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Announcements

» HW5 Is due tonight

» HWG6 Is posted:

* Milestone 1 is due next Friday. NO LATE DAYS

« Milestone 2 is due on Wednesday, 11/27
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Lock Types




Shared/Exclusive Locks

Reads don’t conflict with each other.

= Exclusive/Write Lock = X;(A)

« May read or write
* No other locks may exist

» Shared/Read Lock = S,(A)

 May only read
« May exist with other shared locks

= Unlocked
* NO access
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Shared/Exclusive Locks

...but another TXN holds this...
 lunlocked S x|
i B
this. | X Yes No No

...then we do or don’t grant permission
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Discussion

» \When TXN wants to read A, it requests S(A)

= If [ater it wants to write A, then it requests X(A)

* This is a form of lock escalation:
» Lock escalation: fine grained -> coarse grained

November 8, 2024 Isolation Levels



T1 T2
S1(A), READ(A, 1)
t:=t+100

S2(A), READ(A, s)
S = S8*2
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T1 T2
S1(A), READ(A, 1)
t:=t+100

S2(A), READ(A, s)
S :=5*2
X1(A)
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T1 T2
S1(A), READ(A, 1)
t:=t+100

S2(A), READ(A, s)

S =8*2

X1(A)
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November 8, 2024

T1 T2

S1(A), READ(A, 1)

t:=t+100
S2(A), READ(A, s)
S =8*2

X1(A)

COMMIT U(A)

Isolation Levels



T1 T2
S1(A), READ(A, 1)
t:=t+100

S2(A), READ(A, s)

X1(A)

COMMIT U(A)
. X1(A)
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T1 T2
S1(A), READ(A, 1)
t:=t+100
S2(A), READ(A, s)
X1(A)
COMMIT U(A)
L XI(A)
{ WRITE(A,1)
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= When a TXN waits for a lock, and never gets it

= Usually prevented by placing TXN in a queue

* Need to pay more attention to S/X locks
« Some TXNs hold an S lock
* One TXN requests X lock and walits
« But more TXNs arrive and requests S locks, granted
 Solution: stop granting S locks when X requests exists
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Lock Escalation May Deadlock

= Shared/Exclusive locks increase the likelihood of
deadlocks (next)
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Lock Escalation May Deadlock

T1 T2
S1(A), READ(A, 1)
t:=t+100

S2(A), READ(A, s)

X1(A
( )
X2(A)
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Discussion

= All DBMS that use a locking-based CC implement
multiple types of locks

* This usually increases the degree of concurrency,
e.g. READ ONLY transactions don’t wait

= Lock escalation:
« From more permissive to stricter lock
* E.g. shared lock to exclusive lock
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Next Topic

Weaker isolation levels :

» Increase TPS by giving up on serializability

» But what exactly do they guarantee?
* Imprecise: they just avoid certain conflicts

« Formal definition is operational, using locks
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Conflicts Between
Concurrent Operations




Common Concurrency Conflicts

These never happen in serializable schedules,
but may happen in weaker levels of isolation

* Dirty/Inconsistent Read

» Lost Update

» Unrepeatable Read

= Phantom Read
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Dirty/Inconsistent Read

Dirty read reading data of uncommitted TXN
a.k.a. inconsistent read

-$10mil from project A

time

+$7mil to project B

+3$3mil to project C

« Dirty/Inconsistent Read
» Lost Update

* Unrepeatable Read

* Phantom Read

Manager wants to CEO wants to check
balance project budgets company balance
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Dirty/Inconsistent Read

Dirty read reading data of uncommitted TXN
a.k.a. inconsistent read

« Dirty/Inconsistent Read
» Lost Update

* Unrepeatable Read

* Phantom Read

Manager wants to CEO wants to check
balance project budgets company balance
SELECT SUM(money) ...
GE) -$10mil from project A
+$7mil to project B
+3$3mil to project C
\
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Dirty/Inconsistent Read

Dirty read reading data of uncommitted TXN
a.k.a. inconsistent read

time

+$7mil to project B

+3$3mil to project C

« Dirty/Inconsistent Read
» Lost Update

* Unrepeatable Read

* Phantom Read

Manager wants to CEO wants to check
balance project budgets company balance

SELECT SUM(money) ...
-$10mil from project:\ V
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Dirty/Inconsistent Read

Dirty read reading data of uncommitted TXN
a.k.a. inconsistent read

« Dirty/Inconsistent Read
» Lost Update

* Unrepeatable Read

* Phantom Read

time

+$7mil to project B

+3$3mil to project C

N -V

Manager wants to CEO wants to check
balance project budgets company balance

SELECT SUM(money) ...
-$10mil from project:\ V
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Dirty/Inconsistent Read

time

« Dirty/Inconsistent Read

Dirty read reading data of uncommitted TXN | -ostpdate

Unrepeatable Read

a.k.a. inconsistent read _Phentom Read
Manager wants to CEO wants to check
balance project budgets company balance

SELECT SUM(money) ...
-$10mil from project:\ V

+$7mil to project B

+3$3mil to project C
«
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Lost Update

A lost update happens when a write
IS overwritten by another TXN

User 1 wants to pool
money into account 1

Set account 1 = 200

time

Set account2=0

November 8, 2024 Isolation Levels

+ Dirty/Inconsistent Read
* Lost Update

* Unrepeatable Read

* Phantom Read

Account 1 =100, Account 2 =100

User 2 wants to pool money

iInto account 2




Lost Update

_ + Dirty/Inconsistent Read
A lost update happens when a write L Ureentable Read
IS overwritten by another TXN *_Phantom Read

Account 1 =100, Account 2 =100

User 1 wants to pool User 2 wants to pool money
money into account 1 iInto account 2
" Set account 1 = 200
£
Set account2 =0
Set account 2 = 200
v Setaccount1 =0
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Lost Update

_ + Dirty/Inconsistent Read
A lost update happens when a write L Ureentable Read
IS overwritten by another TXN *_Phantom Read

Account 1 =100, Account 2 =100

User 1 wants to pool User 2 wants to pool money
money into account 1 iInto account 2
" Set account 1 = 200
£
Set account2 =0
Set account 2 = 200
v Setaccount1 =0

v/

At end: Account 1 =0, Account 2 = 200

November 8, 2024 Isolation Levels




Lost Update

_ + Dirty/Inconsistent Read
A lost update happens when a write L Ureentable Read
IS overwritten by another TXN *_Phantom Read

Account 1 =100, Account 2 =100

User 1 wants to pool User 2 wants to pool money
money into account 1 iInto account 2
" Set account 1 = 200
E Set account 2 = 200
Set account2 =0
Setaccountl1 =0
\
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Lost Update

_ + Dirty/Inconsistent Read
A lost update happens when a write L Ureentable Read
IS overwritten by another TXN *_Phantom Read

Account 1 =100, Account 2 =100
User 1 wants to pool User 2 wants to pool money

money into account 1 Lost update iInto account 2

Set account 1 = 200

Set account 2 = 200
Set account2 =0

Set account1 =0

time

' X
At end: Account 1 =0, Account2=0
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Unrepeatable Read

+ Dirty/Inconsistent Read
An unrepeatable read happens when e e Read
data read twice differs . Thentom Read
Accountant wants to Warehouse updates
check company assets iInventory levels

SELECT inventory
FROM Products
WHERE pid =1

time

SELECT inventory*price
Y FROM Products
WHERE pid =1

November 8, 2024 Isolation Levels




Unrepeatable Read

An unrepeatable read happens when
data read twice differs

Accountant wants to
check company assets

SELECT inventory
FROM Products
WHERE pid =1

time

SELECT inventory*price
Y FROM Products
WHERE pid =1

November 8, 2024 Isolation Levels

+ Dirty/Inconsistent Read
» Lost Update

* Unrepeatable Read

* Phantom Read

Warehouse updates
iInventory levels

UPDATE Products
SET inventory =0
WHERE pid =1




Unrepeatable Read

+ Dirty/Inconsistent Read
An unrepeatable read happens when Ut le Read
data read twice differs . Thentom Read
Accountant wants to Warehouse updates
check company assets iInventory levels

SELECT inventory
FROM Products
WHERE pid =1

time

UPDATE Products
SET inventory =0
WHERE pid =1

SELECT inventory*price
Y FROM Products
WHERE pid =1

Second read of
Products.inventory
is different
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Phantom Read

+ Dirty/Inconsistent Read
A phantom read happens when . Unepentabte Read
a record is inserted/delete during reads L Phentom e
Accountant wants to Warehouse receives new
check company assets products
SELECT *

time

FROM products
WHERE price <10.00

SELECT *
Y FROM products
WHERE price < 20.00

November 8, 2024 Isolation Levels




Phantom Read

A phantom read happens when

a record is inserted/delete during reads ©_Phentom Read

Accountant wants to
check company assets

SELECT *
FROM products
WHERE price <10.00

time

SELECT *
Y FROM products
WHERE price < 20.00

November 8, 2024 Isolation Levels

+ Dirty/Inconsistent Read
» Lost Update
* Unrepeatable Read

Warehouse receives new
products

INSERT INTO Products
VALUES (‘nuts’, 10, 8.99)




Phantom Read

+ Dirty/Inconsistent Read
A phantom read happens when . Unepentabte Read
a record is inserted/delete during reads L Phentom e
Accountant wants to Warehouse receives new
check company assets products
SELECT *

time

FROM products

WHERE price <10.00
INSERT INTO Products
VALUES (‘nuts’, 10, 8.99)

SELECT *
Y FROM products
WHERE price < 20.00

Returns a product

that should have been
in the first query
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Weaker Isolation Levels




|Isolation Levels

= SET TRANSACTION ISOLATION LEVEL
« READ UNCOMMITED

READ COMMITED

REPEATABLE READ

SERIALIZABLE

SNAPSHOT ISOLATION (MVCC)

» Default is not always SERIALIZABLE: see doc
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Isolation Level Design Spectrum

FAST CORRECT

November 8, 2024 Isolation Levels



Isolation Level Design Spectrum

CORRECT
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READ UNCOMMITTED

= \Writes - Strict 2PL write locks
= Reads =2 No locks needed
= Reads never wait! But dirty reads are possible

X(A) W(A)
R(A)
COMMIT

ABORT U(A)

November 8, 2024 Isolation Levels



READ UNCOMMITTED

= \Writes - Strict 2PL write locks
= Reads =2 No locks needed
= Reads never wait! But dirty reads are possible

Write lock obeys
Strict 2PL

Read executes
whenever

X(A) W(A)
R(A)
COMMIT

ABORT U(A)
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READ UNCOMMITTED

= \Writes - Strict 2PL write locks
= Reads =2 No locks needed
= Reads never wait! But dirty reads are possible

Still possible to get isolated results, but you have
to be “lucky” when a write operation is done

X(A) W(A)
ABORT U(A)
R(A)
COMMIT
Serial

November 8, 2024 Isolation Levels



READ UNCOMMITTED

= \Writes - Strict 2PL write locks
= Reads =2 No locks needed
= Reads never wait! But dirty reads are possible

Still possible to get isolated results, but you have
to be “lucky” when a write operation is done

X(A) W(A)

o
X(A) W(A) COMMIT
ABORT U(A) ABORT U(A)

R(A) Non-serializable
COMMIT
Serial
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READ UNCOMMITTED

= \Writes - Strict 2PL write locks
= Reads =2 No locks needed
= Reads never wait! But dirty reads are possible

Still possible to get isolated results, but you have
to be “lucky” when a write operation is done

X(A) W(A)
e
X(A) W(A) COMMIT R(A)
ABORT U(A) ABORTU(A) . X(A) W(A)
R(A) Non-serializable ABORT U(A)
COMMIT COMMIT
Serial Serializable (lucky!)
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READ UNCOMMITTED

Fast READ due to zero lock management overhead

Use cases:

» Static data (few or no writes after data initialization)

* Read coverage/accuracy is not mission critical
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Isolation Level Design Spectrum

CORRECT
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READ COMMITTED

= Writes - Strict 2PL write locks

= Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

= No dirty reads. But non-repeatable reads possible.
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READ COMMITTED

= Writes - Strict 2PL write locks

= Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

= No dirty reads. But non-repeatable reads possible.

X(A) W(A)

>

COMMIT
ABORT U(A)
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READ COMMITTED

= Writes - Strict 2PL write locks

= Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

= No dirty reads. But non-repeatable reads possible.

A dirty read could only happen if a read occurs after
a write and before a COMMIT/ROLLBACK

X(A) W(A)

>

COMMIT
ABORT U(A)
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READ COMMITTED

= Writes - Strict 2PL write locks

= Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

= No dirty reads. But non-repeatable reads possible.

A dirty read could only happen if a read occurs after
a write and before a COMMIT/ROLLBACK

‘

X(A) W(A) X(A) W(A)

><(A) S(A) blocked. ..
COMMIT ABORTU(A)  ...granted S(A)
ABORT U(A) R(A)

COMMIT U(A)
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READ COMMITTED

= Writes - Strict 2PL write locks

= Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

* No dirty reads.
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READ COMMITTED

= Writes = Strict 2PL write locks

» Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

| R
= No dirty reads. = =
But non-repeatable
reads possible. R(A)
W(A)
COMMIT U(A)
R(A)
COMMIT U(A)
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READ COMMITTED

= Writes = Strict 2PL write locks

» Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

= No dirty reads. -

But non-repeatable =

: X(A) blocked...
reads possible.

R(A)
...granted X(A) U(A)
S(A) blocked...

W(A) .

COMMIT U(A) ...granted S(A)
R(A)
X(A)
W(A)

COMMIT U(A)



READ COMMITTED

» Fast READ since operation happens as soon as
write txns are done

= Use cases:
« Guarantee that read result is valid at some point

o Often useful for e-commerce situations

« Guarantee customer has good info to start with but doesn’t
block other customers from purchasing

ight
Aaron Knig . .
by : Sy W ® Reservation Not Possible
¥ . okl — Sorry, but the couchette berth you have requested
on the NJ 421 from Dusseldorf Hbf to Innsbruck
Hbf is no longer available. Please change your
m: “1'“ EE’ reservation reguest
o . for FR ! eserva equest.
This item ships
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Isolation Level Design Spectrum

FAST CORRECT
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REPEATABLE READ

= \Writes - Strict 2PL write locks
= Reads = Strict 2PL read locks
» Unrepeatable reads are prevented

November 8, 2024 Isolation Levels



REPEATABLE READ

= \Writes - Strict 2PL write locks
= Reads = Strict 2PL read locks
» Unrepeatable reads are prevented

S(A)
X(A) blocked...
R(A)
...granted X( U(A)

A><A) blocked...

W(A)
COMMIT U(A) ...granted S(A)

R(A)

COMMIT U(A)
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REPEATABLE READ

= \Writes - Strict 2PL write locks
= Reads = Strict 2PL read locks
» Unrepeatable reads are prevented

S(A)
X(A) blocked... S(A)
R(A) X(A) blocked...
...granted X( U(A) R(A)

A><A) blocked... ‘ R(A)

W(A) ...granted X(A) COMMIT U(A)
COMMIT U(A) ...granted S(A) W(A)

R(A) COMMIT U(A)

COMMIT U(A)
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REPEATABLE READ

= \Writes = Strict 2PL write locks
* Reads - Strict 2PL read locks eridizabie

» Unrepeatable reads are prevented

S(A)
X(A) blocked... S(A)
R(A) X(A) blocked...
...granted X( U(A) R(A)

A><A) blocked... ‘ R(A)

W(A) ...granted X(A) COMMIT U(A)
COMMIT U(A) ...granted S(A) W(A)

R(A) COMMIT U(A)

COMMIT U(A)
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REPEATABLE READ

» Ensures conflict serializability

» Recall: if the database is static (no insert/delete)
then conflict serializability implies serializability

= Use cases: few insert/deletes
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Isolation Level Design Spectrum

Il

FAST CORRECT
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The Phantom Menace

= Same read has more rows
» Asset checking scenario:

Accountant wants to Warehouse catalogs
check company assets new products
SELECT *

FROM products

& WHERE price <10.00
£ INSERT INTO Products
VALUES (‘nuts’, 10, 8.99)
SELECT *
FROM products
v WHERE price < 20.00
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Phantom Reads

= Conflict serializability does not prevent phantoms.

These are
the SQL

gueries

SELECT * FROM Table;

INSERT INTO Table

VALUES (C...);
SELECT * FROM Table:

November 8, 2024 Isolation Levels



Phantom Reads

= Conflict serializability does not prevent phantoms.

And this is
how we modeled

These are

the TXNSs using
the SQL

R/W to elements

gueries

SELECT * FROM Table; R(A)

R(B)
(c) 'NSERTINTO Table
VALUES (C...):
SELECT * FROM Table: R(A)
R(B)
R(C)
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Phantom Reads

= Conflict serializability does not prevent phantoms.

SELECT * FROM Table; R(A)

R(B)
(c) 'NSERTINTO Table
VALUES (C...):
SELECT * FROM Table: R(A)
R(B)
R(C)
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Phantom Reads

= Conflict serializability does not prevent phantoms.

A conflict-serializable

schedule!

SELECT * FROM Table; R(A)

R(B)
(c) 'NSERTINTO Table
VALUES (C...);
SELECT * FROM Table: R(A)
R(B)
R(C)
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Phantom Reads

= Conflict serializability does not prevent phantoms.

A conflict-serializable
schedule!

What is the
equivalent
serial schedule?

November 8, 2024

SELECT * FROM Table;

SELECT * FROM Table;

R(A)

R(B

) () INSERTINTO Table
©" vaLues ...

R(A)

R(B)

R(C)
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In a static database:
» Conflict serializability implies serializability

In a dynamic database:
* This no longer holds: we need to handle phatoms
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SERIALIZABLE Level

= Write Lock - Strict 2PL
» Read Lock - Strict 2PL
= Locks on tables to handle phantom problem
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SERIALIZABLE Level

= Write Lock - Strict 2PL
» Read Lock - Strict 2PL
= Locks on tables to handle phantom problem

R(A)
R(B)
()
R(A)
R(B)
R(C)
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SERIALIZABLE Level

= Write Lock = Strict 2PL
= Read Lock = Strict 2PL

= Locks on tables to handle phantom problem

R(A) Change element R(T)
R(B) granularity to Table X(T) blocked
© (T) blocked...
T R(T)
COMMIT U(T) ...granted X(T)
R(B) W(T)
R(C)

COMMIT U(T)
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FAST CORRECT
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