
1

SQL++

December 2, 2024

Introduction to Data Management

SQL++

Announcements

▪Please fill out the course evals

▪Monday, Dec. 9, Final Review session
• CSE2 G10

• 10:30 – 12:20 (we may finish earlier)

December 2, 2024 Cardinality Estimation 2

Recap: semistructure data

▪ Loose terminology; any "parsable" file qualifies

▪Self-describing, “data first”

▪We discuss only Json

▪Other formats: protobuf, XML, csv

December 2, 2024 SQL++ 3

JSON Standard – Rules of the Game

▪ JavaScript Object Notation (JSON)
• "Lightweight text-based open standard designed for

human-readable data interchange"

Primitives include:

• String (in quotes)

• Numeric (unquoted number)

• Boolean (unquoted true/false)

• Null (literally just null)

Types{
"book":[

{
"id": "01",
"language": "Java",
"author": "H. Javeson",
"year": 2015

},
{

 "author": "E. Sepp",
"id": "07",
"language": "C++",
"edition": null,
"sale": true

}
]

}

November 27, 2024 Semistructured Data 4

JSON Standard – Rules of the Game

▪ JavaScript Object Notation (JSON)
• "Lightweight text-based open standard designed for

human-readable data interchange"

Objects are an unordered collection of

name-value pairs:

• "name": <value>

• Values can be primitives, objects, or

arrays
• Enclosed by { }

Types{
"book":[

{
"id": "01",
"language": "Java",
"author": "H. Javeson",
"year": 2015

},
{

 "author": "E. Sepp",
"id": "07",
"language": "C++",
"edition": null,
"sale": true

}
]

}

November 27, 2024 Semistructured Data 5

JSON Standard – Rules of the Game

▪ JavaScript Object Notation (JSON)
• "Lightweight text-based open standard designed for

human-readable data interchange"

Types{
"book":[

{
"id": "01",
"language": "Java",
"author": "H. Javeson",
"year": 2015

},
{

 "author": "E. Sepp",
"id": "07",
"language": "C++",
"edition": null,
"sale": true

}
]

}

Objects are an unordered collection of

name-value pairs:

• "name": <value>

• Values can be primitives, objects, or

arrays
• Enclosed by { }

November 27, 2024 Semistructured Data 6

JSON Standard – Rules of the Game

▪ JavaScript Object Notation (JSON)
• "Lightweight text-based open standard designed for

human-readable data interchange"

Arrays are an ordered list of values:

• Order is preserved in interpretation

• May contain any mix of types

• Enclosed by []

Types{
"book":[

{
"id": "01",
"language": "Java",
"author": "H. Javeson",
"year": 2015

},
{

 "author": "E. Sepp",
"id": "07",
"language": "C++",
"edition": null,
"sale": true

}
]

}

November 27, 2024 Semistructured Data 7

JSON Standard – Rules of the Game

▪ JSON Standard too expressive
• Implementations restrict syntax

• Ex: Duplicate fields

{
"id": "01",
"language": "Java",
"author": "H. Javeson",

 "author": "D. Suciu",
 "author": "A. Cheung",

"year": 2015
}

{
"id": "01",
"language": "Java",
"author": ["H. Javeson",

 "D. Suciu",
 "A. Cheung"],

"year": 2015
}

NOT ALLOWED

(duplicated authors)

OK

(author array)

November 27, 2024 Semistructured Data 8

November 27, 2024 Semistructured Data 9

Semi-Structured Data Encodes a Tree

book

0 1

id
lang

author
year

id
lang

author

ed

sale

H. Javeson

Java 2015

01

E. Sepp

C++ true

07
null

From Relational to Semi-Structured

Name Phone

Dan 555-123-4567

Alvin 555-234-5678

Magda 555-345-6789

Person

{
"person":[

{
"name": "Dan",
"phone": "555-123-4567"

},
{

"name": "Alvin",
"phone": "555-234-5678"

},
{

"name": "Magda",
"phone": "555-345-6789"

}
]

}

person

0 1 2

name phone

Alvin 555…

November 27, 2024 Semistructured Data 10

From Relational to Semi-Structured

Name Phone

Dan 555-123-4567

Alvin 555-234-5678

Magda NULL

Person

{
"person":[

{
"name": "Dan",
"phone": "555-123-4567"

},
{

"name": "Alvin",
"phone": "555-234-5678"

},
{

"name": "Magda",
"phone": null

}
]

}

November 27, 2024 Semistructured Data 11

From Relational to Semi-Structured

Name Phone

Dan 555-123-4567

Alvin 555-234-5678

Magda NULL

Person

{
"person":[

{
"name": "Dan",
"phone": "555-123-4567"

},
{

"name": "Alvin",
"phone": "555-234-5678"

},
{

"name": "Magda"
}

]
} OK for field to

be missing!

November 27, 2024 Semistructured Data 12

From Relational to Semi-Structured

Name Phone

Dan ???

Alvin 555-234-5678

Magda 555-345-6789

Person

{
"person":[

{
"name": "Dan",
"phone": [

"555-123-4567",
"555-987-6543"

]
 },

{
"name": "Alvin",
"phone": "555-234-5678"

},
{

"name": "Magda",
"phone": "555-345-6789"

}
]

}

November 27, 2024 Semistructured Data 13

From Relational to Semi-Structured

Name Phone

??? 555-123-4567

Alvin 555-234-5678

Magda 555-345-6789

Person

{
"person":[

{
"name": {

"fname": "Dan",
"lname": "Suciu"

},
"phone": "555-123-4567"

},
{

"name": "Alvin",
"phone": "555-234-5678"

},
{

"name": "Magda",
"phone": "555-345-6789"

}
]

}

November 27, 2024 Semistructured Data 14

From Relational to Semi-Structured

Name Phone

Dan 555-123-4567

Alvin 555-234-5678

Magda 555-345-6789

Person

Orders

{

"person":[
{

"name": "Dan",
"phone": "555-123-4567",
"orders": [

 {
 "date": 1997,

 "product": "Furby"
 }
]

},
{

"name": "Alvin",
"phone": "555-234-5678",
"orders": [

 {
 "date": 2000,

 "product": "Furby"
 },
 {

 "date": 2012,
 "product": "Magic8"

 }
]

},

{
"name": "Magda",

"phone": "555-345-6789",
"orders": []

}

]
}

PName Date Product

Dan 1997 Furby

Alvin 2000 Furby

Alvin 2012 Magic8

November 27, 2024 Semistructured Data 15

Unnormalized

data

BCNF

Representing a

one-to-many relationship

From Relational to Semi-Structured

Name Phone

Dan 555-123-4567

Alvin 555-234-5678

Magda 555-345-6789

Person

PName Date Product

Dan 1997 Furby

Alvin 2000 Furby

Alvin 2012 Magic8

Orders

ProdName Price

Furby 9.99

Magic8 15.99

Tomagachi 18.99

Product

November 27, 2024 Semistructured Data 16

Representing a

many-to-many relationship

is more difficult

Option 1:

 Person→Orders→Product

 duplicated/missing Products

Option 2:

 Product→Orders→Person

 duplicated/missing Persons

Option 3:

 Go relational:

 store 3 separate objects

Summary of Semistructured Data

▪Self-describing
• Data and its schema presented together

▪ Irregular/flexible
• Missing attributes

• Repeated attributes (or arrays)

• Attribute may have different types in different objects

▪ 1-to-many relationships: very natural

▪Many-many relationships: cumbersome

December 2, 2024 SQL++ 17

AsterixDB and SQL++

▪AsterixDB as a case study of Document Store
• Semi-structured data model in JSON

• SQL++

December 2, 2024 SQL++ 18

The 5 W’s of AsterixDB

December 2, 2024 SQL++ 19

▪Who
• M. J. Carey & co.

▪What
• "A Scalable, Open Source DBMS“

• It is now also an Apache project

▪Where
• UC Irvine, Cloudera Inc, Google, IBM, Amazon…

▪When
• 2014

▪Why
• To develop a next-gen system for managing semi-

structured data

The 5 W’s of SQL++

December 2, 2024 SQL++ 20

▪Who
• K. W. Ong & Y. Papakonstantinou

▪What
• A query language that is applicable to JSON native

stores and SQL databases

▪Where
• UC San Diego

▪When
• 2015

▪Why
• Stand in for other semi-structured query languages that

lack formal semantics.

Why We are Choosing SQL++

December 2, 2024 SQL++ 21

▪Strong foundations
• Original paper: https://arxiv.org/pdf/1405.3631.pdf

• Nested relational algebra*:
https://dl.acm.org/citation.cfm?id=588133

▪Many systems adopting or converging to SQL++
• Apache AsterixDB

• CouchBase (N1QL)

• Apache Drill

• Snowflake

• Amazon Partiql, https://partiql.org/

* There are much better papers on Nested Relational Algebra (ask DanS)

https://arxiv.org/pdf/1405.3631.pdf
https://dl.acm.org/citation.cfm?id=588133
https://partiql.org/

Asterix Data Model (ADM)

▪ADM = nearly identical to JSON

▪Adds: multiset or bag
• Encapsulated by double curly braces {{ }}

▪Adds: universally unique identifier (uuid)
• Ex: 123e4567-e89b-12d3-a456-426655440000

• Useful for auto-generating unique keys

December 2, 2024 SQL++ 22

Introducing the New and Improved SQL++

December 2, 2024 SQL++ 23

SQL++
SQL

SQL++ Mini Demo

Demo Time!

December 2, 2024 SQL++ 24

Installing AsterixDB

(Details in HW7 spec)

Download from
 https://asterixdb.apache.org/download.html

Start local cluster from:

 <asterix root>/opt/local/bin/start-sample-cluster

Run by typing this in your browser:

 127.0.0.1:19001

Stop cluster when you’re done:

 <asterix root>/opt/local/bin/stop-sample-cluster

December 2, 2024 SQL++ 25

https://asterixdb.apache.org/download.html
127.0.0.1:19002

SQL++ Hello World

December 2, 2024 SQL++ 26

SELECT x.phone
 FROM [
 {"name": "Dan", "phone": [300, 150]},
 {"name": "Alvin", "phone": 420}
] AS x;

SQL++ Hello World

December 2, 2024 SQL++ 27

SELECT x.phone
 FROM [
 {"name": "Dan", "phone": [300, 150]},
 {"name": "Alvin", "phone": 420}
] AS x;

-- output, same for-loop semantics like in SQL
-- array data
/*
{ "phone": [300, 150] }
{ "phone": 420 }
*/

SQL++ Hello World

December 2, 2024 SQL++ 28

SELECT x.phone
 FROM {{
 {"name": "Dan", "phone": [300, 150]},
 {"name": "Alvin", "phone": 420}
 }} AS x;

SQL++ Hello World

December 2, 2024 SQL++ 29

SELECT x.phone
 FROM {{
 {"name": "Dan", "phone": [300, 150]},
 {"name": "Alvin", "phone": 420}
 }} AS x;

-- same output as array data
-- multiset data

SQL++ Hello World

December 2, 2024 SQL++ 30

-- error
SELECT x.phone
 FROM {"name": "Dan", "phone": [300, 150]} AS x;

-- output
-- trying to query an object
/*
Type mismatch: function scan-collection expects its
1st input parameter to be type multiset or array,
but the actual input type is object
[TypeMismatchException]
*/

SQL++ Hello World

December 2, 2024 SQL++ 31

SELECT x.phone
 FROM [
 {"name": "Dan", "phone": [300, 150]},
 {"name": "Alvin", "phone": null}
] AS x;

SQL++ Hello World

December 2, 2024 SQL++ 32

SELECT x.phone
 FROM [
 {"name": "Dan", "phone": [300, 150]},
 {"name": "Alvin", "phone": null}
] AS x;

-- output, null works like in SQL
-- null values
/*
{ "phone": [300, 150] }
{ "phone": null }
*/

SQL++ Hello World

December 2, 2024 SQL++ 33

SELECT x.phone
 FROM [
 {"name": "Dan", "phone": [300, 150]},
 {"name": "Alvin"}
] AS x;

SQL++ Hello World

December 2, 2024 SQL++ 34

SELECT x.phone
 FROM [
 {"name": "Dan", "phone": [300, 150]},
 {"name": "Alvin"}
] AS x;

-- output, missing data is simply passed over (beware of typos!)
-- missing values
/*
{ "phone": [300, 150] }
{ }
*/

SQL++ Hello World

December 2, 2024 SQL++ 35

SELECT x.fone -- intentional typo
 FROM [
 {"name": "Dan", "phone": [300, 150]},
 {"name": "Alvin", "phone": 420}
] AS x;

SQL++ Hello World

December 2, 2024 SQL++ 36

SELECT x.fone -- intentional typo
 FROM [
 {"name": "Dan", "phone": [300, 150]},
 {"name": "Alvin", "phone": 420}
] AS x;

-- output, beware of typos! No errors are thrown
/*
{ }
{ }
*/

SQL++ Hello World

December 2, 2024 SQL++ 37

FROM [
 {"name": "Dan", "phone": [300, 150]},
 {"name": "Alvin", "phone": 420}
] AS x
 WHERE is_array(x.phone) OR x.phone > 100
 GROUP BY x.name, x.phone
HAVING x.name = "Dan" OR x.name = "Alvin"
SELECT x.phone
 ORDER BY x.name DESC;

(Query doesn’t make much sense; just to illustrate group by and having)

SQL++ Hello World

December 2, 2024 SQL++ 38

FROM [
 {"name": "Dan", "phone": [300, 150]},
 {"name": "Alvin", "phone": 420}
] AS x
 WHERE is_array(x.phone) OR x.phone > 100
 GROUP BY x.name, x.phone
HAVING x.name = "Dan" OR x.name = "Alvin"
SELECT x.phone
 ORDER BY x.name DESC;

-- output:
/*
{ "phone": [300, 150] }
{ "phone": 420 }
*/

Next Time

▪Patterns in querying
semi-structured data

▪SQL++ behind the mask

December 2, 2024 SQL++ 39

SQL++

SQL++

SQL++

Relational

Model

	Slide 1
	Slide 2: Announcements
	Slide 3: Recap: semistructure data
	Slide 4: JSON Standard – Rules of the Game
	Slide 5: JSON Standard – Rules of the Game
	Slide 6: JSON Standard – Rules of the Game
	Slide 7: JSON Standard – Rules of the Game
	Slide 8: JSON Standard – Rules of the Game
	Slide 9: Semi-Structured Data Encodes a Tree
	Slide 10: From Relational to Semi-Structured
	Slide 11: From Relational to Semi-Structured
	Slide 12: From Relational to Semi-Structured
	Slide 13: From Relational to Semi-Structured
	Slide 14: From Relational to Semi-Structured
	Slide 15: From Relational to Semi-Structured
	Slide 16: From Relational to Semi-Structured
	Slide 17: Summary of Semistructured Data
	Slide 18: AsterixDB and SQL++
	Slide 19: The 5 W’s of AsterixDB
	Slide 20: The 5 W’s of SQL++
	Slide 21: Why We are Choosing SQL++
	Slide 22: Asterix Data Model (ADM)
	Slide 23: Introducing the New and Improved SQL++
	Slide 24: SQL++ Mini Demo
	Slide 25: Installing AsterixDB
	Slide 26: SQL++ Hello World
	Slide 27: SQL++ Hello World
	Slide 28: SQL++ Hello World
	Slide 29: SQL++ Hello World
	Slide 30: SQL++ Hello World
	Slide 31: SQL++ Hello World
	Slide 32: SQL++ Hello World
	Slide 33: SQL++ Hello World
	Slide 34: SQL++ Hello World
	Slide 35: SQL++ Hello World
	Slide 36: SQL++ Hello World
	Slide 37: SQL++ Hello World
	Slide 38: SQL++ Hello World
	Slide 39: Next Time

