
1

Transactions



Announcement

▪ Midterm is graded and will be released shortly

▪ Final exam will be comprehensive:
• Includes this material plus what we cover in 2nd half

▪ HW4 dues on Friday
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Terminology

Two types of query workloads:

▪ Online Analytical Processing (OLAP)
• SELECT-FROM-WHERE are complex

• No INSERT/UPDATE/DELTE, or very few

• For data visualization (eg Tableau), or interactive SQL

▪ Online Transaction Processing (OLTP):
• Lots of INSERT/UPDATE/DELETE

• SELECT-FROM-WHERE are very simple

• Used in Java/Python apps
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Next few

lectures

We focused

on these



Applications and Databases

Almost every app uses some database

▪ General purpose language (Java, Python) 

▪ App issues SQL commands to RDBMS

▪ Usually, multiple apps (users) access same DB
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Simple Banking App in Python

▪ Manage user accounts:
• Names

• Balances

• …

▪ Allow users to:
• Inquire balance

• Deposit cash/check

• Withdraw cash

• Transfer money
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Simple Banking App in Python

CREATE TABLE Acc (

   Usr TEXT PRIMARY KEY,

   Balance INT);

SQL
Usr Balance

Alice 300

Bob 600

Carol 400

Acc
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Simple Banking App in Python

CREATE TABLE Acc (

   Usr TEXT PRIMARY KEY,

   Balance INT);

import sqlite3

con = sqlite3.connect("/Users/suciu/temp/bank.db",

                      autocommit=True)

cur = con.cursor()

res = cur.execute("SELECT * FROM acc")

answ = res.fetchall()

print("The answer is: ", answ)

* Documentation here https://docs.python.org/3/library/sqlite3.html 

SQL

Python*

Usr Balance

Alice 300

Bob 600

Carol 400

Acc

https://docs.python.org/3/library/sqlite3.html
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Simple Banking App in Python

CREATE TABLE Acc (

   Usr TEXT PRIMARY KEY,

   Balance INT);

import sqlite3

con = sqlite3.connect("/Users/suciu/temp/bank.db",

                      autocommit=True)

cur = con.cursor()

res = cur.execute("SELECT * FROM acc")

answ = res.fetchall()

print("The answer is: ", answ)

* Documentation here https://docs.python.org/3/library/sqlite3.html 

SQL

Python*

Usr Balance

Alice 300

Bob 600

Carol 400

Acc

SQL query

sent to DBMS

https://docs.python.org/3/library/sqlite3.html
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DEMO: 

 lec16_txn_demo_create_table.sql

 lec16_txn_demo_simple_1.py



Terminology: Client/Server

▪ Client: 
• The program running the application

• In our example: a python program running on laptop

• In general: a big program on laptop or in the cloud

▪ Server:
• The database management system

• In our example it is Sqlite on laptop

• In general: any RDBMS, on remote server or in cloud

October 28, 2024 Serializability 10



October 28, 2024 Serializability 11

Parameterized Query

res = cur.execute("SELECT * FROM acc")

answ = res.fetchall()

for row in answ:

    usr = row[0]

    bal = row[1]

    b = int(bal)

    i = b*0.04

    cur.execute("UPDATE acc 

       SET balance=?

                 WHERE usr=?",

                 [b+i, usr])

Give every user a 4% interest
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Parameterized Query

res = cur.execute("SELECT * FROM acc")

answ = res.fetchall()

for row in answ:

    usr = row[0]

    bal = row[1]

    b = int(bal)

    i = b*0.04

    cur.execute("UPDATE acc 

       SET balance=?

                 WHERE usr=?",

                 [b+i, usr])

Give every user a 4% interest
Read data
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Parameterized Query

res = cur.execute("SELECT * FROM acc")

answ = res.fetchall()

for row in answ:

    usr = row[0]

    bal = row[1]

    b = int(bal)

    i = b*0.04

    cur.execute("UPDATE acc 

       SET balance=?

                 WHERE usr=?",

                 [b+i, usr])

Give every user a 4% interest

Parameterized query
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DEMO: 

 lec16_txn_demo_simple_2.py



Simple Banking App in Python

Read a username

Repeat:

▪ Read a command

▪ Execute that command
• Check the balance

• Deposit money

• Withdraw money

• Transfer between accounts
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Simple Banking App in Python

usr = input("Enter the user name: ")

res = cur.execute("SELECT *

                   FROM acc

                   WHERE usr=?",

                  [usr])

if res.fetchone() is None:

    print("Wrong user. Exit")

    exit()

Read a username, check if exists:

We check

that the user

exists
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Simple Banking App in Python

while True:

   cmd = input()

   if cmd == “b”: ... check balance

   elif cmd == “d”: ... deposit

   elif cmd == “w”:  ... withdraw

   elif cmd == “t”: ... transfer

   elif cmd == “q”: exit()

A simple loop for executing commants:
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Simple Banking App in Python

res = cur.execute("SELECT balance 

                   FROM acc

                   WHERE usr=?",

                  [usr])

row = res.fetchone()

b = row[0]

print(“Balance is”, b)

Check balance

Fetch one

row/tuple

from output

First element

of the tuple
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Simple Banking App in Python

... Read the balance b as before

amount = input() # amount to be deposited

a = int(amount)

b1 = b+a    # the new balance

cur.execute("UPDATE acc

             SET balance = ? 

             WHERE usr=?",

             [b1,usr])

Deposit
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Simple Banking App in Python

Withdraw

... Read the balance b as before

amount = input() # amount to be withdrawn

a = int(amount)

#

# THE BANK DISPENSES MONEY HERE!

#

b1 = b-a    # the new balance

cur.execute("UPDATE acc

             SET balance = ? 

             WHERE usr=?",

             [b1,usr])
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Simple Banking App in Python

... Read the balance b as before

amount = input() # amount to be withdrawn

a = int(amount)

#

# THE BANK DISPENSES MONEY HERE!

#

b1 = b-a    # the new balance

cur.execute("UPDATE acc

             SET balance = ? 

             WHERE usr=?",

             [b1,usr])

Withdraw

We need to check

if there is enough

money!



October 28, 2024 Serializability 22

Simple Banking App in Python

... Read the balance b as before

amount = input() # amount to be withdrawn

a = int(amount)

if a>b:    # error: overdraft!

   exit()

#

# THE BANK DISPENSES MONEY HERE!

#

b1 = b-a    # the new balance

cur.execute("UPDATE acc

             SET balance = ? 

             WHERE user=?",

             [b1,usr])

Withdraw

Better now
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Simple Banking App in Python

... Read the balance b as before

amount = input() # amount to be transferred

a = int(amount)

if a>b:    # error: overdraft!

   exit()

usrt = input()  # to whom to transfer

... Read the balance bt of usrt

b1 = b-a

bt1 = bt+a

cur.execute("UPDATE acc

             SET balance = ? 

             WHERE user=?",

             [b1,usr]) 

cur.execute("UPDATE acc

             SET balance = ? 

             WHERE user=?",

             [bt1,usrt])

Transfer
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DEMO: 

 lec16_txn_demo.py

 single user



Discussion so Far

▪ The users Alice, Bob, … don’t need to know SQL, 
but interact with the app;

▪ The app usually has a nice User Interface (UI)

▪ The database is persistent: it retains the data for a 
long period of time
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Concurrency



Single-Server

▪ The database is accessed by a single user:

▪ RDBMS on same laptop, or a server, or the cloud

Transactions: Serializability 27

Application

Database



Client-Server or Two-Tier Architecture

▪ Multiple users access the database concurrently

Transactions: Serializability 28

Application

Database

Application

. . .
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DEMO: 

 lec16_txn_demo.py

 multiple users

lec16_txn_demo_txn_no.sql
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What We Have Seen

-- Alice withdraws $100

b = SELECT balance

 FROM acc

 WHERE user = ‘Alice’;

-- Is b >= 100?  Yes:

-- Dispense money

UPDATE acc SET balance=b-100

WHERE user = ‘Alice’

How Alice and Bob colluded to steal $100 (simplified, using only SQL)

Current balance of Alice is $100:

-- Bob impersonates Alice

-- and also withdraws $100

b = SELECT balance

 FROM acc

 WHERE user = ‘Alice’;

-- Is b >= 100?  Yes:

-- Dispense money

UPDATE acc SET balance=b-100

WHERE user = ‘Alice’

time



Discussion

▪ Users Alice, Bob, … can access the same 
database concurrently

▪ This may lead to the database being inconsistent, 
which is a big problem
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Consistency



Database Consistency

▪ Consistency: a property that should always hold
• Every account balance is ≥0

• The sum of all balances is constant,
or changes exactly by the amount deposited/withdrawn

▪ If we write the application correctly, we expect the 
database to remain consistent

▪ But (without transactions!) things can go wrong 
during concurrency.  Next.
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Conflicts Between

Concurrent Operations

We will return

to these in a

later lectrue



Common Concurrency Conflicts

▪ Dirty/Inconsistent Read

▪ Unrepeatable Read

▪ Phantom Read 

▪ Lost Update

These have popular names, but all sorts of other 
conflicts can happen.  Let’s see these.
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Dirty/Inconsistent Read

Manager wants to 

balance project budgets

CEO wants to check 

company balance

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

A inconsistent read happens when

data is read "during" a write



Transactions: Serializability 37

Dirty/Inconsistent Read

-$10mil from project A

+$7mil to project B

+$3mil to project C

SELECT SUM(money) …

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

Manager wants to 

balance project budgets

CEO wants to check 

company balance

A inconsistent read happens when

data is read "during" a write
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Dirty/Inconsistent Read

-$10mil from project A

+$7mil to project B

+$3mil to project C

SELECT SUM(money) …

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

Manager wants to 

balance project budgets

CEO wants to check 

company balance

A inconsistent read happens when

data is read "during" a write
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Dirty/Inconsistent Read

-$10mil from project A

+$7mil to project B

+$3mil to project C

SELECT SUM(money) …

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

Manager wants to 

balance project budgets

CEO wants to check 

company balance

A inconsistent read happens when

data is read "during" a write
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Dirty/Inconsistent Read

-$10mil from project A

+$7mil to project B

+$3mil to project C

SELECT SUM(money) …

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

Manager wants to 

balance project budgets

CEO wants to check 

company balance

Database is 

temporarily 

inconsistent

A inconsistent read happens when

data is read "during" a write
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Unrepeatable Read

SELECT inventory

FROM Products

WHERE pid = 1

SELECT inventory*price

FROM Products

WHERE pid = 1

UPDATE Products

SET inventory = 0

WHERE pid = 1

Might get a value that doesn’t 

correspond to previous read!

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

Accountant wants to 

check company assets

Warehouse updates 

inventory levels

An unrepeatable read happens when

data read twice differs
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Phantom Read

Accountant wants to 

check company assets

SELECT *

FROM products

WHERE price < 20.00

SELECT *

FROM products

WHERE price < 10.00

INSERT INTO Products

VALUES (‘nuts’, 10, 8.99)

Returns a “new” row that should 

have been in the last read!

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

Warehouse receives new 

products

A phantom read happens when

a record is inserted/delete during reads
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Lost Update

User 1 wants to pool 

money into account 1

User 2 wants to pool money 

into account 2

Account 1 = 100, Account 2 = 100

ti
m

e

A lost update happens 

when a write "disappears"

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update
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Lost Update

Set account 1 = 200

Set account 2 = 0

Account 1 = 100, Account 2 = 100

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

User 1 wants to pool 

money into account 1

User 2 wants to pool money 

into account 2

A lost update happens 

when a write "disappears"
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Lost Update

Set account 2 = 200

Set account 1 = 200

Set account 2 = 0

Set account 1 = 0

Account 1 = 100, Account 2 = 100

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

User 1 wants to pool 

money into account 1

User 2 wants to pool money 

into account 2

A lost update happens 

when a write "disappears"
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Lost Update

Set account 2 = 200

Set account 1 = 200

Set account 2 = 0

Set account 1 = 0

Account 1 = 100, Account 2 = 100

ti
m

e

At end: Account 1 = 0, Account 2 = 200 

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

User 1 wants to pool 

money into account 1

User 2 wants to pool money 

into account 2

A lost update happens 

when a write "disappears"
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Lost Update

User 1 wants to pool 

money into account 1

User 2 wants to pool money 

into account 2

Set account 2 = 200

Set account 1 = 200

Set account 2 = 0

Set account 1 = 0

Account 1 = 100, Account 2 = 100

ti
m

e

At end: Account 1 = 0, Account 2 = 0 

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

A lost update happens 

when a write "disappears"
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Transactions



Transactions

▪ A transaction is a set of read and writes to the 
database that execute all or nothing
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BEGIN TRANSACTION

  ...SQL Statements

COMMIT

BEGIN TRANSACTION

  ...SQL Statements

ROLLBACK

No part of txn is executedEntire txn is executed



Transactions

▪ Prevent all concurrency control conflicts

▪ Easy to use in app: group statements in txns

▪ Let’s see how they work
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DEMO: 

lec16_txn_demo_txn_yes.sql
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