
Transactions: Serializability

October 30, 2024 Serializability 1



Announcements

▪HW4 is due on Friday
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Recap: Applications and Databases

Almost every app uses some database

▪General purpose language (Java, Python) 

▪App issues SQL commands to RDBMS

▪Usually, multiple apps (users) access same DB
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Recap: SQL in a Programming Language

... 

b1 = b+a    # the new balance

cur.execute("UPDATE acc

             SET balance = ? 

             WHERE usr=?",

             [b1,usr])

Usr Balance

Alice 300

Bob 600

Carol 400

Acc
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Recap: Single User

▪ The database is accessed by a single user:

▪RDBMS on same laptop, or a server, or the cloud

Application

Database
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Recap: Client-Server

▪Multiple users access the database concurrently

Application

Database

Application

. . .
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Transactions
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Transactions

▪A transaction is a set of read and writes to the 
database that execute all or nothing

BEGIN TRANSACTION

  ...SQL Statements

COMMIT

BEGIN TRANSACTION

  ...SQL Statements

ROLLBACK

No part of txn is executedEntire txn is executed
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Transactions

▪Prevent all concurrency control conflicts

▪Easy to use in app: group statements in txns

▪What property does a TXN satisfy?

• Informally: “TXNs have ACID properties”

• Formally: “execution of TXNs must be serializable”
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ACID
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Transactions are ACID

▪Atomic

▪Consistent

▪ Isolated

▪Durable
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Atomic

▪A set of operations is atomic if either all its 
operations happen, or none happens

System

crashed

here

…

Update account1

…

…

…
Update account2

…

Recovery manager (not discussed in this class)
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Consistent

Assume TXN is “correct” (this is app specific)

▪ If TXN starts with the DB in a consistent state,
it must end leaving the DB in a consistent state
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It is a consequence of Atomicity and Isolation



Isolated

▪ The effect of the transaction on the database is as 
if it were running alone on the database

Concurrency Control Manager

Interleaved

actions

should not

interfere
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TXN1:

…

Update account1

…

…
…

Update account2

…

TXN2:

…

Update account1

…

…
…

Update account2

…



Durable

▪Data should be stored persistently on disk, always 
in a consistent state
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Discussion

▪ACID properties: popular job interview question

▪ “A” and “I” matter
• Atomicity: recover from crashes

• Isolation: concurrency control

▪ACID is informal.

Will discuss the formal property next
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344 and 444



Serializability
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Problem Definition

▪ The RDBMs runs several TXNs:   T1, T2, T3, …

▪ It could run T1 to completion before starting T2,
     then run T2 to completion before starting T3,
     then run T3…
     …
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Problem Definition

▪ The RDBMs runs several TXNs:   T1, T2, T3, …

▪ It could run T1 to completion before starting T2,
     then run T2 to completion before starting T3,
     then run T3…
     …
But this has poor performance Why?

(in class)
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Problem Definition

▪ The RDBMs runs several TXNs:   T1, T2, T3, …

▪ It could run T1 to completion before starting T2,
     then run T2 to completion before starting T3,
     then run T3…
     …
But this has poor performance

▪ Instead: interleave commands from multiple TXNs

Why?

(in class)
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When is the interleaving ”safe”?



Simplified Data Model for TXN

▪Database = a set of “elements”

▪ TXN = a sequence of Reads/Writes of elements
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Element is usually

a record, or a disk block



Example

T1

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)
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Example

T1

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

A,B are

elements

in the DB
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Example

T1

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

A,B are

elements

in the DB

t is a local

variable

in the app
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Example

T1

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

T2

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

A,B are

elements

in the DB

t is a local

variable

in the app
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Definitions

▪An interleaving of READ/WRITEs from different 
TXNs is called a schedule
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Definitions

▪An interleaving of READ/WRITEs from different 
TXNs is called a schedule

▪Definition: a serial schedule is a schedule where 
all operations of transactions come before those of 
the next transaction
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Definitions

▪An interleaving of READ/WRITEs from different 
TXNs is called a schedule

▪Definition: a serial schedule is a schedule where 
all operations of transactions come before those of 
the next transaction

▪Definition: a serializable schedule is a schedule 
that is equivalent to a serial schedule
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A Schedule

T1 T2

READ(A, t)

READ(A, s)

s := s*2

t := t+100

WRITE(A, t)

WRITE(A,s)

READ(B,s)

s := s*2

READ(B, t)

WRITE(B,s)

t := t+100

WRITE(B,t)

ti
m

e
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A Serial Schedule

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

ti
m

e
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A Serial Schedule

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

A = 2

B = 2

ti
m

e
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A Serial Schedule

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

A = 2

B = 2

A = 102

B = 102

ti
m

e
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A Serial Schedule

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

A = 2

B = 2

A = 102

B = 102

A = 204

B = 204

ti
m

e
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The Other Serial Schedule

T1 T2

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

A = 2

B = 2

A = 4

B = 4

A = 104

B = 104

ti
m

e

October 30, 2024 Serializability 34



A Serializable Schedule

A = 2

B = 2

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B, t)

t := t+100

WRITE(B,t)

READ(B,s)

s := s*2

WRITE(B,s)
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A Serializable Schedule

A = 2

B = 2

A = 102

B = 2

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B, t)

t := t+100

WRITE(B,t)

READ(B,s)

s := s*2

WRITE(B,s)
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A Serializable Schedule

A = 2

B = 2

A = 102

B = 2

A = 204

B = 2

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B, t)

t := t+100

WRITE(B,t)

READ(B,s)

s := s*2

WRITE(B,s)
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A Serializable Schedule

A = 2

B = 2

A = 102

B = 2

A = 204

B = 2

A = 204

B = 102

A = 204

B = 204

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B, t)

t := t+100

WRITE(B,t)

READ(B,s)

s := s*2

WRITE(B,s)
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A Serializable Schedule

This is NOT a serial schedule

It is a serializable schedule.

A = 2

B = 2

A = 102

B = 2

A = 204

B = 2

A = 204

B = 102

A = 204

B = 204

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B, t)

t := t+100

WRITE(B,t)

READ(B,s)

s := s*2

WRITE(B,s)
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A Non-Serializable Schedule

A = 2

B = 2

A = 102

B = 2

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

READ(B, t)

t := t+100

WRITE(B,t)
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A Non-Serializable Schedule

A = 2

B = 2

A = 102

B = 2

A = 204

B = 2

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

READ(B, t)

t := t+100

WRITE(B,t)
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A Non-Serializable Schedule

A = 2

B = 2

A = 102

B = 2

A = 204

B = 2

A = 204

B = 4

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

READ(B, t)

t := t+100

WRITE(B,t)
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A Non-Serializable Schedule

A = 2

B = 2

A = 102

B = 2

A = 204

B = 2

A = 204

B = 4

A = 204

B = 104

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

READ(B, t)

t := t+100

WRITE(B,t)
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A Non-Serializable Schedule

A = 2

B = 2

A = 102

B = 2

A = 204

B = 2

A = 204

B = 4

A = 204

B = 104

Should be

impossible!

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

READ(B, t)

t := t+100

WRITE(B,t)
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Discussion

▪ If the schedule is serial, then nothing can go wrong

▪Same for a serializable schedule

▪Concurrency Control Manager of the RDBMs must 
ensure that the schedule is serializable

How do we check that a schedule is serializable?
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Conflict Serializability
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Outline

We further simplify the model:

▪A transaction is a sequence of reads and writes

▪We ignore operations between reads and writes
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Example

T1

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

T1

R(A)

W(A)

R(B)

W(B)

Also:  R1(A), W1(A), R1(B), W1(B)
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Example

▪ T1 then T2

T1 T2

R(A)

W(A)

R(B)

W(B)

R(A)

W(A)

R(B)

W(B)

ti
m

e

R1(A), W1(A), R1(B), W1(B), R2(A), W2(A), R2(B), W2(B)
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Example

▪ T2 then T1

T1 T2

R(A)

W(A)

R(B)

W(B)

R(A)

W(A)

R(B)

W(B)

R2(A), W2(A), R2(B), W2(B), R1(A), W1(A), R1(B), W1(B)
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Example

▪Serializable to T1 then T2

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

R1(A), W1(A), R2(A), W2(A), R1(B), W1(B), R2(B), W2(B)
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Example

▪Not serializable

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

R1(A), W1(A), R2(A), W2(A), R2(B), W2(B), R1(B), W1(B)
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Main Idea

▪ To check if a schedule is serializable, try swapping 
operations until it becomes serial:

▪But we only swap if the new schedule is equivalent

▪A pair is in conflict if it cannot be swapped

… Ri(A), Wj(B), … … Wj(B), Ri(A), …
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Conflicts

1. Any pair of ops of the same TXN are in conflict

2. Ri(X), Wj(X) forms a read-write conflict

3. Wi(X), Rj(X) forms a write-read conflict

4. Wi(X), Wj(X) forms a write-write conflict
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Conflict Serializable Schedule

A schedule is conflict serializable if it can be

transformed into a serial schedule by a series of

swappings of adjacent non-conflicting actions
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Conflict Serializable Schedule Example

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)
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Conflict Serializable Schedule Example

T1 T2

R(A)

W(A)

R(A)

R(B)

W(A)

W(B)

R(B)

W(B)
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Conflict Serializable Schedule Example

T1 T2

R(A)

W(A)

R(B)

R(A)

W(A)

W(B)

R(B)

W(B)
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Conflict Serializable Schedule Example

T1 T2

R(A)

W(A)

R(B)

R(A)

W(B)

W(A)

R(B)

W(B)
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Conflict Serializable Schedule Example

T1 T2

R(A)

W(A)

R(B)

W(B)

R(A)

W(A)

R(B)

W(B)
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Non Conflict Serializable Schedule Example

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)
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Non Conflict Serializable Schedule Example

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

R(B)

W(B)

W(B)

Conflict rule broken!

October 30, 2024 Serializability 62



Serializable vs Conflict Serializable

October 30, 2024 Serializability 63

Conflict serializability ignores what TXN does between the R’s and the W’s.

It assumes the worst / most complicated updates to the data



Serializable vs Conflict Serializable

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

AA*2

BB*2

BB+100

AA+100

Not serializable nor conflict serializable
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Conflict serializability ignores what TXN does between the R’s and the W’s.

It assumes the worst / most complicated updates to the data



Serializable vs Conflict Serializable

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

AA+2

BB+2

Serializable (because 100+2 = 2+100)

But not conflict serializable, because it assumes the worst
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BB+100

AA+100

Conflict serializability ignores what TXN does between the R’s and the W’s.

It assumes the worst / most complicated updates to the data



Discussion

▪Most RDBMs enforce conflict-serializability

▪Next: how to test for conflict-serializability
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The Precedence Graph
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Testing for Conflict Serializability

Fix a schedule

▪Definition. The precedence graph has one node 
for every TXN in the schedule, and one edge for 
every pair of conflicting ops

▪ Theorem. The schedule is conflict-serializable iff 
the precedence graph has no cycles

October 30, 2024 Serializability 68



Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)
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Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

October 30, 2024 Serializability 70
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Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3
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Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r1(B)
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Edges:



Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r1(B)
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Edges:



Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r1(B) No edge because

no conflict (A != B)
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Edges:



Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w2(A)
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Edges:



Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w2(A) No edge because

 same txn (2)
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Edges:



Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r3(A) ?
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Edges:



Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w1(B) ?
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Edges:



Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w3(A) ?
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Edges:



Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w3(A) Edge! Conflict from 

T2 to T3
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Edges:



Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w3(A) Edge! Conflict from 

T2 to T3
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Edges:



Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r2(B) ?

A

And so on until compared every pair of actions… 
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Edges:



Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B) 

1 2 3

Repeating the same directed edge not necessary
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Edges:



Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B) 

1 2 3

This schedule is conflict-serializable
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Example 2

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)
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Example 2

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3
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Example 2

1 2 3

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)
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Example 2

1 2 3

This schedule is NOT conflict-serializable

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)
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Takeaways

▪ Transactions: “…all or nothing…”

▪Simplified data model: READ/WRITE elements

▪Schedules:
• Serial

• Serializable

• Conflict serializable

▪Precedence graph
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