Setup

— 7 [senmn
Senphame
~
Lslp SetupType
FK1 | SestioniD Device
NumberOfTrial Sctshaies
K2 |SetupiD Filtes
tes |sabjeaio SetupCondiion
P
puraton
ket
Sttapblaker
RecortedMinieh
Note
Trial_has_Timecourse Trial_has_Trajectory
rer [Per | Toaio
re2 | rimecousen rez [Tmectonyio
Tanacouse Toietory
[Temecounen o | Teieasrro
Frequency frequency
Seemenio seqmentid
Kiadoroats indoroata
Neeam Markers
) NP oesiniing
—

Walder.

N N

e
=
rolih
/ i Luﬁ,\ys N
VAN 4 !
/X Bt
y :‘_a?w! R-c?a!d / Ecm* 'Hos(ev

¥

JoffeNtargation

ey
iy

Var
o

y HE X Condr
. B s 7 Podik oY
Toras A KeviShae
/ ct
« Waltoh
3 Myroetia Gregor
deric e \

HyperCube

gCube shuffle-based parallel g

Introduction to Data Management

Transactions: Serializability

Paul G. Allen School of Computer Science and Engineering

October 30, 2024

University of Washington, Seattle

Serializability

Announcements

* HW4 is due on Friday

October 30, 2024 Serializability

Recap: Applications and Databases

Almost every app uses some database

» General purpose language (Java, Python)

* App issues SQL commands to RDBMS

= Usually, multiple apps (users) access same DB

October 30, 2024 Serializability

Recap: SQL in a Programming Language

Acc

Alice 300
Bob 600
Carol 400
bl = b+a # the new balance

cur .execute ("UPDATE acc
SET balance = ?
WHERE usr=?",
[bl,usr])

October 30, 2024 Serializability

Recap: Single User

*» The database Is accessed by a single user:

Application

————> .
dh

» RDBMS on same laptop, or a server, or the cloud

Database

October 30, 2024 Serializability

Recap: Client-Server

= Multiple users access the database concurrently

October 30, 2024 Serializability

 ————

Op
B,
JO 5
C

Transactions

October 30, 2024

Transactions

= A transaction Is a set of read and writes to the
database that execute all or nothing

BEGIN TRANSACTION BEGIN TRANSACTION
...o0L Statements ...o0L Statements
COMMIT ROLLBACK

Entire txn is executed No part of txn is executed

October 30, 2024 Serializability

Transactions

» Prevent all concurrency control conflicts

= Easy to use in app: group statements in txns

= What property does a TXN satisfy?

 Informally: “TXNs have ACID properties”

* Formally: “execution of TXNs must be serializable”

October 30, 2024 Serializability

ACID

October 30, 2024 Serializability

Transactions are ACID

= Atomic

= Consistent

= |solated

= Durable

October 30, 2024 Serializability

= A set of operations is atomic if either all its
operations happen, or none happens

Update accountl

Update account2

Recovery manager (not discussed in this class)

October 30, 2024 Serializability

Assume TXN is “correct” (this is app specific)

= |[f TXN starts with the DB in a consistent state,
it must end leaving the DB in a consistent state

It is a consequence of Atomicity and Isolation

October 30, 2024 Serializability

|Isolated

= The effect of the transaction on the database is as
If it were running alone on the database

TXNI:

Update accountl

Update account2

October 30, 2024

Concurrency Control Manager

TXN2:

Update accountl

Update account2

Serializability

Interleaved
actions
should not
IEEE

» Data should be stored persistently on disk, always
INn a consistent state

October 30, 2024 Serializability

Discussion

= ACID properties: popular job interview question

= “A” and “I" matter
 Atomicity: recover from crashes

e |solation: concurrency control
344 and 444

= ACID iIs informal.

Will discuss the formal property next

October 30, 2024 Serializability

Serializability

October 30, 2024

Problem Definition

» The RDBMs runs several TXNs: T1, T2, T3, ...

= |t could run T1 to completion before starting T2,
then run T2 to completion before starting T3,
then run T3...

October 30, 2024 Serializability

Problem Definition

» The RDBMs runs several TXNs: T1, T2, T3, ...

= |t could run T1 to completion before starting T2,
then run T2 to completion before starting T3,
then run T3...

But this has poor performance %

October 30, 2024 Serializability

Problem Definition

» The RDBMs runs several TXNs: T1, T2, T3, ...

= |t could run T1 to completion before starting T2,
then run T2 to completion before starting T3,
then run T3...

But this has poor performance %

* Instead: interleave commands from multiple TXNs

When is the interleaving "safe”?

October 30, 2024 Serializability

Simplified Data Model for TXN

Element is usually
a record, or a disk block

= Database = a set of “elements”

» TXN = a sequence of Reads/Writes of elements

October 30, 2024 Serializability

T1

READ(A, 1)
t:=t+100
WRITE(A, 1)
READ(B, t)
t:=t+100
WRITE(B,t)

October 30, 2024

Serializability

T1

READ(A, 1)
t:=t+100
WRITE(A, 1)
READ(B, t)
t:=t+100
WRITE(B,t)

October 30, 2024

A,B are
elements
in the DB

Serializability

T1

READ(A, 1)
t:=t+100
WRITE(A, 1)
READ(B, t)
t:=t+100
WRITE(B,t)

October 30, 2024

A,B are
elements
in the DB

tis a local
variable
in the app

Serializability

T1

READ(A, 1)
t:=t+100
WRITE(A, 1)
READ(B, t)
t:=t+100
WRITE(B,t)

October 30, 2024

A,B are
elements
in the DB

tis a local
variable
in the app

Serializability

T2

READ(A, s)
S =8*2
WRITE(A,s)
READ(B,s)
S =8*2
WRITE(B,s)

* An interleaving of READ/WRITESs from different
TXNs is called a schedule

October 30, 2024 Serializability

* An interleaving of READ/WRITESs from different
TXNs is called a schedule

» Definition: a serial schedule is a schedule where
all operations of transactions come before those of
the next transaction

October 30, 2024 Serializability

= An interleaving of READ/WRITESs from different
TXNs is called a schedule

= Definition: a serial schedule Is a schedule where
all operations of transactions come before those of
the next transaction

» Definition: a serializable schedule Is a schedule
that is equivalent to a serial schedule

October 30, 2024 Serializability

A Schedule

time

October 30, 2024

T1 T2
READ(A, t)
READ(A, s)
S =8*2
t:=t+100
WRITE(A, t)
WRITE(A,s)
READ(B,s)
S =8*2
READ(B, 1)
WRITE(B,s)
t:=t+100
WRITE(B,1)

Serializability

A Serial Schedule

T1 T2
READ(A, 1)
t:=t+100
WRITE(A, 1)
READ(B, 1)
qE) t:=t+100
= WRITE(B.1)
READ(A, s)
S .:=5*2
WRITE(A,s)
v READ(B,s)
S =8*2
WRITE(B,s)

October 30, 2024 Serializability

A Serial Schedule

T1 T2
READ(A, 1)
t:=t+100
WRITE(A, 1)
READ(B, 1)
qE) t:=t+100
= WRITE(B.1)
READ(A, s)
S .:=5*2
WRITE(A,s)
v READ(B,s)
S =8*2
WRITE(B,s)

October 30, 2024 Serializability

A Serial Schedule

time

A =102
B =102

October 30, 2024

T1 T2

READ(A, 1)

t:=t+100

WRITE(A, t)

READ(B, 1)

t:=t+100

WRITE(B,1)
READ(A, s)
S =8*2
WRITE(A,S)
READ(B,s)
S :=s*2
WRITE(B,s)

Serializability

A Serial Schedule

time

A =102
B =102

A =204
B =204

October 30, 2024

T1 T2

READ(A, 1)

t:=t+100

WRITE(A, t)

READ(B, 1)

t:=t+100

WRITE(B,1)
READ(A, s)
S =8*2
WRITE(A,S)
READ(B,s)
S :=s*2
WRITE(B,s)

Serializability

The Other Serial Schedule

time

A=104
B =104

October 30, 2024

T1 T2
READ(A, s)
S =8*2
WRITE(A,S)
READ(B,s)
S :=8*2
WRITE(B,s)

READ(A, 1)

t:=t+100

WRITE(A, t)

READ(B, 1)

t:=t+100

WRITE(B,1)

Serializability

A Serializable Schedule

October 30, 2024

T1 T2

READ(A, 1)

t :=t+100

WRITE(A, t)
READ(A, s)
S :=8*2
WRITE(A,s)

READ(B, 1)

t:=t+100

WRITE(B,1)
READ(B,s)
S =8*2
WRITE(B,s)

Serializability

A Serializable Schedule

T1 T2

READ(A, 1)

t :=t+100

WRITE(A, t)
READ(A, s)
S :=8*2
WRITE(A,s)

READ(B, 1)

t:=t+100

WRITE(B,1)
READ(B,s)
S =8*2
WRITE(B,s)

October 30, 2024 Serializability

A Serializable Schedule

T1 T2

READ(A, 1)

t :=t+100

WRITE(A, t)
READ(A, s)
S :=8*2
WRITE(A,s)

READ(B, 1)

t:=t+100

WRITE(B,1)
READ(B,s)
S =8*2
WRITE(B,s)

October 30, 2024 Serializability

A Serializable Schedule

October 30, 2024

T1 T2

READ(A, 1)

t :=t+100

WRITE(A, t)
READ(A, s)
S :=8*2
WRITE(A,s)

READ(B, 1)

t:=t+100

WRITE(B,1)
READ(B,s)
S =8*2
WRITE(B,s)

Serializability

A Serializable Schedule

This is NOT a serial schedule

It is a serializable schedule.

October 30, 2024

T1 T2

READ(A, 1)

t :=t+100

WRITE(A, t)
READ(A, s)
S :=8*2
WRITE(A,s)

READ(B, 1)

t:=t+100

WRITE(B,1)
READ(B,s)
S =8*2
WRITE(B,s)

Serializability

A Non-Serializable Schedule

T1 T2

READ(A, 1)

t:=t+100

WRITE(A, t)
READ(A, s)
S :=s*2
WRITE(A,s)
READ(B,s)
S =8*2
WRITE(B,S)

READ(B, 1)

t:=t+100

WRITE(B,1)

October 30, 2024

Serializability

A Non-Serializable Schedule

T1 T2

READ(A, 1)

t:=t+100

WRITE(A, t)
READ(A, s)
S :=s*2
WRITE(A,s)
READ(B,s)
S =8*2
WRITE(B,S)

READ(B, 1)

t:=t+100

WRITE(B,1)

October 30, 2024

Serializability

A Non-Serializable Schedule

T1 T2

READ(A, 1)

t:=t+100

WRITE(A, t)
READ(A, s)
S :=s*2
WRITE(A,s)
READ(B,s)
S =8*2
WRITE(B,S)

READ(B, 1)

t:=t+100

WRITE(B,1)

October 30, 2024 Serializability

A Non-Serializable Schedule

T1 T2

READ(A, 1)

t:=t+100

WRITE(A, t)
READ(A, s)
S :=s*2
WRITE(A,s)
READ(B,s)
S =8*2
WRITE(B,S)

READ(B, 1)

t:=t+100

WRITE(B,1)

October 30, 2024 Serializability

A Non-Serializable Schedule

Tl T2

READ(A, t)

t:=t+100

WRITE(A, 1)
READ(A, s)
S :=85*2
WRITE(A,S)
READ(B,s)
S =s*2
WRITE(B,s)

READ(B, t)

t := t+100

WRITE(B,t) impossible!

October 30, 2024

Serializability

A=204
B =104

Discussion

= If the schedule is serial, then nothing can go wrong

= Same for a serializable schedule

= Concurrency Control Manager of the RDBMs must
ensure that the schedule is serializable

How do we check that a schedule Is serializable?

October 30, 2024 Serializability

Conflict Serializability

We further simplify the model.

» A transaction is a sequence of reads and writes

= \We ighore operations between reads and writes

October 30, 2024 Serializability

T1

READ(A, 1)
t:=t+100
WRITE(A, 1)
READ(B, t)
t:=t+100
WRITE(B,t)

October 30, 2024

R(A)
R W(A)
R(B)
W(B)
Also: R,(A), W4(A), R,(B), W4(B)

Serializability

= T1thenT2

Rl(A)! Wl(A)1 Rl(B)’ Wl(B)’ RZ(A)’ W2(A)1 RZ(B)’ WZ(B)

R(A)
W(A)
R(B)
£ WpE
- R(A)
W(A)
R(B)
W(B)

October 30, 2024 Serializability

= T2thenT1

RZ(A)! WZ(A)1 RZ(B)’ WZ(B)’ Rl(A)’ Wl(A)1 Rl(B)’ Wl(B)

R(A)
W(A)
R(B)
W(B)

R(A)

W(A)

R(B)

wW(B)

October 30, 2024 Serializability

= Serializable to T1 then T2

Rl(A)! Wl(A)1 RZ(A)’ WZ(A)’ Rl(B)! Wl(B)1 RZ(B)’ WZ(B)

R(A)
W(A)
R(A)
W(A)
R(B)
W(B)
R(B)
W(B)

October 30, 2024 Serializability

= Not serializable

Rl(A)! Wl(A)1 RZ(A)’ WZ(A)’ RZ(B)’ W2(B)1 Rl(B)’ Wl(B)

R(A)

W(A)
R(A)
W(A)
R(B)
W(B)

R(B)

wW(B)

October 30, 2024 Serializability

* To check if a schedule is serializable, try swapping
operations until it becomes serial:

.. Ri(A), Wi(B), ... | m—) ... W(B), Ri(A), ...

» But we only swap if the new schedule is equivalent

= A pair is in conflict if it cannot be swapped

October 30, 2024 Serializability

1. Any pair of ops of the same TXN are in conflict
2. Ri(X), W;(X) forms a read-write conflict
3. W;i(X), Ry(X) forms a write-read conflict

4. W;i(X), W;(X) forms a write-write conflict

October 30, 2024 Serializability

Conflict Serializable Schedule

A schedule is conflict serializable if it can be
transformed Into a serial schedule by a series of
swappings of adjacent non-conflicting actions

October 30, 2024 Serializability

Conflict Serializable Schedule Example

October 30, 2024

R(A)
W(A)
R(A)
W(A)
R(B)
W(B)
R(B)
W(B)

Serializability

Conflict Serializable Schedule Example

October 30, 2024

R(A)
W(A)
R(A)
R(B)
W(A)
W(B)
R(B)
W(B)

Serializability

Conflict Serializable Schedule Example

October 30, 2024

R(A)
W(A)
R(B)
R(A)
W(A)
W(B)
R(B)
W(B)

Serializability

Conflict Serializable Schedule Example

October 30, 2024

R(A)

W(A)
R(B)
W(B)

Serializability

Conflict Serializable Schedule Example

October 30, 2024

R(A)

W(A)

R(B)

W(B)
R(A)
W(A)
R(B)
W(B)

Serializability

Non Conflict Serializable Schedule Example

R(A)

W(A)
R(A)
W(A)
R(B)
W(B)

R(B)

W(B)

October 30, 2024 Serializability

Non Conflict Serializable Schedule Example

October 30, 2024

R(A)
W(A)
R(A)
W(A)
R(B)
R(B
- W(B) x Conflict rule broken!
W(B)

Serializability

Serializable vs Conflict Serializable

Conflict serializability ignores what TXN does between the R’s and the W's.
It assumes the worst / most complicated updates to the data

October 30, 2024 Serializability

Serializable vs Conflict Serializable

Conflict serializability ignores what TXN does between the R’s and the W's.
It assumes the worst / most complicated updates to the data

Not serializable nor conflict serializable

A<A+100 { RA)
W(A)

R(A)
— ACAR

w@a) |

RB) | pepm

wB) |

R(B)
B<B+100 W(B)

October 30, 2024 Serializability

Serializable vs Conflict Serializable

Conflict serializability ignores what TXN does between the R’s and the W's.
It assumes the worst / most complicated updates to the data

Serializable (because 100+2 = 2+100)
But not conflict serializable, because it assumes the worst

A<A+100 { RA)
W(A)

R(A)

— ACA+2
W(A) B
R(B) — B<B+2
wB) |

R(B)
B<B+100 W(B)

October 30, 2024 Serializability

Discussion

» Most RDBMs enforce conflict-serializability

» Next: how to test for conflict-serializability

October 30, 2024 Serializability

The Precedence Graph

Testing for Conflict Serializability

Fix a schedule

» Definition. The precedence graph has one node
for every TXN in the schedule, and one edge for
every pair of conflicting ops

» Theorem. The schedule is conflict-serializable Iff
the precedence graph has no cycles

October 30, 2024 Serializability

Example 1

r(A); r(B); Wy(A); r3(A); wi(B); wi(A); 1x(B); wy(B)

October 30, 2024

Example 1

r(A); r(B); Wy(A); r3(A); wi(B); wi(A); 1x(B); wy(B)

Nodes: @ @ @

Example 1

W,(A); 13(A); wi(B); ws(A); ry(B); wy(B)

Edges: @ @ @

“To(A) || 11(B)
/

r,(A) || 1(B)

W,(A); 13(A); wi(B); ws(A); ry(B); wy(B)

rz(A) rl(B) No edge because

no conflict (A!=B)

W,(A); 13(A); wi(B); ws(A); ry(B); wy(B)

Edges: @ @ @

October 30, 2024

Iy (A) W, (A) No edge because

same txn (2)

; T3(A); wi(B); Wi(A); 1(B); w,(B)

Edges: @ @ @

October 30, 2024

r(A) || 13(A) | 7

r(B); wy(A); w,(B); w3(A); 12(B); wy(B)

r(A) || wy(B) | 7

(B W(A); T5(A); Wy (B); Wa(A); 1,(B); W,(B)

r(A)

W3(A)

r(B); w,(A); r;(A); w,(B);

, 12(B); w,(B)

r(A) || Wa(A)

Edge! Conflict from
T2t0T3

r(B); w,(A); r;(A); w,(B);

Edges: <:> <:>

W3(A)

, 12(B); w,(B)

October 30, 2024

r2 (A) W3 (A) ES%E!T%onflict from

r(B); Wy(A); r3(A); wi(B); ws(A); 12(B); wy(B)

Edges: @ @ @

October 30, 2024

r(A) || 1(B) | 7

r(B); w,(A); r3(A); wi(B); ws(A);

Edges: @ @ A @

And so on until compared every pair of actions...

October 30, 2024

Example 1

— T
r(A); r(B); Wy(A); r3(A); wi(B); wi(A); 1x(B); wy(B)

Edges: @ @ @

Repeating the same directed edge not necessary

October 30, 2024

Example 1

— e

ro(A); 11(B); Wy(A); r3(A); wy(B); wi(A); r,(B); Wy(B)

This schedule iIs conflict-serializable

October 30, 2024

Example 2

r(A); 11(B); Wy(A); 12(B); r3(A); wi(B); wi(A); w,(B)

October 30, 2024

Example 2

r(A); 11(B); Wy(A); 12(B); r3(A); wi(B); wi(A); w,(B)

Example 2

T

r(A); 11(B); Wy(A); 12(B); r3(A); wi(B); wi(A); w,(B)

Example 2

T

r(A); 11(B); Wy(A); 12(B); r3(A); wi(B); wi(A); w,(B)

~— - 7

1 {2) (3)

This schedule is NOT conflict-serializable

October 30, 2024

* Transactions: “...all or nothing...”

» Simplified data model: READ/WRITE elements

= Schedules:
« Serial
» Serializable
» Conflict serializable

* Precedence graph

October 30, 2024 Serializability

	Slide 1
	Slide 2: Announcements
	Slide 3: Recap: Applications and Databases
	Slide 4: Recap: SQL in a Programming Language
	Slide 5: Recap: Single User
	Slide 6: Recap: Client-Server
	Slide 7
	Slide 8: Transactions
	Slide 9: Transactions
	Slide 10
	Slide 11: Transactions are ACID
	Slide 12: Atomic
	Slide 13: Consistent
	Slide 14: Isolated
	Slide 15: Durable
	Slide 16: Discussion
	Slide 17
	Slide 18: Problem Definition
	Slide 19: Problem Definition
	Slide 20: Problem Definition
	Slide 21: Simplified Data Model for TXN
	Slide 22: Example
	Slide 23: Example
	Slide 24: Example
	Slide 25: Example
	Slide 26: Definitions
	Slide 27: Definitions
	Slide 28: Definitions
	Slide 29: A Schedule
	Slide 30: A Serial Schedule
	Slide 31: A Serial Schedule
	Slide 32: A Serial Schedule
	Slide 33: A Serial Schedule
	Slide 34: The Other Serial Schedule
	Slide 35: A Serializable Schedule
	Slide 36: A Serializable Schedule
	Slide 37: A Serializable Schedule
	Slide 38: A Serializable Schedule
	Slide 39: A Serializable Schedule
	Slide 40: A Non-Serializable Schedule
	Slide 41: A Non-Serializable Schedule
	Slide 42: A Non-Serializable Schedule
	Slide 43: A Non-Serializable Schedule
	Slide 44: A Non-Serializable Schedule
	Slide 45: Discussion
	Slide 46
	Slide 47: Outline
	Slide 48: Example
	Slide 49: Example
	Slide 50: Example
	Slide 51: Example
	Slide 52: Example
	Slide 53: Main Idea
	Slide 54: Conflicts
	Slide 55: Conflict Serializable Schedule
	Slide 56: Conflict Serializable Schedule Example
	Slide 57: Conflict Serializable Schedule Example
	Slide 58: Conflict Serializable Schedule Example
	Slide 59: Conflict Serializable Schedule Example
	Slide 60: Conflict Serializable Schedule Example
	Slide 61: Non Conflict Serializable Schedule Example
	Slide 62: Non Conflict Serializable Schedule Example
	Slide 63: Serializable vs Conflict Serializable
	Slide 64: Serializable vs Conflict Serializable
	Slide 65: Serializable vs Conflict Serializable
	Slide 66: Discussion
	Slide 67
	Slide 68: Testing for Conflict Serializability
	Slide 69: Example 1
	Slide 70: Example 1
	Slide 71: Example 1
	Slide 72: Example 1
	Slide 73: Example 1
	Slide 74: Example 1
	Slide 75: Example 1
	Slide 76: Example 1
	Slide 77: Example 1
	Slide 78: Example 1
	Slide 79: Example 1
	Slide 80: Example 1
	Slide 81: Example 1
	Slide 82: Example 1
	Slide 83: Example 1
	Slide 84: Example 1
	Slide 85: Example 2
	Slide 86: Example 2
	Slide 87: Example 2
	Slide 88: Example 2
	Slide 89: Takeaways

