
Transactions: Serializability

October 30, 2024 Serializability 1

Announcements

▪HW4 is due on Friday

October 30, 2024 Serializability 2

Recap: Applications and Databases

Almost every app uses some database

▪General purpose language (Java, Python)

▪App issues SQL commands to RDBMS

▪Usually, multiple apps (users) access same DB

October 30, 2024 Serializability 3

Recap: SQL in a Programming Language

...

b1 = b+a # the new balance

cur.execute("UPDATE acc

 SET balance = ?

 WHERE usr=?",

 [b1,usr])

Usr Balance

Alice 300

Bob 600

Carol 400

Acc

October 30, 2024 Serializability 4

Recap: Single User

▪ The database is accessed by a single user:

▪RDBMS on same laptop, or a server, or the cloud

Application

Database

October 30, 2024 Serializability 5

Recap: Client-Server

▪Multiple users access the database concurrently

Application

Database

Application

. . .
October 30, 2024 Serializability 6

Transactions

October 30, 2024 Serializability 7

Transactions

▪A transaction is a set of read and writes to the
database that execute all or nothing

BEGIN TRANSACTION

 ...SQL Statements

COMMIT

BEGIN TRANSACTION

 ...SQL Statements

ROLLBACK

No part of txn is executedEntire txn is executed

October 30, 2024 Serializability 8

Transactions

▪Prevent all concurrency control conflicts

▪Easy to use in app: group statements in txns

▪What property does a TXN satisfy?

• Informally: “TXNs have ACID properties”

• Formally: “execution of TXNs must be serializable”

October 30, 2024 Serializability 9

ACID

October 30, 2024 Serializability 10

Transactions are ACID

▪Atomic

▪Consistent

▪ Isolated

▪Durable

October 30, 2024 Serializability 11

Atomic

▪A set of operations is atomic if either all its
operations happen, or none happens

System

crashed

here

…

Update account1

…

…

…
Update account2

…

Recovery manager (not discussed in this class)

October 30, 2024 Serializability 12

Consistent

Assume TXN is “correct” (this is app specific)

▪ If TXN starts with the DB in a consistent state,
it must end leaving the DB in a consistent state

October 30, 2024 Serializability 13

It is a consequence of Atomicity and Isolation

Isolated

▪ The effect of the transaction on the database is as
if it were running alone on the database

Concurrency Control Manager

Interleaved

actions

should not

interfere

October 30, 2024 Serializability 14

TXN1:

…

Update account1

…

…
…

Update account2

…

TXN2:

…

Update account1

…

…
…

Update account2

…

Durable

▪Data should be stored persistently on disk, always
in a consistent state

October 30, 2024 Serializability 15

Discussion

▪ACID properties: popular job interview question

▪ “A” and “I” matter
• Atomicity: recover from crashes

• Isolation: concurrency control

▪ACID is informal.

Will discuss the formal property next

October 30, 2024 Serializability 16

444

344 and 444

Serializability

October 30, 2024 Serializability 17

Problem Definition

▪ The RDBMs runs several TXNs: T1, T2, T3, …

▪ It could run T1 to completion before starting T2,
 then run T2 to completion before starting T3,
 then run T3…
 …

October 30, 2024 Serializability 18

Problem Definition

▪ The RDBMs runs several TXNs: T1, T2, T3, …

▪ It could run T1 to completion before starting T2,
 then run T2 to completion before starting T3,
 then run T3…
 …
But this has poor performance Why?

(in class)

October 30, 2024 Serializability 19

Problem Definition

▪ The RDBMs runs several TXNs: T1, T2, T3, …

▪ It could run T1 to completion before starting T2,
 then run T2 to completion before starting T3,
 then run T3…
 …
But this has poor performance

▪ Instead: interleave commands from multiple TXNs

Why?

(in class)

October 30, 2024 Serializability 20

When is the interleaving ”safe”?

Simplified Data Model for TXN

▪Database = a set of “elements”

▪ TXN = a sequence of Reads/Writes of elements

October 30, 2024 Serializability 21

Element is usually

a record, or a disk block

Example

T1

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

October 30, 2024 Serializability 22

Example

T1

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

A,B are

elements

in the DB

October 30, 2024 Serializability 23

Example

T1

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

A,B are

elements

in the DB

t is a local

variable

in the app

October 30, 2024 Serializability 24

Example

T1

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

T2

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

A,B are

elements

in the DB

t is a local

variable

in the app

October 30, 2024 Serializability 25

Definitions

▪An interleaving of READ/WRITEs from different
TXNs is called a schedule

October 30, 2024 Serializability 26

Definitions

▪An interleaving of READ/WRITEs from different
TXNs is called a schedule

▪Definition: a serial schedule is a schedule where
all operations of transactions come before those of
the next transaction

October 30, 2024 Serializability 27

Definitions

▪An interleaving of READ/WRITEs from different
TXNs is called a schedule

▪Definition: a serial schedule is a schedule where
all operations of transactions come before those of
the next transaction

▪Definition: a serializable schedule is a schedule
that is equivalent to a serial schedule

October 30, 2024 Serializability 28

A Schedule

T1 T2

READ(A, t)

READ(A, s)

s := s*2

t := t+100

WRITE(A, t)

WRITE(A,s)

READ(B,s)

s := s*2

READ(B, t)

WRITE(B,s)

t := t+100

WRITE(B,t)

ti
m

e

October 30, 2024 Serializability 29

A Serial Schedule

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

ti
m

e

October 30, 2024 Serializability 30

A Serial Schedule

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

A = 2

B = 2

ti
m

e

October 30, 2024 Serializability 31

A Serial Schedule

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

A = 2

B = 2

A = 102

B = 102

ti
m

e

October 30, 2024 Serializability 32

A Serial Schedule

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

A = 2

B = 2

A = 102

B = 102

A = 204

B = 204

ti
m

e

October 30, 2024 Serializability 33

The Other Serial Schedule

T1 T2

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

A = 2

B = 2

A = 4

B = 4

A = 104

B = 104

ti
m

e

October 30, 2024 Serializability 34

A Serializable Schedule

A = 2

B = 2

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B, t)

t := t+100

WRITE(B,t)

READ(B,s)

s := s*2

WRITE(B,s)

October 30, 2024 Serializability 35

A Serializable Schedule

A = 2

B = 2

A = 102

B = 2

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B, t)

t := t+100

WRITE(B,t)

READ(B,s)

s := s*2

WRITE(B,s)

October 30, 2024 Serializability 36

A Serializable Schedule

A = 2

B = 2

A = 102

B = 2

A = 204

B = 2

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B, t)

t := t+100

WRITE(B,t)

READ(B,s)

s := s*2

WRITE(B,s)

October 30, 2024 Serializability 37

A Serializable Schedule

A = 2

B = 2

A = 102

B = 2

A = 204

B = 2

A = 204

B = 102

A = 204

B = 204

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B, t)

t := t+100

WRITE(B,t)

READ(B,s)

s := s*2

WRITE(B,s)

October 30, 2024 Serializability 38

A Serializable Schedule

This is NOT a serial schedule

It is a serializable schedule.

A = 2

B = 2

A = 102

B = 2

A = 204

B = 2

A = 204

B = 102

A = 204

B = 204

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B, t)

t := t+100

WRITE(B,t)

READ(B,s)

s := s*2

WRITE(B,s)

October 30, 2024 Serializability 39

A Non-Serializable Schedule

A = 2

B = 2

A = 102

B = 2

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

READ(B, t)

t := t+100

WRITE(B,t)

October 30, 2024 Serializability 40

A Non-Serializable Schedule

A = 2

B = 2

A = 102

B = 2

A = 204

B = 2

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

READ(B, t)

t := t+100

WRITE(B,t)

October 30, 2024 Serializability 41

A Non-Serializable Schedule

A = 2

B = 2

A = 102

B = 2

A = 204

B = 2

A = 204

B = 4

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

READ(B, t)

t := t+100

WRITE(B,t)

October 30, 2024 Serializability 42

A Non-Serializable Schedule

A = 2

B = 2

A = 102

B = 2

A = 204

B = 2

A = 204

B = 4

A = 204

B = 104

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

READ(B, t)

t := t+100

WRITE(B,t)

October 30, 2024 Serializability 43

A Non-Serializable Schedule

A = 2

B = 2

A = 102

B = 2

A = 204

B = 2

A = 204

B = 4

A = 204

B = 104

Should be

impossible!

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

READ(B, t)

t := t+100

WRITE(B,t)

October 30, 2024 Serializability 44

Discussion

▪ If the schedule is serial, then nothing can go wrong

▪Same for a serializable schedule

▪Concurrency Control Manager of the RDBMs must
ensure that the schedule is serializable

How do we check that a schedule is serializable?

October 30, 2024 Serializability 45

Conflict Serializability

October 30, 2024 Serializability 46

Outline

We further simplify the model:

▪A transaction is a sequence of reads and writes

▪We ignore operations between reads and writes

October 30, 2024 Serializability 47

Example

T1

READ(A, t)

t := t+100

WRITE(A, t)

READ(B, t)

t := t+100

WRITE(B,t)

T1

R(A)

W(A)

R(B)

W(B)

Also: R1(A), W1(A), R1(B), W1(B)

October 30, 2024 Serializability 48

Example

▪ T1 then T2

T1 T2

R(A)

W(A)

R(B)

W(B)

R(A)

W(A)

R(B)

W(B)

ti
m

e

R1(A), W1(A), R1(B), W1(B), R2(A), W2(A), R2(B), W2(B)

October 30, 2024 Serializability 49

Example

▪ T2 then T1

T1 T2

R(A)

W(A)

R(B)

W(B)

R(A)

W(A)

R(B)

W(B)

R2(A), W2(A), R2(B), W2(B), R1(A), W1(A), R1(B), W1(B)

October 30, 2024 Serializability 50

Example

▪Serializable to T1 then T2

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

R1(A), W1(A), R2(A), W2(A), R1(B), W1(B), R2(B), W2(B)

October 30, 2024 Serializability 51

Example

▪Not serializable

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

R1(A), W1(A), R2(A), W2(A), R2(B), W2(B), R1(B), W1(B)

October 30, 2024 Serializability 52

Main Idea

▪ To check if a schedule is serializable, try swapping
operations until it becomes serial:

▪But we only swap if the new schedule is equivalent

▪A pair is in conflict if it cannot be swapped

… Ri(A), Wj(B), … … Wj(B), Ri(A), …

October 30, 2024 Serializability 53

Conflicts

1. Any pair of ops of the same TXN are in conflict

2. Ri(X), Wj(X) forms a read-write conflict

3. Wi(X), Rj(X) forms a write-read conflict

4. Wi(X), Wj(X) forms a write-write conflict

October 30, 2024 Serializability 54

Conflict Serializable Schedule

A schedule is conflict serializable if it can be

transformed into a serial schedule by a series of

swappings of adjacent non-conflicting actions

October 30, 2024 Serializability 55

Conflict Serializable Schedule Example

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

October 30, 2024 Serializability 56

Conflict Serializable Schedule Example

T1 T2

R(A)

W(A)

R(A)

R(B)

W(A)

W(B)

R(B)

W(B)

October 30, 2024 Serializability 57

Conflict Serializable Schedule Example

T1 T2

R(A)

W(A)

R(B)

R(A)

W(A)

W(B)

R(B)

W(B)

October 30, 2024 Serializability 58

Conflict Serializable Schedule Example

T1 T2

R(A)

W(A)

R(B)

R(A)

W(B)

W(A)

R(B)

W(B)

October 30, 2024 Serializability 59

Conflict Serializable Schedule Example

T1 T2

R(A)

W(A)

R(B)

W(B)

R(A)

W(A)

R(B)

W(B)

October 30, 2024 Serializability 60

Non Conflict Serializable Schedule Example

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

October 30, 2024 Serializability 61

Non Conflict Serializable Schedule Example

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

R(B)

W(B)

W(B)

Conflict rule broken!

October 30, 2024 Serializability 62

Serializable vs Conflict Serializable

October 30, 2024 Serializability 63

Conflict serializability ignores what TXN does between the R’s and the W’s.

It assumes the worst / most complicated updates to the data

Serializable vs Conflict Serializable

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

AA*2

BB*2

BB+100

AA+100

Not serializable nor conflict serializable

October 30, 2024 Serializability 64

Conflict serializability ignores what TXN does between the R’s and the W’s.

It assumes the worst / most complicated updates to the data

Serializable vs Conflict Serializable

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

AA+2

BB+2

Serializable (because 100+2 = 2+100)

But not conflict serializable, because it assumes the worst

October 30, 2024 Serializability 65

BB+100

AA+100

Conflict serializability ignores what TXN does between the R’s and the W’s.

It assumes the worst / most complicated updates to the data

Discussion

▪Most RDBMs enforce conflict-serializability

▪Next: how to test for conflict-serializability

October 30, 2024 Serializability 66

The Precedence Graph

October 30, 2024 Serializability 67

Testing for Conflict Serializability

Fix a schedule

▪Definition. The precedence graph has one node
for every TXN in the schedule, and one edge for
every pair of conflicting ops

▪ Theorem. The schedule is conflict-serializable iff
the precedence graph has no cycles

October 30, 2024 Serializability 68

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

October 30, 2024 Serializability 69

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

October 30, 2024 Serializability 70

Nodes:

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

October 30, 2024 Serializability 71

Edges:

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r1(B)

October 30, 2024 Serializability 72

Edges:

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r1(B)

October 30, 2024 Serializability 73

Edges:

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r1(B) No edge because

no conflict (A != B)

October 30, 2024 Serializability 74

Edges:

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w2(A)

October 30, 2024 Serializability 75

Edges:

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w2(A) No edge because

 same txn (2)

October 30, 2024 Serializability 76

Edges:

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r3(A) ?

October 30, 2024 Serializability 77

Edges:

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w1(B) ?

October 30, 2024 Serializability 78

Edges:

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w3(A) ?

October 30, 2024 Serializability 79

Edges:

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w3(A) Edge! Conflict from

T2 to T3

October 30, 2024 Serializability 80

Edges:

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w3(A) Edge! Conflict from

T2 to T3

October 30, 2024 Serializability 81

Edges:

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r2(B) ?

A

And so on until compared every pair of actions…

October 30, 2024 Serializability 82

Edges:

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

Repeating the same directed edge not necessary

October 30, 2024 Serializability 83

Edges:

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

October 30, 2024 Serializability 84

Example 2

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

October 30, 2024 Serializability 85

Example 2

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

October 30, 2024 Serializability 86

Example 2

1 2 3

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

October 30, 2024 Serializability 87

Example 2

1 2 3

This schedule is NOT conflict-serializable

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

October 30, 2024 Serializability 88

Takeaways

▪ Transactions: “…all or nothing…”

▪Simplified data model: READ/WRITE elements

▪Schedules:
• Serial

• Serializable

• Conflict serializable

▪Precedence graph

October 30, 2024 Serializability 89

	Slide 1
	Slide 2: Announcements
	Slide 3: Recap: Applications and Databases
	Slide 4: Recap: SQL in a Programming Language
	Slide 5: Recap: Single User
	Slide 6: Recap: Client-Server
	Slide 7
	Slide 8: Transactions
	Slide 9: Transactions
	Slide 10
	Slide 11: Transactions are ACID
	Slide 12: Atomic
	Slide 13: Consistent
	Slide 14: Isolated
	Slide 15: Durable
	Slide 16: Discussion
	Slide 17
	Slide 18: Problem Definition
	Slide 19: Problem Definition
	Slide 20: Problem Definition
	Slide 21: Simplified Data Model for TXN
	Slide 22: Example
	Slide 23: Example
	Slide 24: Example
	Slide 25: Example
	Slide 26: Definitions
	Slide 27: Definitions
	Slide 28: Definitions
	Slide 29: A Schedule
	Slide 30: A Serial Schedule
	Slide 31: A Serial Schedule
	Slide 32: A Serial Schedule
	Slide 33: A Serial Schedule
	Slide 34: The Other Serial Schedule
	Slide 35: A Serializable Schedule
	Slide 36: A Serializable Schedule
	Slide 37: A Serializable Schedule
	Slide 38: A Serializable Schedule
	Slide 39: A Serializable Schedule
	Slide 40: A Non-Serializable Schedule
	Slide 41: A Non-Serializable Schedule
	Slide 42: A Non-Serializable Schedule
	Slide 43: A Non-Serializable Schedule
	Slide 44: A Non-Serializable Schedule
	Slide 45: Discussion
	Slide 46
	Slide 47: Outline
	Slide 48: Example
	Slide 49: Example
	Slide 50: Example
	Slide 51: Example
	Slide 52: Example
	Slide 53: Main Idea
	Slide 54: Conflicts
	Slide 55: Conflict Serializable Schedule
	Slide 56: Conflict Serializable Schedule Example
	Slide 57: Conflict Serializable Schedule Example
	Slide 58: Conflict Serializable Schedule Example
	Slide 59: Conflict Serializable Schedule Example
	Slide 60: Conflict Serializable Schedule Example
	Slide 61: Non Conflict Serializable Schedule Example
	Slide 62: Non Conflict Serializable Schedule Example
	Slide 63: Serializable vs Conflict Serializable
	Slide 64: Serializable vs Conflict Serializable
	Slide 65: Serializable vs Conflict Serializable
	Slide 66: Discussion
	Slide 67
	Slide 68: Testing for Conflict Serializability
	Slide 69: Example 1
	Slide 70: Example 1
	Slide 71: Example 1
	Slide 72: Example 1
	Slide 73: Example 1
	Slide 74: Example 1
	Slide 75: Example 1
	Slide 76: Example 1
	Slide 77: Example 1
	Slide 78: Example 1
	Slide 79: Example 1
	Slide 80: Example 1
	Slide 81: Example 1
	Slide 82: Example 1
	Slide 83: Example 1
	Slide 84: Example 1
	Slide 85: Example 2
	Slide 86: Example 2
	Slide 87: Example 2
	Slide 88: Example 2
	Slide 89: Takeaways

