b

Shuffle S48, S, 0n (X1
sessionl)
Numberofsession
Date
51 | xperimentio
f Setup
S 7 [senupin
) Setuphame
P
el SetupType
a1 [sessionid —”
NumberOfTrial Swehuting
2 [setupin Phar
#X3 [Subjectin Setuprondition
ouration
NMarker [e o
Setupharker 2 ke AN Worker 3 forker forker
Record edMovicFie N, et
Note 'MelisandrTheon 3
Y] (a) Traditional parallel query plan
Trial_as_Timecourse Tria_has_Tajectory %I
b
[rasin s {Tiisiin
Xz | nimecoursein 2 |Trjectoryio
Timecourse Taiectory /
JoffreMargaesn
¢ |Timecoursein ok [Tesiectoryin
Frequency Frequency ~
Segmentio segmentid Meryn
KindOfata KindOfData e
Nerames Markedd e
\ o NFrames sCube shuffle-based parallel g
k Data

Introduction to Data Management

SQL++

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

December 2, 2024 SQL++

Announcements

= Please fill out the course evals

* Monday, Dec. 9, Final Review session
« CSE2 G10
« 10:30 — 12:20 (we may finish earlier)

December 2, 2024 Cardinality Estimation

Recap: semistructure data

» Loose terminology; any "parsable" file qualifies

» Self-describing, “data first”

= We discuss only Json

» Other formats: protobuf, XML, csv

December 2, 2024

JSON Standard — Rules of the Game

» JavaScript Object Notation (JSON)

« "Lightweight text-based open standard designed for
human-readable data interchange"

{ T
"book": [ype§. ,
{ Primitives include:
‘id": tel", « String (in quotes)
,language”: “Java’, - « Numeric (unquoted number)
author": "H. Javeson",
"vear": 2015 » Boolean (unquoted true/false)

}s * Null (literally just null)

{
"author": "E. Sepp",
"id": "e7",
"language": "C++",
"edition": null,
"sale": true

}

November 27, 2024 Semistructured Data

JSON Standard — Rules of the Game

» JavaScript Object Notation (JSON)

« "Lightweight text-based open standard designed for
human-readable data interchange"

{ Types
llbookll: [yp

t Objects are an unordered collection of
Jav: tell, name-value pairs:
language": "Java", " "
"author": "H. Javeson", * hame -<Value>_ - :
"year": 2015 » Values can be primitives, objects, or

g arrays

"author": "E. Sepp"”, * Enclosed by { }

"id": "e7",
"language": "C++",
"edition": null,
"sale": true

November 27, 2024 Semistructured Data

JSON Standard — Rules of the Game

» JavaScript Object Notation (JSON)

« "Lightweight text-based open standard designed for
human-readable data interchange"

{

"book": [
{
"id": "e1",
"language": "Java",
"author": "H. Javeson",
"year": 2015
}s
{
"author": "E. Sepp",
"id": "e7",
"language": "C++",
"edition": null,
"sale": true
}
]

November 27, 2024

Types

Objects are an unordered collection of

name-value pairs:

* "name": <value>

» Values can be primitives, objects, or
arrays

 Enclosed by { }

Semistructured Data

JSON Standard — Rules of the Game

» JavaScript Object Notation (JSON)

« "Lightweight text-based open standard designed for
human-readable data interchange"

{
"book" : [Types

Arrays are an ordered list of values:
* Order is preserved in interpretation
« May contain any mix of types
 Enclosed by []

"id": "e1",
"language": "Java",
"author": "H. Javeson",
"year": 2015

"author": "E. Sepp",
"id": "e7",
"language": "C++",
"edition": null,
"sale": true

November 27, 2024 Semistructured Data

JSON Standard — Rules of the Game

» JSON Standard too expressive
* Implementations restrict syntax
« EX: Duplicate fields

NOT ALLOWED (0] ¢

(duplicated authors) (author array)

{ {
"id": "e1", "id": "e1",
"language": "Java", "language": "Java",
"author": "H. Javeson", "author": ["H. Javeson",
"author": "D. Suciu", "D. Suciu",
"author": "A. Cheung", "A. Cheung"],
"year": 2015 "year": 2015

} }

November 27, 2024 Semistructured Data

Semi-Structured Data Encodes a Tree

book

lang year lang
author author

H. Javeson

November 27, 2024 Semistructured Data

From Relational to Semi-Structured

Person

Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

person

November 27, 2024

{

"person”: [
{
"name": "Dan",
"phone": "555-123-4567"
3
{
"name": "Alvin",
"phone": "555-234-5678"
}s
{
"name": "Magda",
"phone": "555-345-6789"
}

Semistructured Data

From Relational to Semi-Structured

Person
{
Dan 555-123-4567 " Pegson" : [
Alvin 555-234-5678 "name": "Dan",
Magda NULL "phone": "555-123-4567"
}s
{
"name": "Alvin",
"phone": "555-234-5678"
}s
{
"name": "Magda",
"phone": null
¥
]
¥

November 27, 2024 Semistructured Data

From Relational to Semi-Structured

Person

Dan 555-123-4567
Alvin 555-234-5678
Magda NULL

November 27, 2024

{

"person”: [
{
"name": "Dan",
"phone": "555-123-4567"
3
{
"name": "Alvin",
"phone": "555-234-5678"
}s
{
"name": "Magda"
}

OK for field to
be missing!

Semistructured Data

From Relational to Semi-Structured

Person
Dan 27?7
Alvin 555-234-5678

Magda 555-345-6789

November 27, 2024

"person”: [
{
"name": "Dan",
"phone": [

"555-123-4567",
"555-987-6543"

"name": "Alvin",
"phone": "555-234-5678"

"name": "Magda",
"phone": "555-345-6789"

Semistructured Data

From Relational to Semi-Structured

Person
{
?7?7? 555-123-4567 "person": [
Alvin 555-234-5678 . "name": {
Magda 555-345-6789 -1
3
"phone": "555-123-4567"
}s
{
"name": "Alvin",
"phone": "555-234-5678"
3
{
"name": "Magda",
"phone": "555-345-6789"
}
]
}

November 27, 2024 Semistructured Data

From Relational to Semi-Structured

"person":[
Person { "name": "Dan"
P e
Dan 555-123-4567 b dater: 1907,
Alvin 555-234-5678 , prodwett g _
Magda 555-345-6789] Jnnormaiized
agda e f{’ data
Orders :ﬁ::e : Ilﬁégé?;§4—5678",
"orders": [
:
"date": 2000,
Dan 1997 Furby } "product”: "Furby"
Alvin 2000 Furby ¢
"date": 2012,
Alvin 2012 Magic8 } "product”: "Magic8”
]
s
{
"name": "Magda",
. "phone": "555-345-6789",
Representing a } orders®: []
one-to-many relationship .

November 27, 2024 Semistructured Data

From Relational to Semi-Structured

Person Representing a
many-to-many relationship
e B is more difficult

Alvin 555-234-5678

Magda 555-345-6789 Option 1:

Orders Person—->Orders—>Product
duplicated/missing Products

1997 Furby

Alvin 2000 Furby Option 2:

Alvin 2012 Magic8 Product—>Orders—>Person
Broduct duplicated/missing Persons
.

Furby 9.99 Optlon 3: _ _

Magics Y- Go relational: |
Tomagachi 18.99 store 3 separate objects

November 27, 2024 Semistructured Data

Summary of Semistructured Data

» Self-describing
« Data and its schema presented together

" Irregular/flexible
« Missing attributes
« Repeated attributes (or arrays)
« Attribute may have different types in different objects

*» 1-to-many relationships: very natural
* Many-many relationships: cumbersome

December 2, 2024

AsterixDB and SQL++

= AsterixDB as a case study of Document Store

 Semi-structured data model in JSON
« SQL++

Asterixcs

December 2, 2024

The 5 W’s of AsterixDB

= \Who
M. J. Carey & co.

= What
» "A Scalable, Open Source DBMS*
* It iIs now also an Apache project

» Where
« UC Irvine, Cloudera Inc, Google, IBM, Amazon...

= \When
e 2014
= \Why

» To develop a next-gen system for managing semi-
structured data

December 2, 2024

The 5 W’s of SQL++

= \Who
« K. W. Ong & Y. Papakonstantinou

= \What

« A gquery language that is applicable to JSON native
stores and SQL databases

= Where
« UC San Diego

= \When
e 2015
= \Why

« Stand in for other semi-structured query languages that
lack formal semantics.

December 2, 2024

Why We are Choosing SQL++

= Strong foundations
« Original paper. https://arxiv.org/pdf/1405.3631.pdf

* Nested relational algebra*:
https://dl.acm.org/citation.cfm?id=588133

» Many systems adopting or converging to SQL++
« Apache AsterixDB
« CouchBase (N1QL)
« Apache Dirill
» Snowflake
« Amazon Partiqgl, https://partigl.org/

* There are much better papers on Nested Relational Algebra (ask DanS)
December 2, 2024 SQL++ 21

https://arxiv.org/pdf/1405.3631.pdf
https://dl.acm.org/citation.cfm?id=588133
https://partiql.org/

Asterix Data Model (ADM)

» ADM = nearly identical to JSON

» Adds: multiset or bag
« Encapsulated by double curly braces {{ }}

= Adds: universally unique identifier (uuid)
* EXx: 123e4567-e89b-12d3-a456-426655440000
» Useful for auto-generating unique keys

December 2, 2024

Introducing the New and Improved SQL++

December 2, 2024 SQL++ 23

SQL++ Mini Demo

Demo Time!

December 2, 2024

Installing AsterixDB

(Detalls iIn HW7 spec)

Download from
https://asterixdb.apache.org/download.html

Start local cluster from:
<asterix root>/opt/local/bin/start-sample-cluster

Run by typing this in your browser:
127.0.0.1:19001

Stop cluster when you're done:
<asterix root>/opt/local/bin/stop-sample-cluster

December 2, 2024

https://asterixdb.apache.org/download.html
127.0.0.1:19002

SQL++ Hello World

SELECT x.phone

FROM [
"name": "Dan", "phone": [300, 150]},
"name": "Alvin", "phone": 420}
] AS Xx;

December 2, 2024

SQL++ Hello World

SELECT x.phone

FROM [
"name": "Dan", "phone": [300, 150]},
"name": "Alvin", "phone": 420}
] AS Xx;

-- output, same for-loop semantics like in SQL
-- array data

/*

{ "phone": [300, 150] }

{ "phone": 420 }

*/

December 2, 2024

SQL++ Hello World

SELECT x.phone

FROM {{
"name": "Dan", "phone": [300, 150]},
"name": "Alvin", "phone": 420}
1} AS Xx;

December 2, 2024

SQL++ Hello World

SELECT x.phone

FROM {{
"name": "Dan", "phone": [300, 150]},
"name": "Alvin", "phone": 420}
1} AS Xx;

-- same output as array data
-- multiset data

December 2, 2024

SQL++ Hello World

-- error
SELECT x.phone
FROM {"name": "Dan", "phone": [300, 150]} AS Xx;

-- output

-- trying to query an object

/*

Type mismatch: function scan-collection expects its
1st input parameter to be type multiset or array,
but the actual input type is object
[TypeMismatchException]

*/

December 2, 2024

SQL++ Hello World

SELECT x.phone

FROM [
"name": "Dan", "phone": [300, 150]},
"name": "Alvin", "phone": null}
] AS Xx;

December 2, 2024

SQL++ Hello World

SELECT x.phone

FROM [
"name": "Dan", "phone": [300, 150]},
"name": "Alvin", "phone": null}
] AS Xx;

-- output, null works like in SQL
-- null values

/*

{ "phone": [300, 150] }

{ "phone": null }

*/

December 2, 2024

SQL++ Hello World

SELECT x.phone

FROM [
{"name": "Dan", "phone": [300, 150]},
{"name": "Alvin"}
] AS Xx;

December 2, 2024

SQL++ Hello World

SELECT x.phone

FROM [
"name": "Dan", "phone": [300, 150]},
"name": "Alvin"}
] AS Xx;

-- output, missing data is simply passed over (beware of typos!)
-- missing values

/*

{ "phone": [300, 150] }

1}

*/

December 2, 2024

SQL++ Hello World

SELECT x.fone -- intentional typo

FROM [
"name": "Dan", "phone": [300, 150]},
"name": "Alvin", "phone": 420}
] AS Xx;

December 2, 2024

SQL++ Hello World

SELECT x.fone -- intentional typo

FROM [
"name": "Dan", "phone": [300, 150]},
"name": "Alvin", "phone": 420}
] AS Xx;

-- output, beware of typos! No errors are thrown
/*
{}

{1}
*/

December 2, 2024

SQL++ Hello World

FROM [
{"name": "Dan", "phone": [300, 150]},

"name": "Alvin", "phone": 420}
] AS X
WHERE is array(x.phone) OR x.phone > 100
GROUP BY x.name, x.phone
HAVING x.name = "Dan" OR x.name = "Alvin"
SELECT x.phone
ORDER BY x.name DESC;

(Query doesn’t make much sense; just to illustrate group by and having)

December 2, 2024

SQL++ Hello World

FROM [
{"name": "Dan", "phone": [300, 150]},
"name": "Alvin", "phone": 420}
] AS X

WHERE is array(x.phone) OR x.phone > 100
GROUP BY x.name, x.phone
HAVING x.name = "Dan" OR x.name = "Alvin"
SELECT x.phone
ORDER BY x.name DESC;

-- output:

/*

{ "phone": [300, 150] }
{ "phone": 420 }

*/

December 2, 2024

» Patterns in querying
semi-structured data

* SQL++ behind the mask

December 2, 2024

	Slide 1
	Slide 2: Announcements
	Slide 3: Recap: semistructure data
	Slide 4: JSON Standard – Rules of the Game
	Slide 5: JSON Standard – Rules of the Game
	Slide 6: JSON Standard – Rules of the Game
	Slide 7: JSON Standard – Rules of the Game
	Slide 8: JSON Standard – Rules of the Game
	Slide 9: Semi-Structured Data Encodes a Tree
	Slide 10: From Relational to Semi-Structured
	Slide 11: From Relational to Semi-Structured
	Slide 12: From Relational to Semi-Structured
	Slide 13: From Relational to Semi-Structured
	Slide 14: From Relational to Semi-Structured
	Slide 15: From Relational to Semi-Structured
	Slide 16: From Relational to Semi-Structured
	Slide 17: Summary of Semistructured Data
	Slide 18: AsterixDB and SQL++
	Slide 19: The 5 W’s of AsterixDB
	Slide 20: The 5 W’s of SQL++
	Slide 21: Why We are Choosing SQL++
	Slide 22: Asterix Data Model (ADM)
	Slide 23: Introducing the New and Improved SQL++
	Slide 24: SQL++ Mini Demo
	Slide 25: Installing AsterixDB
	Slide 26: SQL++ Hello World
	Slide 27: SQL++ Hello World
	Slide 28: SQL++ Hello World
	Slide 29: SQL++ Hello World
	Slide 30: SQL++ Hello World
	Slide 31: SQL++ Hello World
	Slide 32: SQL++ Hello World
	Slide 33: SQL++ Hello World
	Slide 34: SQL++ Hello World
	Slide 35: SQL++ Hello World
	Slide 36: SQL++ Hello World
	Slide 37: SQL++ Hello World
	Slide 38: SQL++ Hello World
	Slide 39: Next Time

