Review 62

Transactions

Problem: concurrent updates may corrupt the DB

▪ Transactions: DB remains consistent

▪ACID: A and I matter most. C is a consequence.

▪ Transactions slow down DBMS

December 6, 2024 Review 63

Transactions

▪Using TXNs is easy:

 BEGIN TRANSACTION
 …
 COMMIT. (or ROLLBACK)

▪ Implementing TXNs: must have ACID properties

December 6, 2024 Review 64

Transactions

Static database:

▪A fixed set of elements: A1, A2, …

▪A TXN is a sequence of Read/Write operations

Dynamic database:

▪ The set of elements may increase or decrease

December 6, 2024 Review 65

December 6, 2024 Review 66

Schedules

ST1, R1(A), ST2, R2(B), W2(A), R1(B), CO1, R2(C), CO2

Start TXN 1 Commit TXN 2

December 6, 2024 Review 67

Schedules

ST1, R1(A), ST2, R2(B), W2(A), R1(B), CO1, R2(C), CO2

Start TXN 1 Commit TXN 2

ST1, R1(A), ST2, R2(B), W2(A), R1(B), CO1, R2(C), CO2

ST1, R1(A), ST2, R2(B), W2(A), R1(B), CO1, R2(C), CO2

time

Maybe this is easier to read:

Schedules

Things to know:

▪Serial Schedule

▪Serializable Schedule

▪Conflict Serializable Schedule

▪What happens in a static v.s. a dynamic database

December 6, 2024 Review 68

December 6, 2024 Review 69

Locks, 2PL, Strict 2PL

ST1, L1(A), R1(A), ST2, L2(B), R2(B), L2(A), L1(C), R1(C), CO1, W2(A), R2(C), L2(C), CO2

ST1, L1(A), R1(A), ST2, L2(B), R2(B), L2(A), L1(C), R1(B), CO1, W2(A), CO2

December 6, 2024 Review 70

Locks, 2PL, Strict 2PL

ST1, L1(A), R1(A), ST2, L2(B), R2(B), L2(A), L1(C), R1(C), CO1, W2(A), R2(C), L2(C), CO2

ST1, L1(A), R1(A), ST2, L2(B), R2(B), L2(A), L1(C), R1(B), CO1, W2(A), CO2

Denied:

put on WAIT

December 6, 2024 Review 71

Locks, 2PL, Strict 2PL

ST1, L1(A), R1(A), ST2, L2(B), R2(B), L2(A), L1(C), R1(C), CO1, W2(A), R2(C), L2(C), CO2

ST1, L1(A), R1(A), ST2, L2(B), R2(B), L2(A), L1(C), R1(B), CO1, W2(A), CO2

Denied:

put on WAIT

Release all locks:

U1(A), U1(C)

December 6, 2024 Review 72

Locks, 2PL, Strict 2PL

ST1, L1(A), R1(A), ST2, L2(B), R2(B), L2(A), L1(C), R1(C), CO1, W2(A), R2(C), L2(C), CO2

ST1, L1(A), R1(A), ST2, L2(B), R2(B), L2(A), L1(C), R1(B), CO1, W2(A), CO2

Denied:

put on WAIT

Release all locks:

U1(A), U1(C)

Granted:

TXN2 proceeds

December 6, 2024 Review 73

Locks, 2PL, Strict 2PL

ST1, L1(A), R1(A), ST2, L2(B), R2(B), L2(A), L1(C), R1(C), CO1, W2(A), R2(C), L2(C), CO2

ST1, L1(A), R1(A), ST2, L2(B), R2(B), L2(A), L1(C), R1(B), CO1, W2(A), CO2

Denied:

put on WAIT

Release all locks:

U1(A), U1(C)

Granted:

TXN2 proceeds
Release all locks:

U2(A), U2(B)

Locks, 2PL, Strict 2PL

▪Strict 2PL ensures conflict serializability
• In particular, it ensures serializability

▪But only in a static database

▪ In a dynamic database need to handle phantoms
in order to ensure serializability

December 6, 2024 Review 74

Types of Locks

▪Shared Locks, or Read Locks:
• Many TXNs can hold a Read Lock

▪Exclusive Locks, or Write Locks:
• Only one TXN can hold a Write Lock

No other TXN can hold either a Read or Write Lock

▪ L(A) replaced by either S(A) or X(A)

December 6, 2024 Review 75

Weaker Isolation Levels

CORRECTFAST

December 6, 2024 Review 76

(Review in class what they are)

December 6, 2024 Review 77

The Query Engine

The Query Engine

RDBMS

⋈
⋈

T R S

SELECT *

 FROM T, R, S

 WHERE …

⋈
⋈

T R S

⋈
⋈

R T S

⋈
⋈

S R T

…

⋈ℎ𝑗

⋈𝑛𝑙𝑗

T R S

⋈ℎ𝑗

⋈ℎ𝑗

R T S

⋈𝑛𝑙𝑗

⋈𝑠𝑚𝑗

S R T

⋈𝑠𝑚𝑗

⋈ℎ𝑗

T R S

⋈𝑛𝑙𝑗

⋈𝑛𝑙𝑗

R T S

⋈𝑠𝑚𝑗

⋈𝑠𝑚𝑗

S R T

…

…

… … …

SQL Logical Plan Eq. Logical Plans

⋈𝑠𝑚𝑗

⋈ℎ𝑗

T R S

100101010110

000101111010

100010101000

001010010100

Least Cost

Plan
Execution

Physical Plans

December 6, 2024 Review 78

Physical Operators

Join ⋈
▪ Nested loop join

▪ Hash-join

▪Merge-join

Group-by 𝛾
▪ Nested loop group-by

▪ Hash-based group-by

▪ Sort-based group-by

Selection, projection 𝜎, Π
▪On-the-fly

December 6, 2024 Review 79

Optimization

Query rewrite rules:

▪Selection pushdown:
 𝜎𝐶 𝑅 ⋈ 𝑆 = 𝜎𝐶 𝑅 ⋈ 𝑆
 when 𝐶 refers only to 𝑅

▪ Join associativity:
 𝑅 ⋈ 𝑆 ⋈ 𝑇 = 𝑅 ⋈ 𝑆 ⋈ 𝑇

▪Many, many others

December 6, 2024 Review 80

Cardinality Estimation

Basic statistics

▪ T(R) = number of tuples

▪V(R,A) = number of distinct values in R.A

▪Histograms

December 6, 2024 Review 81

Cardinality Estimation

Basic estimation formulas

EST σA=const(R) = θA=const ⋅ T(R) =
T(R)

V(R,A)

θC1and C2
= θC1

⋅ θC2

EST R ⋈A=B S =
T(R)⋅T(S)

max(V(R,A),V(S,B))

December 6, 2024 Review 82

Cardinality Estimation

Assumptions:

▪Uniformity

▪ Independence

▪Containment of values

▪Preservation of values

December 6, 2024 Review 83

December 6, 2024 Review 84

Cardinality Estimation

SELECT *

FROM Payroll x, Regist y, Brand z

WHERE x.UserID = y.UserID

 and y.car = z.car

 and x.Job = ‘TA’;

T Payroll ⋅ T Regist ⋅ T(Brand)

max(V Payroll, UserID , V Regist, UserID) ⋅ max V Regist, car , V Brand, car ⋅ V(Payroll, Job)

Est Q =

(In class: discuss preservation of values)

December 6, 2024 Review 85

Memory Hierarchy

Credit: https://15445.courses.cs.cmu.edu/fall2023/

https://15445.courses.cs.cmu.edu/fall2023/

Data on Disk

▪ The unit of disk read or write is a block

▪Once in main memory, we call it a page

▪Block size is fixed. Typically, 4k or 8k or 16k

▪Sequential access much faster than random
access

December 6, 2024 Review 86

Indexes

▪ Index = an auxiliary file that facilitates faster
access to the data

▪Usually a B+ tree, but can also be a hash-table

▪CREATE INDEX Idx1 ON Payroll(Name)

▪CREATE INDEX Idx2 ON Payroll(Salary, Job)

▪CREATE INDEX Idx3 ON Payroll(Job, Salary)

December 6, 2024 Review 87

What do these

commands do?

December 6, 2024 Review 88

Multi-attribute Index

CREATE INDEX Idx1 on Payroll(job,salary);

SELECT *

FROM Payroll

WHERE job=‘TA’;

SELECT *

FROM Payroll

WHERE salary=‘50000’;

SELECT *

FROM Payroll

WHERE job=‘TA’

 and salary=‘50000’;

(Discussed in class)

December 6, 2024 Review 89

SQL++

(we just finished it)

The End

We covered a lot of material this quarter!

▪Details: show your mastery on the final

▪High-level concepts: remember them throughout
your career

Thanks for a great quarter!
(Come on Monday to the final review!)

December 6, 2024 Review 90

	Slide 1
	Slide 2: Announcements
	Slide 3: Today
	Slide 4
	Slide 5: Relational Data Model
	Slide 6: Physical Data Independence
	Slide 7: SQL
	Slide 8: SQL
	Slide 9: SQL
	Slide 10: SQL
	Slide 11: SQL
	Slide 12: SQL
	Slide 13: SQL
	Slide 14: SQL
	Slide 15: SQL Aggregates
	Slide 16: SQL Aggregates
	Slide 17: SQL Aggregates
	Slide 18: SQL: NULLs
	Slide 19: SQL: Outer Joins
	Slide 20: SQL: Witness or Argmin/Argmax
	Slide 21: SQL: Witness or Argmin/Argmax
	Slide 22: SQL: Witness or Argmin/Argmax
	Slide 23: SQL: Subqueries
	Slide 24: SQL: Subqueries
	Slide 25: SQL: Subqueries
	Slide 26: SQL: Subqueries
	Slide 27
	Slide 28: Relational Algebra
	Slide 29: Relational Algebra
	Slide 30: Relational Algebra
	Slide 31: SQL to Relational Algebra Plan
	Slide 32: SQL to Relational Algebra Plan
	Slide 33: SQL to Relational Algebra Plan
	Slide 34: SQL to Relational Algebra Plan
	Slide 35: SQL to Relational Algebra Plan
	Slide 36
	Slide 37: The Database Design Process
	Slide 38: ER Diagrams
	Slide 39: ER Diagrams to Tables
	Slide 40: ER Diagrams to Tables: A Problem
	Slide 41: ER Diagrams to Tables: A Problem
	Slide 42: ER Diagrams to Tables: A Problem
	Slide 43: ER Diagrams to Tables: A Problem
	Slide 44: ER Diagrams to Tables: A Problem
	Slide 45: ER Diagrams to Tables: A Problem
	Slide 46: ER Diagrams to Tables: A Problem
	Slide 47: ER Diagrams to Tables: A Problem
	Slide 48: ER Diagrams to Tables: A Problem
	Slide 49: Anomalies
	Slide 50: Functional Dependencies
	Slide 51: Functional Dependencies
	Slide 52: Functional Dependencies
	Slide 53: Functional Dependencies
	Slide 54: Functional Dependencies
	Slide 55: BCNF
	Slide 56: BCNF
	Slide 57: BCNF v.s. 3NF
	Slide 58: BCNF v.s. 3NF
	Slide 59: BCNF v.s. 3NF
	Slide 60: BCNF v.s. 3NF
	Slide 61
	Slide 62: Transactions
	Slide 63: Transactions
	Slide 64: Transactions
	Slide 65: Transactions
	Slide 66: Schedules
	Slide 67: Schedules
	Slide 68: Schedules
	Slide 69: Locks, 2PL, Strict 2PL
	Slide 70: Locks, 2PL, Strict 2PL
	Slide 71: Locks, 2PL, Strict 2PL
	Slide 72: Locks, 2PL, Strict 2PL
	Slide 73: Locks, 2PL, Strict 2PL
	Slide 74: Locks, 2PL, Strict 2PL
	Slide 75: Types of Locks
	Slide 76: Weaker Isolation Levels
	Slide 77
	Slide 78: The Query Engine
	Slide 79: Physical Operators
	Slide 80: Optimization
	Slide 81: Cardinality Estimation
	Slide 82: Cardinality Estimation
	Slide 83: Cardinality Estimation
	Slide 84: Cardinality Estimation
	Slide 85: Memory Hierarchy
	Slide 86: Data on Disk
	Slide 87: Indexes
	Slide 88: Multi-attribute Index
	Slide 89
	Slide 90: The End

