Setup

— 7 [senmn
Senphame
~
Lslp SetupType
FK1 | SestioniD Device
NumberOfTrial Sctshaies
K2 |SetupiD Filtes
tes |sabjeaio SetupCondiion
P
puraton
ket
Sttapblaker
RecortedMinieh
Note
Trial_has_Timecourse Trial_has_Trajectory
rer [Per | Toaio
re2 | rimecousen rez [Tmectonyio
Tanacouse Toietory
[Temecounen o | Teieasrro
Frequency frequency
Seemenio seqmentid
Kiadoroats indoroata
Neeam Markers
) NP oesiniing
—

Walder.

N N

e
=
rolih
/ i Luﬁ,\ys N
VAN 4 !
/X Bt
y :‘_a?w! R-c?a!d / Ecm* 'Hos(ev

¥

JoffeNtargation

ey
iy

Var
o

y HE X Condr
. B s 7 Podik oY
Toras A KeviShae
/ ct
« Waltoh
3 Myroetia Gregor
deric e \

HyperCube

gCube shuffle-based parallel g

Introduction to Data Management

Transactions: Isolation Levels

Paul G. Allen School of Computer Science and Engineering

ember 8, 2024

University of Washington, Seattle

Isolation Levels

Announcements

» HW5 Is due tonight

» HWG6 Is posted:

* Milestone 1 is due next Friday. NO LATE DAYS

« Milestone 2 is due on Wednesday, 11/27

November 8, 2024 Isolation Levels

Lock Types

Shared/Exclusive Locks

Reads don’t conflict with each other.

= Exclusive/Write Lock = X;(A)

« May read or write
* No other locks may exist

» Shared/Read Lock = S,(A)

 May only read
« May exist with other shared locks

= Unlocked
* NO access

November 8, 2024 Isolation Levels

Shared/Exclusive Locks

...but another TXN holds this...
 lunlocked S x|
i B
this. | X Yes No No

...then we do or don’t grant permission

November 8, 2024 Isolation Levels

Discussion

» \When TXN wants to read A, it requests S(A)

= If [ater it wants to write A, then it requests X(A)

* This is a form of lock escalation:
» Lock escalation: fine grained -> coarse grained

November 8, 2024 Isolation Levels

T1 T2
S1(A), READ(A, 1)
t:=t+100

S2(A), READ(A, s)
S = S8*2

November 8, 2024 Isolation Levels

T1 T2
S1(A), READ(A, 1)
t:=t+100

S2(A), READ(A, s)
S :=5*2
X1(A)

November 8, 2024 Isolation Levels

T1 T2
S1(A), READ(A, 1)
t:=t+100

S2(A), READ(A, s)

S =8*2

X1(A)

November 8, 2024 Isolation Levels

November 8, 2024

T1 T2

S1(A), READ(A, 1)

t:=t+100
S2(A), READ(A, s)
S =8*2

X1(A)

COMMIT U(A)

Isolation Levels

T1 T2
S1(A), READ(A, 1)
t:=t+100

S2(A), READ(A, s)

X1(A)

COMMIT U(A)
. X1(A)

November 8, 2024 Isolation Levels

T1 T2
S1(A), READ(A, 1)
t:=t+100
S2(A), READ(A, s)
X1(A)
COMMIT U(A)
L XI(A)
{ WRITE(A,1)

November 8, 2024 Isolation Levels

= When a TXN waits for a lock, and never gets it

= Usually prevented by placing TXN in a queue

* Need to pay more attention to S/X locks
« Some TXNs hold an S lock
* One TXN requests X lock and walits
« But more TXNs arrive and requests S locks, granted
 Solution: stop granting S locks when X requests exists

November 8, 2024 Isolation Levels

Lock Escalation May Deadlock

= Shared/Exclusive locks increase the likelihood of
deadlocks (next)

November 8, 2024 Isolation Levels

Lock Escalation May Deadlock

T1 T2
S1(A), READ(A, 1)
t:=t+100

S2(A), READ(A, s)

X1(A
()
X2(A)

November 8, 2024 Isolation Levels

Discussion

= All DBMS that use a locking-based CC implement
multiple types of locks

* This usually increases the degree of concurrency,
e.g. READ ONLY transactions don’t wait

= Lock escalation:
« From more permissive to stricter lock
* E.g. shared lock to exclusive lock

November 8, 2024 Isolation Levels

Next Topic

Weaker isolation levels :

» Increase TPS by giving up on serializability

» But what exactly do they guarantee?
* Imprecise: they just avoid certain conflicts

« Formal definition is operational, using locks

November 8, 2024 Isolation Levels

Conflicts Between
Concurrent Operations

Common Concurrency Conflicts

These never happen in serializable schedules,
but may happen in weaker levels of isolation

* Dirty/Inconsistent Read

» Lost Update

» Unrepeatable Read

= Phantom Read

November 8, 2024 Isolation Levels

Dirty/Inconsistent Read

Dirty read reading data of uncommitted TXN
a.k.a. inconsistent read

-$10mil from project A

time

+$7mil to project B

+3$3mil to project C

« Dirty/Inconsistent Read
» Lost Update

* Unrepeatable Read

* Phantom Read

Manager wants to CEO wants to check
balance project budgets company balance

November 8, 2024 Isolation Levels

Dirty/Inconsistent Read

Dirty read reading data of uncommitted TXN
a.k.a. inconsistent read

« Dirty/Inconsistent Read
» Lost Update

* Unrepeatable Read

* Phantom Read

Manager wants to CEO wants to check
balance project budgets company balance
SELECT SUM(money) ...
GE) -$10mil from project A
+$7mil to project B
+3$3mil to project C
\

November 8, 2024 Isolation Levels

Dirty/Inconsistent Read

Dirty read reading data of uncommitted TXN
a.k.a. inconsistent read

time

+$7mil to project B

+3$3mil to project C

« Dirty/Inconsistent Read
» Lost Update

* Unrepeatable Read

* Phantom Read

Manager wants to CEO wants to check
balance project budgets company balance

SELECT SUM(money) ...
-$10mil from project:\ V

November 8, 2024 Isolation Levels

Dirty/Inconsistent Read

Dirty read reading data of uncommitted TXN
a.k.a. inconsistent read

« Dirty/Inconsistent Read
» Lost Update

* Unrepeatable Read

* Phantom Read

time

+$7mil to project B

+3$3mil to project C

N -V

Manager wants to CEO wants to check
balance project budgets company balance

SELECT SUM(money) ...
-$10mil from project:\ V

November 8, 2024 Isolation Levels

Dirty/Inconsistent Read

time

« Dirty/Inconsistent Read

Dirty read reading data of uncommitted TXN | -ostpdate

Unrepeatable Read

a.k.a. inconsistent read _Phentom Read
Manager wants to CEO wants to check
balance project budgets company balance

SELECT SUM(money) ...
-$10mil from project:\ V

+$7mil to project B

+3$3mil to project C
«

November 8, 2024 Isolation Levels

Lost Update

A lost update happens when a write
IS overwritten by another TXN

User 1 wants to pool
money into account 1

Set account 1 = 200

time

Set account2=0

November 8, 2024 Isolation Levels

+ Dirty/Inconsistent Read
* Lost Update

* Unrepeatable Read

* Phantom Read

Account 1 =100, Account 2 =100

User 2 wants to pool money

iInto account 2

Lost Update

_ + Dirty/Inconsistent Read
A lost update happens when a write L Ureentable Read
IS overwritten by another TXN *_Phantom Read

Account 1 =100, Account 2 =100

User 1 wants to pool User 2 wants to pool money
money into account 1 iInto account 2
" Set account 1 = 200
£
Set account2 =0
Set account 2 = 200
v Setaccount1 =0

November 8, 2024 Isolation Levels

Lost Update

_ + Dirty/Inconsistent Read
A lost update happens when a write L Ureentable Read
IS overwritten by another TXN *_Phantom Read

Account 1 =100, Account 2 =100

User 1 wants to pool User 2 wants to pool money
money into account 1 iInto account 2
" Set account 1 = 200
£
Set account2 =0
Set account 2 = 200
v Setaccount1 =0

v/

At end: Account 1 =0, Account 2 = 200

November 8, 2024 Isolation Levels

Lost Update

_ + Dirty/Inconsistent Read
A lost update happens when a write L Ureentable Read
IS overwritten by another TXN *_Phantom Read

Account 1 =100, Account 2 =100

User 1 wants to pool User 2 wants to pool money
money into account 1 iInto account 2
" Set account 1 = 200
E Set account 2 = 200
Set account2 =0
Setaccountl1 =0
\

November 8, 2024 Isolation Levels

Lost Update

_ + Dirty/Inconsistent Read
A lost update happens when a write L Ureentable Read
IS overwritten by another TXN *_Phantom Read

Account 1 =100, Account 2 =100
User 1 wants to pool User 2 wants to pool money

money into account 1 Lost update iInto account 2

Set account 1 = 200

Set account 2 = 200
Set account2 =0

Set account1 =0

time

' X
At end: Account 1 =0, Account2=0

November 8, 2024 Isolation Levels

Unrepeatable Read

+ Dirty/Inconsistent Read
An unrepeatable read happens when e e Read
data read twice differs . Thentom Read
Accountant wants to Warehouse updates
check company assets iInventory levels

SELECT inventory
FROM Products
WHERE pid =1

time

SELECT inventory*price
Y FROM Products
WHERE pid =1

November 8, 2024 Isolation Levels

Unrepeatable Read

An unrepeatable read happens when
data read twice differs

Accountant wants to
check company assets

SELECT inventory
FROM Products
WHERE pid =1

time

SELECT inventory*price
Y FROM Products
WHERE pid =1

November 8, 2024 Isolation Levels

+ Dirty/Inconsistent Read
» Lost Update

* Unrepeatable Read

* Phantom Read

Warehouse updates
iInventory levels

UPDATE Products
SET inventory =0
WHERE pid =1

Unrepeatable Read

+ Dirty/Inconsistent Read
An unrepeatable read happens when Ut le Read
data read twice differs . Thentom Read
Accountant wants to Warehouse updates
check company assets iInventory levels

SELECT inventory
FROM Products
WHERE pid =1

time

UPDATE Products
SET inventory =0
WHERE pid =1

SELECT inventory*price
Y FROM Products
WHERE pid =1

Second read of
Products.inventory
is different

November 8, 2024 Isolation Levels

Phantom Read

+ Dirty/Inconsistent Read
A phantom read happens when . Unepentabte Read
a record is inserted/delete during reads L Phentom e
Accountant wants to Warehouse receives new
check company assets products
SELECT *

time

FROM products
WHERE price <10.00

SELECT *
Y FROM products
WHERE price < 20.00

November 8, 2024 Isolation Levels

Phantom Read

A phantom read happens when

a record is inserted/delete during reads ©_Phentom Read

Accountant wants to
check company assets

SELECT *
FROM products
WHERE price <10.00

time

SELECT *
Y FROM products
WHERE price < 20.00

November 8, 2024 Isolation Levels

+ Dirty/Inconsistent Read
» Lost Update
* Unrepeatable Read

Warehouse receives new
products

INSERT INTO Products
VALUES (‘nuts’, 10, 8.99)

Phantom Read

+ Dirty/Inconsistent Read
A phantom read happens when . Unepentabte Read
a record is inserted/delete during reads L Phentom e
Accountant wants to Warehouse receives new
check company assets products
SELECT *

time

FROM products

WHERE price <10.00
INSERT INTO Products
VALUES (‘nuts’, 10, 8.99)

SELECT *
Y FROM products
WHERE price < 20.00

Returns a product

that should have been
in the first query

November 8, 2024 Isolation Levels

Weaker Isolation Levels

|Isolation Levels

= SET TRANSACTION ISOLATION LEVEL
« READ UNCOMMITED

READ COMMITED

REPEATABLE READ

SERIALIZABLE

SNAPSHOT ISOLATION (MVCC)

» Default is not always SERIALIZABLE: see doc

November 8, 2024 Isolation Levels

Isolation Level Design Spectrum

FAST CORRECT

November 8, 2024 Isolation Levels

Isolation Level Design Spectrum

CORRECT

November 8, 2024 Isolation Levels

READ UNCOMMITTED

= \Writes - Strict 2PL write locks
= Reads =2 No locks needed
= Reads never wait! But dirty reads are possible

X(A) W(A)
R(A)
COMMIT

ABORT U(A)

November 8, 2024 Isolation Levels

READ UNCOMMITTED

= \Writes - Strict 2PL write locks
= Reads =2 No locks needed
= Reads never wait! But dirty reads are possible

Write lock obeys
Strict 2PL

Read executes
whenever

X(A) W(A)
R(A)
COMMIT

ABORT U(A)

November 8, 2024 Isolation Levels

READ UNCOMMITTED

= \Writes - Strict 2PL write locks
= Reads =2 No locks needed
= Reads never wait! But dirty reads are possible

Still possible to get isolated results, but you have
to be “lucky” when a write operation is done

X(A) W(A)
ABORT U(A)
R(A)
COMMIT
Serial

November 8, 2024 Isolation Levels

READ UNCOMMITTED

= \Writes - Strict 2PL write locks
= Reads =2 No locks needed
= Reads never wait! But dirty reads are possible

Still possible to get isolated results, but you have
to be “lucky” when a write operation is done

X(A) W(A)

o
X(A) W(A) COMMIT
ABORT U(A) ABORT U(A)

R(A) Non-serializable
COMMIT
Serial

November 8, 2024 Isolation Levels

READ UNCOMMITTED

= \Writes - Strict 2PL write locks
= Reads =2 No locks needed
= Reads never wait! But dirty reads are possible

Still possible to get isolated results, but you have
to be “lucky” when a write operation is done

X(A) W(A)
e
X(A) W(A) COMMIT R(A)
ABORT U(A) ABORTU(A) . X(A) W(A)
R(A) Non-serializable ABORT U(A)
COMMIT COMMIT
Serial Serializable (lucky!)

November 8, 2024 Isolation Levels

READ UNCOMMITTED

Fast READ due to zero lock management overhead

Use cases:

» Static data (few or no writes after data initialization)

* Read coverage/accuracy is not mission critical

November 8, 2024 Isolation Levels

Isolation Level Design Spectrum

CORRECT

November 8, 2024 Isolation Levels

READ COMMITTED

= Writes - Strict 2PL write locks

= Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

= No dirty reads. But non-repeatable reads possible.

November 8, 2024 Isolation Levels

READ COMMITTED

= Writes - Strict 2PL write locks

= Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

= No dirty reads. But non-repeatable reads possible.

X(A) W(A)

>

COMMIT
ABORT U(A)

November 8, 2024 Isolation Levels

READ COMMITTED

= Writes - Strict 2PL write locks

= Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

= No dirty reads. But non-repeatable reads possible.

A dirty read could only happen if a read occurs after
a write and before a COMMIT/ROLLBACK

X(A) W(A)

>

COMMIT
ABORT U(A)

November 8, 2024 Isolation Levels

READ COMMITTED

= Writes - Strict 2PL write locks

= Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

= No dirty reads. But non-repeatable reads possible.

A dirty read could only happen if a read occurs after
a write and before a COMMIT/ROLLBACK

‘

X(A) W(A) X(A) W(A)

><(A) S(A) blocked. ..
COMMIT ABORTU(A) ...granted S(A)
ABORT U(A) R(A)

COMMIT U(A)

November 8, 2024 Isolation Levels

READ COMMITTED

= Writes - Strict 2PL write locks

= Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

* No dirty reads.

November 8, 2024 Isolation Levels

READ COMMITTED

= Writes = Strict 2PL write locks

» Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

| R
= No dirty reads. = =
But non-repeatable
reads possible. R(A)
W(A)
COMMIT U(A)
R(A)
COMMIT U(A)

November 8, 2024 Isolation Levels 52

READ COMMITTED

= Writes = Strict 2PL write locks

» Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

= No dirty reads. -

But non-repeatable =

: X(A) blocked...
reads possible.

R(A)
...granted X(A) U(A)
S(A) blocked...

W(A) .

COMMIT U(A) ...granted S(A)
R(A)
X(A)
W(A)

COMMIT U(A)

READ COMMITTED

» Fast READ since operation happens as soon as
write txns are done

= Use cases:
« Guarantee that read result is valid at some point

o Often useful for e-commerce situations

« Guarantee customer has good info to start with but doesn’t
block other customers from purchasing

ight
Aaron Knig . .
by : Sy W ® Reservation Not Possible
¥ . okl — Sorry, but the couchette berth you have requested
on the NJ 421 from Dusseldorf Hbf to Innsbruck
Hbf is no longer available. Please change your
m: “1'“ EE’ reservation reguest
o . for FR ! eserva equest.
This item ships

November 8, 2024 Isolation Levels

Isolation Level Design Spectrum

FAST CORRECT

November 8, 2024 Isolation Levels

REPEATABLE READ

= \Writes - Strict 2PL write locks
= Reads = Strict 2PL read locks
» Unrepeatable reads are prevented

November 8, 2024 Isolation Levels

REPEATABLE READ

= \Writes - Strict 2PL write locks
= Reads = Strict 2PL read locks
» Unrepeatable reads are prevented

S(A)
X(A) blocked...
R(A)
...granted X(U(A)

A><A) blocked...

W(A)
COMMIT U(A) ...granted S(A)

R(A)

COMMIT U(A)

November 8, 2024 Isolation Levels

REPEATABLE READ

= \Writes - Strict 2PL write locks
= Reads = Strict 2PL read locks
» Unrepeatable reads are prevented

S(A)
X(A) blocked... S(A)
R(A) X(A) blocked...
...granted X(U(A) R(A)

A><A) blocked... ‘ R(A)

W(A) ...granted X(A) COMMIT U(A)
COMMIT U(A) ...granted S(A) W(A)

R(A) COMMIT U(A)

COMMIT U(A)

November 8, 2024 Isolation Levels

REPEATABLE READ

= \Writes = Strict 2PL write locks
* Reads - Strict 2PL read locks eridizabie

» Unrepeatable reads are prevented

S(A)
X(A) blocked... S(A)
R(A) X(A) blocked...
...granted X(U(A) R(A)

A><A) blocked... ‘ R(A)

W(A) ...granted X(A) COMMIT U(A)
COMMIT U(A) ...granted S(A) W(A)

R(A) COMMIT U(A)

COMMIT U(A)

November 8, 2024 Isolation Levels

REPEATABLE READ

» Ensures conflict serializability

» Recall: if the database is static (no insert/delete)
then conflict serializability implies serializability

= Use cases: few insert/deletes

November 8, 2024 Isolation Levels

Isolation Level Design Spectrum

Il

FAST CORRECT

November 8, 2024 Isolation Levels

The Phantom Menace

= Same read has more rows
» Asset checking scenario:

Accountant wants to Warehouse catalogs
check company assets new products
SELECT *

FROM products

& WHERE price <10.00
£ INSERT INTO Products
VALUES (‘nuts’, 10, 8.99)
SELECT *
FROM products
v WHERE price < 20.00

November 8, 2024 Isolation Levels

Phantom Reads

= Conflict serializability does not prevent phantoms.

These are
the SQL

gueries

SELECT * FROM Table;

INSERT INTO Table

VALUES (C...);
SELECT * FROM Table:

November 8, 2024 Isolation Levels

Phantom Reads

= Conflict serializability does not prevent phantoms.

And this is
how we modeled

These are

the TXNSs using
the SQL

R/W to elements

gueries

SELECT * FROM Table; R(A)

R(B)
(c) 'NSERTINTO Table
VALUES (C...):
SELECT * FROM Table: R(A)
R(B)
R(C)

November 8, 2024 Isolation Levels

Phantom Reads

= Conflict serializability does not prevent phantoms.

SELECT * FROM Table; R(A)

R(B)
(c) 'NSERTINTO Table
VALUES (C...):
SELECT * FROM Table: R(A)
R(B)
R(C)

November 8, 2024 Isolation Levels

Phantom Reads

= Conflict serializability does not prevent phantoms.

A conflict-serializable

schedule!

SELECT * FROM Table; R(A)

R(B)
(c) 'NSERTINTO Table
VALUES (C...);
SELECT * FROM Table: R(A)
R(B)
R(C)

November 8, 2024 Isolation Levels

Phantom Reads

= Conflict serializability does not prevent phantoms.

A conflict-serializable
schedule!

What is the
equivalent
serial schedule?

November 8, 2024

SELECT * FROM Table;

SELECT * FROM Table;

R(A)

R(B

) () INSERTINTO Table
©" vaLues ...

R(A)

R(B)

R(C)

Isolation Levels

In a static database:
» Conflict serializability implies serializability

In a dynamic database:
* This no longer holds: we need to handle phatoms

November 8, 2024 Isolation Levels

SERIALIZABLE Level

= Write Lock - Strict 2PL
» Read Lock - Strict 2PL
= Locks on tables to handle phantom problem

November 8, 2024 Isolation Levels

SERIALIZABLE Level

= Write Lock - Strict 2PL
» Read Lock - Strict 2PL
= Locks on tables to handle phantom problem

R(A)
R(B)
()
R(A)
R(B)
R(C)

November 8, 2024 Isolation Levels

SERIALIZABLE Level

= Write Lock = Strict 2PL
= Read Lock = Strict 2PL

= Locks on tables to handle phantom problem

R(A) Change element R(T)
R(B) granularity to Table X(T) blocked
© (T) blocked...
T R(T)
COMMIT U(T) ...granted X(T)
R(B) W(T)
R(C)

COMMIT U(T)

November 8, 2024 Isolation Levels

FAST CORRECT

November 8, 2024 Isolation Levels

	Default Section
	Slide 1
	Slide 2: Announcements
	Slide 3
	Slide 4: Shared/Exclusive Locks
	Slide 5: Shared/Exclusive Locks
	Slide 6: Discussion
	Slide 7: Example
	Slide 8: Example
	Slide 9: Example
	Slide 10: Example
	Slide 11: Example
	Slide 12: Example
	Slide 13: Starvation
	Slide 14: Lock Escalation May Deadlock
	Slide 15: Lock Escalation May Deadlock
	Slide 16: Discussion
	Slide 17: Next Topic
	Slide 18
	Slide 19: Common Concurrency Conflicts
	Slide 20: Dirty/Inconsistent Read
	Slide 21: Dirty/Inconsistent Read
	Slide 22: Dirty/Inconsistent Read
	Slide 23: Dirty/Inconsistent Read
	Slide 24: Dirty/Inconsistent Read
	Slide 25: Lost Update
	Slide 26: Lost Update
	Slide 27: Lost Update
	Slide 28: Lost Update
	Slide 29: Lost Update
	Slide 30: Unrepeatable Read
	Slide 31: Unrepeatable Read
	Slide 32: Unrepeatable Read
	Slide 33: Phantom Read
	Slide 34: Phantom Read
	Slide 35: Phantom Read
	Slide 36
	Slide 37: Isolation Levels
	Slide 38: Isolation Level Design Spectrum
	Slide 39: Isolation Level Design Spectrum
	Slide 40: READ UNCOMMITTED
	Slide 41: READ UNCOMMITTED
	Slide 42: READ UNCOMMITTED
	Slide 43: READ UNCOMMITTED
	Slide 44: READ UNCOMMITTED
	Slide 45: READ UNCOMMITTED
	Slide 46: Isolation Level Design Spectrum
	Slide 47: READ COMMITTED
	Slide 48: READ COMMITTED
	Slide 49: READ COMMITTED
	Slide 50: READ COMMITTED
	Slide 51: READ COMMITTED
	Slide 52: READ COMMITTED
	Slide 53: READ COMMITTED
	Slide 54: READ COMMITTED
	Slide 55: Isolation Level Design Spectrum
	Slide 56: REPEATABLE READ
	Slide 57: REPEATABLE READ
	Slide 58: REPEATABLE READ
	Slide 59: REPEATABLE READ
	Slide 60: REPEATABLE READ
	Slide 61: Isolation Level Design Spectrum
	Slide 62: The Phantom Menace
	Slide 63: Phantom Reads
	Slide 64: Phantom Reads
	Slide 65: Phantom Reads
	Slide 66: Phantom Reads
	Slide 67: Phantom Reads
	Slide 68: Recap
	Slide 69: SERIALIZABLE Level
	Slide 70: SERIALIZABLE Level
	Slide 71: SERIALIZABLE Level
	Slide 72: Summary

