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Announcements

* HW4 is due on Friday
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Recap: Applications and Databases

Almost every app uses some database

» General purpose language (Java, Python)

* App issues SQL commands to RDBMS

= Usually, multiple apps (users) access same DB

October 30, 2024 Serializability



Recap: SQL in a Programming Language

Acc

Alice 300
Bob 600
Carol 400
bl = b+a # the new balance

cur .execute ("UPDATE acc
SET balance = ?
WHERE usr=?",
[bl,usr])
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Recap: Single User

*» The database Is accessed by a single user:

Application

————> .
dh

» RDBMS on same laptop, or a server, or the cloud

Database
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Recap: Client-Server

= Multiple users access the database concurrently

October 30, 2024 Serializability
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Transactions
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Transactions

= A transaction Is a set of read and writes to the
database that execute all or nothing

BEGIN TRANSACTION BEGIN TRANSACTION
...o0L Statements ...o0L Statements
COMMIT ROLLBACK

Entire txn is executed No part of txn is executed
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Transactions

» Prevent all concurrency control conflicts

= Easy to use in app: group statements in txns

= What property does a TXN satisfy?

 Informally: “TXNs have ACID properties”

* Formally: “execution of TXNs must be serializable”
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ACID
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Transactions are ACID

= Atomic

= Consistent

= |solated

= Durable

October 30, 2024 Serializability



= A set of operations is atomic if either all its
operations happen, or none happens

Update accountl

Update account2

Recovery manager (not discussed in this class)
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Assume TXN is “correct” (this is app specific)

= |[f TXN starts with the DB in a consistent state,
it must end leaving the DB in a consistent state

It is a consequence of Atomicity and Isolation
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|Isolated

= The effect of the transaction on the database is as
If it were running alone on the database

TXNI:

Update accountl

Update account2

October 30, 2024

Concurrency Control Manager

TXN2:

Update accountl

Update account2

Serializability

Interleaved
actions
should not
IEEE




» Data should be stored persistently on disk, always
INn a consistent state
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Discussion

= ACID properties: popular job interview question

= “A” and “I" matter
 Atomicity: recover from crashes

e |solation: concurrency control
344 and 444

= ACID iIs informal.

Will discuss the formal property next
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Serializability
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Problem Definition

» The RDBMs runs several TXNs: T1, T2, T3, ...

= |t could run T1 to completion before starting T2,
then run T2 to completion before starting T3,
then run T3...

October 30, 2024 Serializability



Problem Definition

» The RDBMs runs several TXNs: T1, T2, T3, ...

= |t could run T1 to completion before starting T2,
then run T2 to completion before starting T3,
then run T3...

But this has poor performance %
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Problem Definition

» The RDBMs runs several TXNs: T1, T2, T3, ...

= |t could run T1 to completion before starting T2,
then run T2 to completion before starting T3,
then run T3...

But this has poor performance %

* Instead: interleave commands from multiple TXNs

When is the interleaving "safe”?
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Simplified Data Model for TXN

Element is usually
a record, or a disk block

= Database = a set of “elements”

» TXN = a sequence of Reads/Writes of elements

October 30, 2024 Serializability



T1

READ(A, 1)
t:=t+100
WRITE(A, 1)
READ(B, t)
t:=t+100
WRITE(B,t)

October 30, 2024
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T1

READ(A, 1)
t:=t+100
WRITE(A, 1)
READ(B, t)
t:=t+100
WRITE(B,t)

October 30, 2024

A,B are
elements
in the DB

Serializability



T1

READ(A, 1)
t:=t+100
WRITE(A, 1)
READ(B, t)
t:=t+100
WRITE(B,t)

October 30, 2024

A,B are
elements
in the DB

tis a local
variable
in the app
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T1

READ(A, 1)
t:=t+100
WRITE(A, 1)
READ(B, t)
t:=t+100
WRITE(B,t)

October 30, 2024

A,B are
elements
in the DB

tis a local
variable
in the app

Serializability

T2

READ(A, s)
S =8*2
WRITE(A,s)
READ(B,s)
S =8*2
WRITE(B,s)




* An interleaving of READ/WRITESs from different
TXNs is called a schedule
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* An interleaving of READ/WRITESs from different
TXNs is called a schedule

» Definition: a serial schedule is a schedule where
all operations of transactions come before those of
the next transaction
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= An interleaving of READ/WRITESs from different
TXNs is called a schedule

= Definition: a serial schedule Is a schedule where
all operations of transactions come before those of
the next transaction

» Definition: a serializable schedule Is a schedule
that is equivalent to a serial schedule

October 30, 2024 Serializability



A Schedule

time

October 30, 2024

T1 T2
READ(A, t)
READ(A, s)
S =8*2
t:=t+100
WRITE(A, t)
WRITE(A,s)
READ(B,s)
S =8*2
READ(B, 1)
WRITE(B,s)
t:=t+100
WRITE(B,1)

Serializability



A Serial Schedule

T1 T2
READ(A, 1)
t:=t+100
WRITE(A, 1)
READ(B, 1)
qE) t:=t+100
= WRITE(B.1)
READ(A, s)
S .:=5*2
WRITE(A,s)
v READ(B,s)
S =8*2
WRITE(B,s)
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A Serial Schedule

T1 T2
READ(A, 1)
t:=t+100
WRITE(A, 1)
READ(B, 1)
qE) t:=t+100
= WRITE(B.1)
READ(A, s)
S .:=5*2
WRITE(A,s)
v READ(B,s)
S =8*2
WRITE(B,s)
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A Serial Schedule

time

A =102
B =102

October 30, 2024

T1 T2

READ(A, 1)

t:=t+100

WRITE(A, t)

READ(B, 1)

t:=t+100

WRITE(B,1)
READ(A, s)
S =8*2
WRITE(A,S)
READ(B,s)
S :=s*2
WRITE(B,s)
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A Serial Schedule

time

A =102
B =102

A =204
B =204

October 30, 2024

T1 T2

READ(A, 1)

t:=t+100

WRITE(A, t)

READ(B, 1)

t:=t+100

WRITE(B,1)
READ(A, s)
S =8*2
WRITE(A,S)
READ(B,s)
S :=s*2
WRITE(B,s)

Serializability



The Other Serial Schedule

time

A=104
B =104

October 30, 2024

T1 T2
READ(A, s)
S =8*2
WRITE(A,S)
READ(B,s)
S :=8*2
WRITE(B,s)

READ(A, 1)

t:=t+100

WRITE(A, t)

READ(B, 1)

t:=t+100

WRITE(B,1)

Serializability



A Serializable Schedule

October 30, 2024

T1 T2

READ(A, 1)

t :=t+100

WRITE(A, t)
READ(A, s)
S :=8*2
WRITE(A,s)

READ(B, 1)

t:=t+100

WRITE(B,1)
READ(B,s)
S =8*2
WRITE(B,s)

Serializability




A Serializable Schedule

T1 T2

READ(A, 1)

t :=t+100

WRITE(A, t)
READ(A, s)
S :=8*2
WRITE(A,s)

READ(B, 1)

t:=t+100

WRITE(B,1)
READ(B,s)
S =8*2
WRITE(B,s)
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A Serializable Schedule

T1 T2

READ(A, 1)

t :=t+100

WRITE(A, t)
READ(A, s)
S :=8*2
WRITE(A,s)

READ(B, 1)

t:=t+100

WRITE(B,1)
READ(B,s)
S =8*2
WRITE(B,s)
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A Serializable Schedule

October 30, 2024

T1 T2

READ(A, 1)

t :=t+100

WRITE(A, t)
READ(A, s)
S :=8*2
WRITE(A,s)

READ(B, 1)

t:=t+100

WRITE(B,1)
READ(B,s)
S =8*2
WRITE(B,s)

Serializability



A Serializable Schedule

This is NOT a serial schedule

It is a serializable schedule.

October 30, 2024

T1 T2

READ(A, 1)

t :=t+100

WRITE(A, t)
READ(A, s)
S :=8*2
WRITE(A,s)

READ(B, 1)

t:=t+100

WRITE(B,1)
READ(B,s)
S =8*2
WRITE(B,s)

Serializability



A Non-Serializable Schedule

T1 T2

READ(A, 1)

t:=t+100

WRITE(A, t)
READ(A, s)
S :=s*2
WRITE(A,s)
READ(B,s)
S =8*2
WRITE(B,S)

READ(B, 1)

t:=t+100

WRITE(B,1)

October 30, 2024
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A Non-Serializable Schedule

T1 T2

READ(A, 1)

t:=t+100

WRITE(A, t)
READ(A, s)
S :=s*2
WRITE(A,s)
READ(B,s)
S =8*2
WRITE(B,S)

READ(B, 1)

t:=t+100

WRITE(B,1)

October 30, 2024
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A Non-Serializable Schedule

T1 T2

READ(A, 1)

t:=t+100

WRITE(A, t)
READ(A, s)
S :=s*2
WRITE(A,s)
READ(B,s)
S =8*2
WRITE(B,S)

READ(B, 1)

t:=t+100

WRITE(B,1)
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A Non-Serializable Schedule

T1 T2

READ(A, 1)

t:=t+100

WRITE(A, t)
READ(A, s)
S :=s*2
WRITE(A,s)
READ(B,s)
S =8*2
WRITE(B,S)

READ(B, 1)

t:=t+100

WRITE(B,1)
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A Non-Serializable Schedule

Tl T2

READ(A, t)

t:=t+100

WRITE(A, 1)
READ(A, s)
S :=85*2
WRITE(A,S)
READ(B,s)
S =s*2
WRITE(B,s)

READ(B, t)

t := t+100

WRITE(B,t) impossible!

October 30, 2024

Serializability

A=204
B =104




Discussion

= If the schedule is serial, then nothing can go wrong

= Same for a serializable schedule

= Concurrency Control Manager of the RDBMs must
ensure that the schedule is serializable

How do we check that a schedule Is serializable?

October 30, 2024 Serializability



Conflict Serializability




We further simplify the model.

» A transaction is a sequence of reads and writes

= \We ighore operations between reads and writes
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T1

READ(A, 1)
t:=t+100
WRITE(A, 1)
READ(B, t)
t:=t+100
WRITE(B,t)

October 30, 2024

R(A)
R W(A)
R(B)
W(B)
Also: R,(A), W4(A), R,(B), W4(B)

Serializability



= T1thenT2

Rl(A)! Wl(A)1 Rl(B)’ Wl(B)’ RZ(A)’ W2(A)1 RZ(B)’ WZ(B)

R(A)
W(A)
R(B)
£ WpE
- R(A)
W(A)
R(B)
W(B)
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= T2thenT1

RZ(A)! WZ(A)1 RZ(B)’ WZ(B)’ Rl(A)’ Wl(A)1 Rl(B)’ Wl(B)

R(A)
W(A)
R(B)
W(B)

R(A)

W(A)

R(B)

wW(B)
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= Serializable to T1 then T2

Rl(A)! Wl(A)1 RZ(A)’ WZ(A)’ Rl(B)! Wl(B)1 RZ(B)’ WZ(B)

R(A)
W(A)
R(A)
W(A)
R(B)
W(B)
R(B)
W(B)
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= Not serializable

Rl(A)! Wl(A)1 RZ(A)’ WZ(A)’ RZ(B)’ W2(B)1 Rl(B)’ Wl(B)

R(A)

W(A)
R(A)
W(A)
R(B)
W(B)

R(B)

wW(B)
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* To check if a schedule is serializable, try swapping
operations until it becomes serial:

.. Ri(A), Wi(B), ... |  m—) ... W(B), Ri(A), ...

» But we only swap if the new schedule is equivalent

= A pair is in conflict if it cannot be swapped

October 30, 2024 Serializability



1. Any pair of ops of the same TXN are in conflict
2. Ri(X), W;(X) forms a read-write conflict
3. W;i(X), Ry(X) forms a write-read conflict

4. W;i(X), W;(X) forms a write-write conflict

October 30, 2024 Serializability



Conflict Serializable Schedule

A schedule is conflict serializable if it can be
transformed Into a serial schedule by a series of
swappings of adjacent non-conflicting actions

October 30, 2024 Serializability



Conflict Serializable Schedule Example

October 30, 2024

R(A)
W(A)
R(A)
W(A)
R(B)
W(B)
R(B)
W(B)

Serializability



Conflict Serializable Schedule Example

October 30, 2024

R(A)
W(A)
R(A)
R(B)
W(A)
W(B)
R(B)
W(B)

Serializability



Conflict Serializable Schedule Example
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R(A)
W(A)
R(B)
R(A)
W(A)
W(B)
R(B)
W(B)

Serializability



Conflict Serializable Schedule Example
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R(A)

W(A)
R(B)
W(B)

Serializability



Conflict Serializable Schedule Example

October 30, 2024

R(A)

W(A)

R(B)

W(B)
R(A)
W(A)
R(B)
W(B)

Serializability



Non Conflict Serializable Schedule Example

R(A)

W(A)
R(A)
W(A)
R(B)
W(B)

R(B)

W(B)

October 30, 2024 Serializability



Non Conflict Serializable Schedule Example

October 30, 2024

R(A)
W(A)
R(A)
W(A)
R(B)
R(B
- W(B) x Conflict rule broken!
W(B)

Serializability



Serializable vs Conflict Serializable

Conflict serializability ignores what TXN does between the R’s and the W's.
It assumes the worst / most complicated updates to the data

October 30, 2024 Serializability



Serializable vs Conflict Serializable

Conflict serializability ignores what TXN does between the R’s and the W's.
It assumes the worst / most complicated updates to the data

Not serializable nor conflict serializable

A<A+100 { RA)
W(A)

R(A)
— ACAR

w@a) |

RB) | pepm

wB) |

R(B)
B<B+100 W(B)

October 30, 2024 Serializability



Serializable vs Conflict Serializable

Conflict serializability ignores what TXN does between the R’s and the W's.
It assumes the worst / most complicated updates to the data

Serializable (because 100+2 = 2+100)
But not conflict serializable, because it assumes the worst

A<A+100 { RA)
W(A)

R(A)

—  ACA+2
W(A) B
R(B) — B<B+2
wB) |

R(B)
B<B+100 W(B)

October 30, 2024 Serializability



Discussion

» Most RDBMs enforce conflict-serializability

» Next: how to test for conflict-serializability

October 30, 2024 Serializability



The Precedence Graph




Testing for Conflict Serializability

Fix a schedule

» Definition. The precedence graph has one node
for every TXN in the schedule, and one edge for
every pair of conflicting ops

» Theorem. The schedule is conflict-serializable Iff
the precedence graph has no cycles

October 30, 2024 Serializability



Example 1

r(A); r(B); Wy(A); r3(A); wi(B); wi(A); 1x(B); wy(B)

October 30, 2024



Example 1

r(A); r(B); Wy(A); r3(A); wi(B); wi(A); 1x(B); wy(B)

Nodes: @ @ @




Example 1

W,(A); 13(A); wi(B); ws(A); ry(B); wy(B)

Edges: @ @ @




“To(A) || 11(B)
/




r,(A) || 1(B)

W,(A); 13(A); wi(B); ws(A); ry(B); wy(B)




rz(A) rl(B) No edge because

no conflict (A!=B)

W,(A); 13(A); wi(B); ws(A); ry(B); wy(B)

Edges: @ @ @

October 30, 2024






Iy (A) W, (A) No edge because

same txn (2)

; T3(A); wi(B); Wi(A); 1(B); w,(B)

Edges: @ @ @

October 30, 2024



r(A) || 13(A) | 7

r(B); wy(A); w,(B); w3(A); 12(B); wy(B)




r(A) || wy(B) | 7

(B W(A); T5(A); Wy (B); Wa(A); 1,(B); W,(B)




r(A)

W3(A)

r(B); w,(A); r;(A); w,(B);

, 12(B); w,(B)




r(A) || Wa(A)

Edge! Conflict from
T2t0T3

r(B); w,(A); r;(A); w,(B);

Edges: <:> <:>

W3(A)

, 12(B); w,(B)

October 30, 2024



r2 ( A) W3 ( A) ES%E!T%onflict from

r(B); Wy(A); r3(A); wi(B); ws(A); 12(B); wy(B)

Edges: @ @ @

October 30, 2024



r(A) || 1(B) | 7

r(B); w,(A); r3(A); wi(B); ws(A);

Edges: @ @ A @

And so on until compared every pair of actions...

October 30, 2024



Example 1

— T
r(A); r(B); Wy(A); r3(A); wi(B); wi(A); 1x(B); wy(B)

Edges: @ @ @

Repeating the same directed edge not necessary
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Example 1

— e

ro(A); 11(B); Wy(A); r3(A); wy(B); wi(A); r,(B); Wy(B)

This schedule iIs conflict-serializable
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Example 2

r(A); 11(B); Wy(A); 12(B); r3(A); wi(B); wi(A); w,(B)
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Example 2

r(A); 11(B); Wy(A); 12(B); r3(A); wi(B); wi(A); w,(B)




Example 2

T

r(A); 11(B); Wy(A); 12(B); r3(A); wi(B); wi(A); w,(B)




Example 2

T

r(A); 11(B); Wy(A); 12(B); r3(A); wi(B); wi(A); w,(B)

~— - 7

1 {2) (3)

This schedule is NOT conflict-serializable
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* Transactions: “...all or nothing...”

» Simplified data model: READ/WRITE elements

= Schedules:
« Serial
» Serializable
» Conflict serializable

* Precedence graph

October 30, 2024 Serializability
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