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Announcements

▪Please fill out the course evals

▪Monday, Dec. 9, Final Review session
• CSE2 G10

• 10:30 – 12:20 (we may finish earlier)
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Recap: semistructure data

▪ Loose terminology; any "parsable" file qualifies

▪Self-describing, “data first”

▪We discuss only Json

▪Other formats: protobuf, XML, csv
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JSON Standard – Rules of the Game

▪ JavaScript Object Notation (JSON)
• "Lightweight text-based open standard designed for 

human-readable data interchange"

Primitives include:

• String (in quotes)

• Numeric (unquoted number)

• Boolean (unquoted true/false)

• Null (literally just null)

Types{ 
"book":[ 

{ 
"id": "01",
"language": "Java",
"author": "H. Javeson",
"year": 2015

},
{ 

         "author": "E. Sepp",
"id": "07",
"language": "C++",
"edition": null,
"sale": true

}
]

}
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JSON Standard – Rules of the Game

▪ JavaScript Object Notation (JSON)
• "Lightweight text-based open standard designed for 

human-readable data interchange"

Objects are an unordered collection of 

name-value pairs:

• "name": <value>

• Values can be primitives, objects, or 

arrays
• Enclosed by { }

Types{ 
"book":[ 

{ 
"id": "01",
"language": "Java",
"author": "H. Javeson",
"year": 2015

},
{ 

         "author": "E. Sepp",
"id": "07",
"language": "C++",
"edition": null,
"sale": true

}
]

}
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JSON Standard – Rules of the Game

▪ JavaScript Object Notation (JSON)
• "Lightweight text-based open standard designed for 

human-readable data interchange"

Types{ 
"book":[ 

{ 
"id": "01",
"language": "Java",
"author": "H. Javeson",
"year": 2015

},
{ 

         "author": "E. Sepp",
"id": "07",
"language": "C++",
"edition": null,
"sale": true

}
]

}

Objects are an unordered collection of 

name-value pairs:

• "name": <value>

• Values can be primitives, objects, or 

arrays
• Enclosed by { }
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JSON Standard – Rules of the Game

▪ JavaScript Object Notation (JSON)
• "Lightweight text-based open standard designed for 

human-readable data interchange"

Arrays are an ordered list of values:

• Order is preserved in interpretation

• May contain any mix of types

• Enclosed by [ ]

Types{ 
"book":[ 

{ 
"id": "01",
"language": "Java",
"author": "H. Javeson",
"year": 2015

},
{ 

         "author": "E. Sepp",
"id": "07",
"language": "C++",
"edition": null,
"sale": true

}
]

}
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JSON Standard – Rules of the Game

▪ JSON Standard too expressive
• Implementations restrict syntax

• Ex: Duplicate fields

{ 
"id": "01",
"language": "Java",
"author": "H. Javeson",

   "author": "D. Suciu",
   "author": "A. Cheung",

"year": 2015
}

{ 
"id": "01",
"language": "Java",
"author": ["H. Javeson",

              "D. Suciu",
              "A. Cheung"],

"year": 2015
}

NOT ALLOWED

(duplicated authors)

OK

(author array)
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Semi-Structured Data Encodes a Tree

book

0 1

id
lang

author
year

id
lang

author

ed

sale

H. Javeson

Java 2015

01

E. Sepp

C++ true

07
null



From Relational to Semi-Structured

Name Phone

Dan 555-123-4567

Alvin 555-234-5678

Magda 555-345-6789

Person

{ 
"person":[

{ 
"name": "Dan",
"phone": "555-123-4567"

}, 
{ 

"name": "Alvin",
"phone": "555-234-5678"

}, 
{ 

"name": "Magda",
"phone": "555-345-6789"

}
]

}

person

0 1 2

name phone

Alvin 555…
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From Relational to Semi-Structured

Name Phone

Dan 555-123-4567

Alvin 555-234-5678

Magda NULL

Person

{ 
"person":[

{ 
"name": "Dan",
"phone": "555-123-4567"

}, 
{ 

"name": "Alvin",
"phone": "555-234-5678"

}, 
{ 

"name": "Magda",
"phone": null

}
]

}
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From Relational to Semi-Structured

Name Phone

Dan 555-123-4567

Alvin 555-234-5678

Magda NULL

Person

{ 
"person":[

{ 
"name": "Dan",
"phone": "555-123-4567"

}, 
{ 

"name": "Alvin",
"phone": "555-234-5678"

}, 
{ 

"name": "Magda"
}

]
} OK for field to 

be missing!
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From Relational to Semi-Structured

Name Phone

Dan ???

Alvin 555-234-5678

Magda 555-345-6789

Person

{ 
"person":[

{ 
"name": "Dan",
"phone": [

"555-123-4567",
"555-987-6543"

]
      }, 

{ 
"name": "Alvin",
"phone": "555-234-5678"

}, 
{ 

"name": "Magda",
"phone": "555-345-6789"

}
]

}
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From Relational to Semi-Structured

Name Phone

??? 555-123-4567

Alvin 555-234-5678

Magda 555-345-6789

Person

{ 
"person":[

{ 
"name": {

"fname": "Dan",
"lname": "Suciu"

},
"phone": "555-123-4567"

}, 
{ 

"name": "Alvin",
"phone": "555-234-5678"

}, 
{ 

"name": "Magda",
"phone": "555-345-6789"

}
]

}
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From Relational to Semi-Structured

Name Phone

Dan 555-123-4567

Alvin 555-234-5678

Magda 555-345-6789

Person

Orders

{ 

"person":[
{ 

"name": "Dan",
"phone": "555-123-4567",
"orders": [

            {
               "date": 1997,

      "product": "Furby"
            }
         ]

}, 
{ 

"name": "Alvin",
"phone": "555-234-5678",
"orders": [

            {
               "date": 2000,

      "product": "Furby"
            },
            {

               "date": 2012,
      "product": "Magic8"

            }
         ]

}, 

{ 
"name": "Magda",

"phone": "555-345-6789",
"orders": []

}

]
}

PName Date Product

Dan 1997 Furby

Alvin 2000 Furby

Alvin 2012 Magic8
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Unnormalized

data

BCNF

Representing a 

one-to-many relationship



From Relational to Semi-Structured

Name Phone

Dan 555-123-4567

Alvin 555-234-5678

Magda 555-345-6789

Person

PName Date Product

Dan 1997 Furby

Alvin 2000 Furby

Alvin 2012 Magic8

Orders

ProdName Price

Furby 9.99

Magic8 15.99

Tomagachi 18.99

Product
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Representing a 

many-to-many relationship

is more difficult

Option 1:

 Person→Orders→Product

 duplicated/missing Products

Option 2:

 Product→Orders→Person

 duplicated/missing Persons

Option 3:

 Go relational:

 store 3 separate objects



Summary of Semistructured Data

▪Self-describing
• Data and its schema presented together

▪ Irregular/flexible
• Missing attributes

• Repeated attributes (or arrays)

• Attribute may have different types in different objects

▪ 1-to-many relationships: very natural

▪Many-many relationships: cumbersome
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AsterixDB and SQL++

▪AsterixDB as a case study of Document Store
• Semi-structured data model in JSON

• SQL++
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The 5 W’s of AsterixDB
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▪Who
• M. J. Carey & co.

▪What
• "A Scalable, Open Source DBMS“

• It is now also an Apache project

▪Where
• UC Irvine, Cloudera Inc, Google, IBM, Amazon…

▪When
• 2014

▪Why
• To develop a next-gen system for managing semi-

structured data



The 5 W’s of SQL++
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▪Who
• K. W. Ong & Y. Papakonstantinou

▪What
• A query language that is applicable to JSON native 

stores and SQL databases

▪Where
• UC San Diego

▪When
• 2015

▪Why
• Stand in for other semi-structured query languages that 

lack formal semantics.



Why We are Choosing SQL++
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▪Strong foundations
• Original paper:     https://arxiv.org/pdf/1405.3631.pdf

• Nested relational algebra*: 
https://dl.acm.org/citation.cfm?id=588133

▪Many systems adopting or converging to SQL++
• Apache AsterixDB

• CouchBase (N1QL)

• Apache Drill

• Snowflake

• Amazon Partiql, https://partiql.org/ 

* There are much better papers on Nested Relational Algebra (ask DanS)

https://arxiv.org/pdf/1405.3631.pdf
https://dl.acm.org/citation.cfm?id=588133
https://partiql.org/


Asterix Data Model (ADM)

▪ADM = nearly identical to JSON

▪Adds: multiset or bag
• Encapsulated by double curly braces {{ }}

▪Adds: universally unique identifier (uuid)
• Ex: 123e4567-e89b-12d3-a456-426655440000

• Useful for auto-generating unique keys
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Introducing the New and Improved SQL++
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SQL++
SQL



SQL++ Mini Demo

Demo Time!
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Installing AsterixDB

(Details in HW7 spec)

Download from
 https://asterixdb.apache.org/download.html 

Start local cluster from:

 <asterix root>/opt/local/bin/start-sample-cluster

Run by typing this in your browser:

 127.0.0.1:19001

Stop cluster when you’re done:

 <asterix root>/opt/local/bin/stop-sample-cluster
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https://asterixdb.apache.org/download.html
127.0.0.1:19002


SQL++ Hello World
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SELECT x.phone
  FROM [
          {"name": "Dan", "phone": [300, 150]},
          {"name": "Alvin", "phone": 420}
       ] AS x;



SQL++ Hello World
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SELECT x.phone
  FROM [
          {"name": "Dan", "phone": [300, 150]},
          {"name": "Alvin", "phone": 420}
       ] AS x;

-- output, same for-loop semantics like in SQL
-- array data
/*
{ "phone": [300, 150] }
{ "phone": 420 }
*/



SQL++ Hello World
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SELECT x.phone
  FROM {{
          {"name": "Dan", "phone": [300, 150]},
          {"name": "Alvin", "phone": 420}
       }} AS x;



SQL++ Hello World
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SELECT x.phone
  FROM {{
          {"name": "Dan", "phone": [300, 150]},
          {"name": "Alvin", "phone": 420}
       }} AS x;

-- same output as array data
-- multiset data



SQL++ Hello World
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-- error
SELECT x.phone
  FROM {"name": "Dan", "phone": [300, 150]} AS x;

-- output
-- trying to query an object
/*
Type mismatch: function scan-collection expects its 
1st input parameter to be type multiset or array, 
but the actual input type is object 
[TypeMismatchException]
*/



SQL++ Hello World
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SELECT x.phone
  FROM [
          {"name": "Dan", "phone": [300, 150]},
          {"name": "Alvin", "phone": null}
       ] AS x;



SQL++ Hello World
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SELECT x.phone
  FROM [
          {"name": "Dan", "phone": [300, 150]},
          {"name": "Alvin", "phone": null}
       ] AS x;

-- output, null works like in SQL
-- null values
/*
{ "phone": [300, 150] }
{ "phone": null }
*/



SQL++ Hello World

December 2, 2024 SQL++ 33

SELECT x.phone
  FROM [
          {"name": "Dan", "phone": [300, 150]},
          {"name": "Alvin"}
       ] AS x;



SQL++ Hello World
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SELECT x.phone
  FROM [
          {"name": "Dan", "phone": [300, 150]},
          {"name": "Alvin"}
       ] AS x;

-- output, missing data is simply passed over (beware of typos!)
-- missing values
/*
{ "phone": [300, 150] }
{ }
*/



SQL++ Hello World
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SELECT x.fone -- intentional typo
  FROM [
          {"name": "Dan", "phone": [300, 150]},
          {"name": "Alvin", "phone": 420}
       ] AS x;



SQL++ Hello World
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SELECT x.fone -- intentional typo
  FROM [
          {"name": "Dan", "phone": [300, 150]},
          {"name": "Alvin", "phone": 420}
       ] AS x;

-- output, beware of typos! No errors are thrown
/*
{ }
{ }
*/



SQL++ Hello World
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FROM [
          {"name": "Dan", "phone": [300, 150]},
          {"name": "Alvin", "phone": 420}
       ] AS x
 WHERE is_array(x.phone) OR x.phone > 100
 GROUP BY x.name, x.phone
HAVING x.name = "Dan" OR x.name = "Alvin"
SELECT x.phone
 ORDER BY x.name DESC;

(Query doesn’t make much sense; just to illustrate group by and having)



SQL++ Hello World
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FROM [
          {"name": "Dan", "phone": [300, 150]},
          {"name": "Alvin", "phone": 420}
       ] AS x
 WHERE is_array(x.phone) OR x.phone > 100
 GROUP BY x.name, x.phone
HAVING x.name = "Dan" OR x.name = "Alvin"
SELECT x.phone
 ORDER BY x.name DESC;

-- output:
/*
{ "phone": [300, 150] }
{ "phone": 420 }
*/



Next Time

▪Patterns in querying 
semi-structured data

▪SQL++ behind the mask
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SQL++

SQL++

SQL++

Relational

Model
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