
1

Application Data Management

November 6, 2024 Application Data Management

Amal Jacob, Guest Lecturer

Announcements

● HW5 is due on Friday

● HW6 M1 will be released end of this week

• HW6 is substantial - don’t procrastinate

• No late days for M1

● Go to section!

• Connect to Azure + setup, demo, useful tips

Application Data Management 2

Agenda

● Access Control

● Passwords

● Data Privacy

Application Data Management 3

DBMS controls

▪ Block unauthorized access
• Tiered-access hierarchy

▪ Usually a built-in access control

4Application Data Management

DBMS controls

▪ Block unauthorized access
• Tiered-access hierarchy

▪ Usually a built-in access control

▪ HW3/HW6 autograder runs student submissions
on staff tables in Azure
• How do we protect from student INSERTs, DELETEs,

etc. on read-only tables?

5Application Data Management

DBMS controls

6Application Data Management

CREATE USER <username>

WITH PASSWORD = <password>

CREATE USER autograder

WITH PASSWORD = ‘pass123’

▪ Create a user

Example: On Azure…

DBMS controls

7

GRANT <permissions>

ON <table>

TO <user/role>

GRANT SELECT

ON MySecureTable

TO autograder

Application Data Management

CREATE USER <username>

WITH PASSWORD = <password>

CREATE USER autograder

WITH PASSWORD = ‘pass123’

▪ Create a user

▪ Set permissions

Example: On Azure…

DBMS controls

8

GRANT <permissions>

ON <table>

TO <user/role>

GRANT SELECT

ON MySecureTable

TO autograder

Application Data Management

CREATE USER <username>

WITH PASSWORD = <password>

CREATE USER autograder

WITH PASSWORD = ‘pass123’

▪ Create a user

▪ Set permissions

Example: On Azure…

If you login to autograder, you won’t be

able to UPDATE, DELETE, etc.!

SQL Injection

Application Data Management 9

SQL Injection

▪ SQL Injection: Application input acts as code

▪ In applications, SQL queries are strings
• Partly consists of user input

▪ Malicious user can trick DBMS into thinking their
input is part of SQL code

Application Data Management 10

SQL Injection

▪ Example: School admin database

11Application Data Management

INSERT INTO Students (id, 'name');

SQL Injection

▪ Example: School admin database

▪ Malicious user input (in application):

12Application Data Management

id = 123

name = “Robert'); DROP TABLE Students;--”

INSERT INTO Students (id, 'name');

SQL Injection

▪ Example: School admin database

▪ Malicious user input (in application):

▪ Send application’s query string to database:

13Application Data Management

INSERT INTO Students (123, 'Robert’); DROP TABLE Students;-- ');

INSERT INTO Students (id, 'name');

id = 123

name = “Robert'); DROP TABLE Students;--”

SQL Injection

▪ Example: School admin database

▪ Malicious user input (in application):

▪ Send application’s query string to database:

14Application Data Management

INSERT INTO Students (123, ‘Robert’); DROP TABLE Students;-- ');

INSERT INTO Students (id, 'name');

INSERT INTO Students (123, ‘Robert’); DROP TABLE Students;-- ');

id = 123

name = “Robert'); DROP TABLE Students;--”

SQL Injection

▪ Other types of SQL injections

• Union attack, retrieve another table’s data

15Application Data Management

SELECT username, email

FROM Users

WHERE id =

‘user1’ UNION SELECT username, password FROM AdminUsers --’;

SQL Injection

▪ Other types of SQL injections

• Union attack, retrieve another table’s data

• Tautology attack, force TRUE condition to bypass filters

16Application Data Management

SELECT *

FROM Users

WHERE username = ‘user1’ OR 1 = 1 --' AND password = ‘pass’

SELECT username, email

FROM Users

WHERE id =

‘user1’ UNION SELECT username, password FROM AdminUsers --’;

SQL Injection

▪ Consistently one of the top web-based attacks

• In 2012, Yahoo! exposed ~450k emails/passwords

• In 2011, Sony potentially exposed PII from 1M+ users

• ~23% of all web vulnerabilities in 2023

17Application Data Management

https://www.bbc.com/news/technology-18811300
https://www.bbc.com/news/business-13636704
https://www.statista.com/statistics/806081/worldwide-application-vulnerability-taxonomy/

SQL Injection

▪ Consistently one of the top web-based attacks

• In 2012, Yahoo! exposed ~450k emails/passwords

• In 2011, Sony potentially exposed PII from 1M+ users

• ~23% of all web vulnerabilities in 2023

▪ Considered a “solved” problem
• Parameterize queries with prepared statements

18Application Data Management

https://www.bbc.com/news/technology-18811300
https://www.bbc.com/news/business-13636704
https://www.statista.com/statistics/806081/worldwide-application-vulnerability-taxonomy/

Java: JDBC

19Application Data Management

▪ Java API library to access DBMS

▪ PreparedStatement: prevent SQL injection attacks

Java: JDBC

20Application Data Management

Statement withoutPlaceholder = con.createStatement();

withoutPlaceholder.execute("INSERT INTO Students VALUES('" + userInput + "')");

PreparedStatement withPlaceholder =

con.prepareStatement("INSERT INTO Student VALUES(?)");

withPlaceholder.setString(1, userInput);

withPlaceholder.execute();

▪ Java API library to access DBMS

▪ PreparedStatement: prevent SQL injection attacks

Agenda

● Access Control

● Passwords

● Data Privacy

Application Data Management 21

Storing Passwords

▪ Passwords are special
• High potential for additional security compromises

• Only operation that should be done is equality
comparison

22Application Data Management

Storing Passwords

23

▪ Naive solution?

Application Data Management

Storing Passwords

24

Username Password

bobtheninja246 password

xDragonSlayerx asdf

annabelle2001 password

lamamaster123 ilovefish

theSQLexpert234 j62ld12446

seahawksrule12 j62ld12446

▪ Naive solution?

Application Data Management

Storing Passwords

25

Username Password

bobtheninja246 password

xDragonSlayerx asdf

annabelle2001 password

lamamaster123 ilovefish

theSQLexpert234 j62ld12446

seahawksrule12 j62ld12446

NEVER store passwords in plaintext!!

Application Data Management

X

Hashing

▪ Hash(input) → hash value

• Input → “scrambled” output

26Application Data Management

Hashing

▪ Hash(input) → hash value

• Input → “scrambled” output

▪ Hashing is deterministic

• Same input → same output

27Application Data Management

Hashing

▪ Hash(input) → hash value

• Input → “scrambled” output

▪ Hashing is deterministic

• Same input → same output

▪ Hashing (should be) noninvertible

• For secure hash functions, computationally infeasible
to derive input from the hash value

28Application Data Management

Storing Hashed Passwords

29

Username Password

bobtheninja246 password

xDragonSlayerx asdf

annabelle2001 password

lamamaster123 ilovefish

theSQLexpert234 j62ld12446

seahawksrule12 j62ld12446

▪ Store hash instead

Username HashedPassword

bobtheninja246 3da541…

xDragonSlayerx bfd361…

annabelle2001 3da541…

lamamaster123 5baa61…

theSQLexpert234 ca8612…

seahawksrule12 ca8612…

Application Data Management

X

Validating Hashed Passwords

30

▪ Store hash instead
• Validate any given password by hashing it and

comparing with stored hash

Username HashedPassword

bobtheninja246 3da541…

xDragonSlayerx bfd361…

annabelle2001 3da541…

lamamaster123 5baa61…

theSQLexpert234 ca8612…

seahawksrule12 ca8612…

Application Data Management

Validating Hashed Passwords

31

▪ Store hash instead
• Validate any given password by hashing it and

comparing with stored hash

Username HashedPassword

bobtheninja246 3da541…

xDragonSlayerx bfd361…

annabelle2001 3da541…

lamamaster123 5baa61…

theSQLexpert234 ca8612…

seahawksrule12 ca8612…

▪ lamamaster123 logs in with
“ilovefish”

Application Data Management

Validating Hashed Passwords

32

▪ Store hash instead
• Validate any given password by hashing it and

comparing with stored hash

Username HashedPassword

bobtheninja246 3da541…

xDragonSlayerx bfd361…

annabelle2001 3da541…

lamamaster123 5baa61…

theSQLexpert234 ca8612…

seahawksrule12 ca8612…

▪ lamamaster123 logs in with
“ilovefish”

▪ hash(“ilovefish”) → 5baa61…

Application Data Management

Validating Hashed Passwords

33

▪ Store hash instead
• Validate any given password by hashing it and

comparing with stored hash

Username HashedPassword

bobtheninja246 3da541…

xDragonSlayerx bfd361…

annabelle2001 3da541…

lamamaster123 5baa61…

theSQLexpert234 ca8612…

seahawksrule12 ca8612…

▪ lamamaster123 logs in with
“ilovefish”

▪ hash(“ilovefish”) → 5baa61…

▪ 5baa61… == 5baa61…
• Accept login

Application Data Management

Storing Passwords

34

Username Password

bobtheninja246 password

xDragonSlayerx asdf

annabelle2001 password

lamamaster123 ilovefish

theSQLexpert234 j62ld12446

seahawksrule12 j62ld12446

▪ But… there are always users with bad passwords

Username HashedPassword

bobtheninja246 3da541…

xDragonSlayerx bfd361…

annabelle2001 3da541…

lamamaster123 5baa61…

theSQLexpert234 ca8612…

seahawksrule12 ca8612…

Application Data Management

Storing Passwords

35

Username Password

bobtheninja246 password

xDragonSlayerx asdf

annabelle2001 password

lamamaster123 ilovefish

theSQLexpert234 j62ld12446

seahawksrule12 j62ld12446

▪ But… there are always users with bad passwords
• Easy to search for common password hashes!

Username HashedPassword

bobtheninja246 3da541…

xDragonSlayerx bfd361…

annabelle2001 3da541…

lamamaster123 5baa61…

theSQLexpert234 ca8612…

seahawksrule12 ca8612…

Application Data Management

Storing Passwords

36

Username Password

bobtheninja246 password

xDragonSlayerx asdf

annabelle2001 password

lamamaster123 ilovefish

theSQLexpert234 j62ld12446

seahawksrule12 j62ld12446

▪ But… there are always users with bad passwords
• Easy to search for common password hashes!
• Easy to spot shared or reused passwords!

Username HashedPassword

bobtheninja246 3da541…

xDragonSlayerx bfd361…

annabelle2001 3da541…

lamamaster123 5baa61…

theSQLexpert234 ca8612…

seahawksrule12 ca8612…

Application Data Management

Salting

37

▪ Salting adds randomness to password

Application Data Management

Salting

38

▪ Salting adds randomness to password

▪ Generate random salt, pass it to hash function

Application Data Management

salt = getRandomSalt();

saltedPasswordHash = hash(password, salt)

Salting

39

▪ Salting adds randomness to password

▪ Generate random salt, pass it to hash function

▪ Store salt and salted hash in database

Application Data Management

salt = getRandomSalt();

saltedPasswordHash = hash(password, salt)

Storing Salted + Hashed Passwords

40

Username Password

bobtheninja246 password

xDragonSlayerx asdf

annabelle2001 password

lamamaster123 ilovefish

theSQLexpert234 j62ld12446

seahawksrule12 j62ld12446

Username Salt HashedPassword

bobtheninja246 17 7a4959…

xDragonSlayerx m9 59438a…

annabelle2001 23 4c812e…

lamamaster123 q7 3e0e04…

theSQLexpert234 k3 dcfea6…

seahawksrule12 ji e840fc…

Application Data Management

▪ Harder for attackers to search for common hashes
• Unique salts → unique hashes for the same password

Storing Salted + Hashed Passwords

41

Username Password

bobtheninja246 password

xDragonSlayerx asdf

annabelle2001 password

lamamaster123 ilovefish

theSQLexpert234 j62ld12446

seahawksrule12 j62ld12446

Username Salt HashedPassword

bobtheninja246 17 7a4959…

xDragonSlayerx m9 59438a…

annabelle2001 23 4c812e…

lamamaster123 q7 3e0e04…

theSQLexpert234 k3 dcfea6…

seahawksrule12 ji e840fc…

Application Data Management

▪ Harder to spot pairs of users sharing passwords
• Unique salts → unique hashes within dataset

Storing Salted + Hashed Passwords

42

Username Password

bobtheninja246 password

xDragonSlayerx asdf

annabelle2001 password

lamamaster123 ilovefish

theSQLexpert234 j62ld12446

seahawksrule12 j62ld12446

Username Salt HashedPassword

bobtheninja246 17 7a4959…

xDragonSlayerx m9 59438a…

annabelle2001 23 4c812e…

lamamaster123 q7 3e0e04…

theSQLexpert234 k3 dcfea6…

seahawksrule12 ji e840fc…

Application Data Management

▪ Harder to spot pairs of users sharing passwords
• Unique salts → unique hashes within dataset

▪ Harder to spot users reusing passwords from
other stolen datasets

• Unique salts → unique hashes across datasets

Validating Hashed Passwords

43

▪ Validate by applying the stored salt before hashing

▪ lamamaster123 logs in with “ilovefish”

Application Data Management

Username Salt Hashed Password

… … …

lamamaster123 q7 3e0e04…

… … …

Validating Hashed Passwords

44

▪ Validate by applying the stored salt before hashing

▪ lamamaster123 logs in with “ilovefish”

▪ salt = getSaltFromDB(‘lamamaster123’)

Application Data Management

Username Salt Hashed Password

… … …

lamamaster123 q7 3e0e04…

… … …

Validating Hashed Passwords

45

▪ Validate by applying the stored salt before hashing

▪ lamamaster123 logs in with “ilovefish”

▪ salt = getSaltFromDB(‘lamamaster123’)

▪ hash(“ilovefish”, salt) → 3e0e04…

Application Data Management

Username Salt Hashed Password

… … …

lamamaster123 q7 3e0e04…

… … …

Validating Hashed Passwords

46

▪ Validate by applying the stored salt before hashing

▪ lamamaster123 logs in with “ilovefish”

▪ salt = getSaltFromDB(‘lamamaster123’)

▪ hash(“ilovefish”, salt) → 3e0e04…

▪ 3e0e04… == 3e0e04…
• Accept login

Application Data Management

Username Salt Hashed Password

… … …

lamamaster123 q7 3e0e04…

… … …

Agenda

● Access Control

● Passwords

● Data Privacy

Application Data Management 47

Existing Laws and Regulations

▪ HIPAA (Health Information Portability and
Accountability Act), 1996
• Mandatory for healthcare and health insurance

institutions

• Privacy rule - patient rights, PHI, use/disclosure

• Security rule - standards for safeguards

48Application Data Management

Existing Laws and Regulations

▪ HIPAA (Health Information Portability and
Accountability Act), 1996
• Mandatory for healthcare and health insurance

institutions

• Privacy rule - patient rights, PHI, use/disclosure

• Security rule - standards for safeguards

▪ GDPR (General Data Protection Regulation), 2018

• Corporate disclosure and limits on user data storage

• User data rights over PII

49Application Data Management

Existing Laws and Regulations

▪ FERPA (Family Education Rights and Privacy Act)

▪ Mandatory for education institutions
• Requires written consent to disclose academic info, with

certain exceptions (court orders, school officials, etc.)

50Application Data Management

Existing Laws and Regulations

51Application Data Management

▪ FERPA (Family Education Rights and Privacy Act)

▪ Mandatory for education institutions
• Requires written consent to disclose academic info, with

certain exceptions (court orders, school officials, etc.)

▪ Allows institutions to disclose “directory
information” without consent (institution policies
can be stronger)

• Name

• Email

• Photographs

• Phone Number

Implicit Disclosure

▪ If users can derive sensitive information like
grades, it violates FERPA

Application Data Management 52

Implicit Disclosure

▪ If users can derive sensitive information like
grades, it violates FERPA

FERPA Deidentification

1) ID to anonymous ID mapping should be secret

2) Aggregate data (minimum n-size)
• Suppression → Don’t provide data

• Necessary for very small groups

• Rounding → Bucket data or introduce noise
• More people means you can be more specific

Application Data Management 53

https://studentprivacy.ed.gov/sites/default/files/resource_document/file/tennessee_0.pdf

Implicit Disclosure

▪ “Hey, can you give me the directory information for
students with a GPA of 3.5?”

Application Data Management 54

SELECT D.*

FROM Directory AS D, Grades AS G

WHERE D.id = G.id AND

G.gpa = 3.5

Reveals sensitive information by context

Implicit Disclosure

▪ “Hey, can you give me the directory information for
students with a GPA of 3.5?”

▪ Database admins/designers should prevent these
sorts of queries from being possible!

Application Data Management 55

SELECT D.*

FROM Directory AS D, Grades AS G

WHERE D.id = G.id AND

G.gpa = 3.5

Reveals sensitive information by context

Anonymity

▪ Common practice for making a dataset private:
remove Personal Identifiable Information (PII)

Application Data Management 56

Anonymity

▪ Common practice for making a dataset private:
remove Personal Identifiable Information (PII)

▪ But by linking data from distinct datasets one can
reveal private information

Application Data Management 57

Anonymity

▪ Common practice for making a dataset private:
remove Personal Identifiable Information (PII)

▪ But by linking data from distinct datasets one can
reveal private information

▪ In her PhD thesis* (2001) Latanya Sweeney
described a famous example

* https://dspace.mit.edu/handle/1721.1/8589

Application Data Management 58

https://dspace.mit.edu/handle/1721.1/8589

Implicit Disclosure

Re-identification of Mass. Governor William Weld

▪ Public voter data
• Name
• ZIP code
• Sex
• Birth date
• …

▪ Anonymous insurance data (released under
assurance of anonymity from Gov. Weld)

• ZIP code
• Sex
• Birth date
• Prescription
• Diagnosis
• …

Application Data Management 59

https://fpf.org/wp-content/uploads/The-Re-identification-of-Governor-Welds-Medical-Information-Daniel-Barth-Jones.pdf

Latanya Sweeney’s Finding

▪ Massachusetts: GIC* is
responsible for health
insurance of state
employees; public data

▪ Sweeney paid $20 and
bought voter registration list
for Cambridge, MA

▪ William Weld** lived in
Cambridge: in VOTER

▪ 6 people had same dob

▪ 3 had also sex=‘M’

▪ Weld only one in that zip

*Group Insurance Commission

GIC(zip, dob, sex,

diagnosis, procedure,...)

Application Data Management 60

Latanya Sweeney’s Finding

▪ Massachusetts: GIC* is
responsible for health
insurance of state
employees; public data

▪ Sweeney paid $20 and
bought voter registration list
for Cambridge, MA

▪ William Weld** lived in
Cambridge: in VOTER

▪ 6 people had same dob

▪ 3 had also sex=‘M’

▪ Weld only one in that zip

*Group Insurance Commission

GIC(zip, dob, sex,

diagnosis, procedure,...)

VOTER(name, party, ...,

zip, dob, sex)

Application Data Management 61

Latanya Sweeney’s Finding

▪ Massachusetts: GIC* is
responsible for health
insurance of state
employees; public data

▪ Sweeney paid $20 and
bought voter registration list
for Cambridge, MA

▪ William Weld** lived in
Cambridge: in VOTER

▪ 6 people had same dob

▪ 3 had also sex=‘M’

▪ Weld only one in that zip

*Group Insurance Commission

GIC(zip, dob, sex,

diagnosis, procedure,...)

VOTER(name, party, ...,

zip, dob, sex)

**former governor

Application Data Management 62

Latanya Sweeney’s Finding

▪ Massachusetts: GIC* is
responsible for health
insurance of state
employees; public data

▪ Sweeney paid $20 and
bought voter registration list
for Cambridge, MA

▪ William Weld** lived in
Cambridge: in VOTER

▪ 6 people had same dob

▪ 3 had also sex=‘M’

▪ Weld only one in that zip

*Group Insurance Commission

GIC(zip, dob, sex,

diagnosis, procedure,...)

VOTER(name, party, ...,

zip, dob, sex)

**former governor

Application Data Management 63

Latanya Sweeney’s Finding

▪ Massachusetts: GIC* is
responsible for health
insurance of state
employees; public data

▪ Sweeney paid $20 and
bought voter registration list
for Cambridge, MA

▪ William Weld** lived in
Cambridge: in VOTER

▪ 6 people had same dob

▪ 3 had also sex=‘M’

▪ Weld only one in that zip

*Group Insurance Commission

GIC(zip, dob, sex,

diagnosis, procedure,...)

VOTER(name, party, ...,

zip, dob, sex)

**former governor

Application Data Management 64

Latanya Sweeney’s Finding

▪ Massachusetts: GIC* is
responsible for health
insurance of state
employees; public data

▪ Sweeney paid $20 and
bought voter registration list
for Cambridge, MA

▪ William Weld** lived in
Cambridge: in VOTER

▪ 6 people had same dob

▪ 3 had also sex=‘M’

▪ Weld only one in that zip

*Group Insurance Commission

GIC(zip, dob, sex,

diagnosis, procedure,...)

VOTER(name, party, ...,

zip, dob, sex)

**former governor

Application Data Management 65

Latanya Sweeney’s Finding

Application Data Management 66

Name ZIP Sex Bday

… … … …

W. Weld 12345 M Feb 30

… … … …

ZIP Sex Bday MedInfo

… … … …

12345 M Feb 30 Afluenza

… … … …

Cambridge, MA Voter Data ($20) Anon. Insurance Data for Researchers

Latanya Sweeney’s Finding

Application Data Management 67

Name ZIP Sex Bday

… … … …

W. Weld 12345 M Feb 30

… … … …

ZIP Sex Bday MedInfo

… … … …

12345 M Feb 30 Afluenza

… … … …

Name … MedInfo

… … …

W. Weld … Afluenza

… … …

Cambridge, MA Voter Data ($20) Anon. Insurance Data for Researchers

6 matches on ZIP

3 matches on Sex

1 match on Bday

Sweeney learned Weld’s medical records !

Latanya Sweeney’s Finding

Application Data Management 68

Name ZIP Sex Bday

… … … …

W. Weld 12345 M Feb 30

… … … …

ZIP Sex Bday MedInfo

… … … …

12345 M Feb 30 Afluenza

… … … …

Cambridge, MA Voter Data ($20) Anon. Insurance Data for Researchers

Legal in 1997

Deemed private since 2003

Name … MedInfo

… … …

W. Weld … Afluenza

… … …

6 matches on ZIP

3 matches on Sex

1 match on Bday

Sweeney learned Weld’s medical records !

Sensitive Information

▪ Personal Identifiable Information (PII)
• Names

• Student ID

• Social security number

• License number

▪ Protected data (for legal and/or ethical reasons)
• Academic records (FERPA)

• Protected Health Information (HIPAA)

• User Web Data (GDPR)

▪ Passwords

Application Data Management 69

Takeaways

▪ Always parameterize input into prepared statements
to prevent SQL injection

• JDBC PreparedStatements for HW6

▪ Always hash + salt passwords before storing them
in a database

• You will implement this in HW6

▪ Be careful about what information can be inferred
from your datasets

• Always protect sensitive data!

Application Data Management 70

	Slide 1
	Slide 2: Announcements
	Slide 3: Agenda
	Slide 4: DBMS controls
	Slide 5: DBMS controls
	Slide 6: DBMS controls
	Slide 7: DBMS controls
	Slide 8: DBMS controls
	Slide 9
	Slide 10: SQL Injection
	Slide 11: SQL Injection
	Slide 12: SQL Injection
	Slide 13: SQL Injection
	Slide 14: SQL Injection
	Slide 15: SQL Injection
	Slide 16: SQL Injection
	Slide 17: SQL Injection
	Slide 18: SQL Injection
	Slide 19: Java: JDBC
	Slide 20: Java: JDBC
	Slide 21: Agenda
	Slide 22: Storing Passwords
	Slide 23: Storing Passwords
	Slide 24: Storing Passwords
	Slide 25: Storing Passwords
	Slide 26: Hashing
	Slide 27: Hashing
	Slide 28: Hashing
	Slide 29: Storing Hashed Passwords
	Slide 30: Validating Hashed Passwords
	Slide 31: Validating Hashed Passwords
	Slide 32: Validating Hashed Passwords
	Slide 33: Validating Hashed Passwords
	Slide 34: Storing Passwords
	Slide 35: Storing Passwords
	Slide 36: Storing Passwords
	Slide 37: Salting
	Slide 38: Salting
	Slide 39: Salting
	Slide 40: Storing Salted + Hashed Passwords
	Slide 41: Storing Salted + Hashed Passwords
	Slide 42: Storing Salted + Hashed Passwords
	Slide 43: Validating Hashed Passwords
	Slide 44: Validating Hashed Passwords
	Slide 45: Validating Hashed Passwords
	Slide 46: Validating Hashed Passwords
	Slide 47: Agenda
	Slide 48: Existing Laws and Regulations
	Slide 49: Existing Laws and Regulations
	Slide 50: Existing Laws and Regulations
	Slide 51: Existing Laws and Regulations
	Slide 52: Implicit Disclosure
	Slide 53: Implicit Disclosure
	Slide 54: Implicit Disclosure
	Slide 55: Implicit Disclosure
	Slide 56: Anonymity
	Slide 57: Anonymity
	Slide 58: Anonymity
	Slide 59: Implicit Disclosure
	Slide 60: Latanya Sweeney’s Finding
	Slide 61: Latanya Sweeney’s Finding
	Slide 62: Latanya Sweeney’s Finding
	Slide 63: Latanya Sweeney’s Finding
	Slide 64: Latanya Sweeney’s Finding
	Slide 65: Latanya Sweeney’s Finding
	Slide 66: Latanya Sweeney’s Finding
	Slide 67: Latanya Sweeney’s Finding
	Slide 68: Latanya Sweeney’s Finding
	Slide 69: Sensitive Information
	Slide 70: Takeaways

