
1

Transactions

Announcement

▪ Midterm is graded and will be released shortly

▪ Final exam will be comprehensive:
• Includes this material plus what we cover in 2nd half

▪ HW4 dues on Friday

October 28, 2024 Serializability 2

Terminology

Two types of query workloads:

▪ Online Analytical Processing (OLAP)
• SELECT-FROM-WHERE are complex

• No INSERT/UPDATE/DELTE, or very few

• For data visualization (eg Tableau), or interactive SQL

▪ Online Transaction Processing (OLTP):
• Lots of INSERT/UPDATE/DELETE

• SELECT-FROM-WHERE are very simple

• Used in Java/Python apps

October 28, 2024 Serializability 3

Next few

lectures

We focused

on these

Applications and Databases

Almost every app uses some database

▪ General purpose language (Java, Python)

▪ App issues SQL commands to RDBMS

▪ Usually, multiple apps (users) access same DB

October 28, 2024 Serializability 4

Simple Banking App in Python

▪ Manage user accounts:
• Names

• Balances

• …

▪ Allow users to:
• Inquire balance

• Deposit cash/check

• Withdraw cash

• Transfer money

October 28, 2024 Serializability 5

October 28, 2024 Serializability 6

Simple Banking App in Python

CREATE TABLE Acc (

 Usr TEXT PRIMARY KEY,

 Balance INT);

SQL
Usr Balance

Alice 300

Bob 600

Carol 400

Acc

October 28, 2024 Serializability 7

Simple Banking App in Python

CREATE TABLE Acc (

 Usr TEXT PRIMARY KEY,

 Balance INT);

import sqlite3

con = sqlite3.connect("/Users/suciu/temp/bank.db",

 autocommit=True)

cur = con.cursor()

res = cur.execute("SELECT * FROM acc")

answ = res.fetchall()

print("The answer is: ", answ)

* Documentation here https://docs.python.org/3/library/sqlite3.html

SQL

Python*

Usr Balance

Alice 300

Bob 600

Carol 400

Acc

https://docs.python.org/3/library/sqlite3.html

October 28, 2024 Serializability 8

Simple Banking App in Python

CREATE TABLE Acc (

 Usr TEXT PRIMARY KEY,

 Balance INT);

import sqlite3

con = sqlite3.connect("/Users/suciu/temp/bank.db",

 autocommit=True)

cur = con.cursor()

res = cur.execute("SELECT * FROM acc")

answ = res.fetchall()

print("The answer is: ", answ)

* Documentation here https://docs.python.org/3/library/sqlite3.html

SQL

Python*

Usr Balance

Alice 300

Bob 600

Carol 400

Acc

SQL query

sent to DBMS

https://docs.python.org/3/library/sqlite3.html

October 28, 2024 Serializability 9

DEMO:

 lec16_txn_demo_create_table.sql

 lec16_txn_demo_simple_1.py

Terminology: Client/Server

▪ Client:
• The program running the application

• In our example: a python program running on laptop

• In general: a big program on laptop or in the cloud

▪ Server:
• The database management system

• In our example it is Sqlite on laptop

• In general: any RDBMS, on remote server or in cloud

October 28, 2024 Serializability 10

October 28, 2024 Serializability 11

Parameterized Query

res = cur.execute("SELECT * FROM acc")

answ = res.fetchall()

for row in answ:

 usr = row[0]

 bal = row[1]

 b = int(bal)

 i = b*0.04

 cur.execute("UPDATE acc

 SET balance=?

 WHERE usr=?",

 [b+i, usr])

Give every user a 4% interest

October 28, 2024 Serializability 12

Parameterized Query

res = cur.execute("SELECT * FROM acc")

answ = res.fetchall()

for row in answ:

 usr = row[0]

 bal = row[1]

 b = int(bal)

 i = b*0.04

 cur.execute("UPDATE acc

 SET balance=?

 WHERE usr=?",

 [b+i, usr])

Give every user a 4% interest
Read data

October 28, 2024 Serializability 13

Parameterized Query

res = cur.execute("SELECT * FROM acc")

answ = res.fetchall()

for row in answ:

 usr = row[0]

 bal = row[1]

 b = int(bal)

 i = b*0.04

 cur.execute("UPDATE acc

 SET balance=?

 WHERE usr=?",

 [b+i, usr])

Give every user a 4% interest

Parameterized query

October 28, 2024 Serializability 14

DEMO:

 lec16_txn_demo_simple_2.py

Simple Banking App in Python

Read a username

Repeat:

▪ Read a command

▪ Execute that command
• Check the balance

• Deposit money

• Withdraw money

• Transfer between accounts

October 28, 2024 Serializability 15

October 28, 2024 Serializability 16

Simple Banking App in Python

usr = input("Enter the user name: ")

res = cur.execute("SELECT *

 FROM acc

 WHERE usr=?",

 [usr])

if res.fetchone() is None:

 print("Wrong user. Exit")

 exit()

Read a username, check if exists:

We check

that the user

exists

October 28, 2024 Serializability 17

Simple Banking App in Python

while True:

 cmd = input()

 if cmd == “b”: ... check balance

 elif cmd == “d”: ... deposit

 elif cmd == “w”: ... withdraw

 elif cmd == “t”: ... transfer

 elif cmd == “q”: exit()

A simple loop for executing commants:

October 28, 2024 Serializability 18

Simple Banking App in Python

res = cur.execute("SELECT balance

 FROM acc

 WHERE usr=?",

 [usr])

row = res.fetchone()

b = row[0]

print(“Balance is”, b)

Check balance

Fetch one

row/tuple

from output

First element

of the tuple

October 28, 2024 Serializability 19

Simple Banking App in Python

... Read the balance b as before

amount = input() # amount to be deposited

a = int(amount)

b1 = b+a # the new balance

cur.execute("UPDATE acc

 SET balance = ?

 WHERE usr=?",

 [b1,usr])

Deposit

October 28, 2024 Serializability 20

Simple Banking App in Python

Withdraw

... Read the balance b as before

amount = input() # amount to be withdrawn

a = int(amount)

#

THE BANK DISPENSES MONEY HERE!

#

b1 = b-a # the new balance

cur.execute("UPDATE acc

 SET balance = ?

 WHERE usr=?",

 [b1,usr])

October 28, 2024 Serializability 21

Simple Banking App in Python

... Read the balance b as before

amount = input() # amount to be withdrawn

a = int(amount)

#

THE BANK DISPENSES MONEY HERE!

#

b1 = b-a # the new balance

cur.execute("UPDATE acc

 SET balance = ?

 WHERE usr=?",

 [b1,usr])

Withdraw

We need to check

if there is enough

money!

October 28, 2024 Serializability 22

Simple Banking App in Python

... Read the balance b as before

amount = input() # amount to be withdrawn

a = int(amount)

if a>b: # error: overdraft!

 exit()

#

THE BANK DISPENSES MONEY HERE!

#

b1 = b-a # the new balance

cur.execute("UPDATE acc

 SET balance = ?

 WHERE user=?",

 [b1,usr])

Withdraw

Better now

October 28, 2024 Serializability 23

Simple Banking App in Python

... Read the balance b as before

amount = input() # amount to be transferred

a = int(amount)

if a>b: # error: overdraft!

 exit()

usrt = input() # to whom to transfer

... Read the balance bt of usrt

b1 = b-a

bt1 = bt+a

cur.execute("UPDATE acc

 SET balance = ?

 WHERE user=?",

 [b1,usr])

cur.execute("UPDATE acc

 SET balance = ?

 WHERE user=?",

 [bt1,usrt])

Transfer

October 28, 2024 Serializability 24

DEMO:

 lec16_txn_demo.py

 single user

Discussion so Far

▪ The users Alice, Bob, … don’t need to know SQL,
but interact with the app;

▪ The app usually has a nice User Interface (UI)

▪ The database is persistent: it retains the data for a
long period of time

October 28, 2024 Serializability 25

October 28, 2024 Serializability 26

Concurrency

Single-Server

▪ The database is accessed by a single user:

▪ RDBMS on same laptop, or a server, or the cloud

Transactions: Serializability 27

Application

Database

Client-Server or Two-Tier Architecture

▪ Multiple users access the database concurrently

Transactions: Serializability 28

Application

Database

Application

. . .

October 28, 2024 Serializability 29

DEMO:

 lec16_txn_demo.py

 multiple users

lec16_txn_demo_txn_no.sql

October 28, 2024 Serializability 30

What We Have Seen

-- Alice withdraws $100

b = SELECT balance

 FROM acc

 WHERE user = ‘Alice’;

-- Is b >= 100? Yes:

-- Dispense money

UPDATE acc SET balance=b-100

WHERE user = ‘Alice’

How Alice and Bob colluded to steal $100 (simplified, using only SQL)

Current balance of Alice is $100:

-- Bob impersonates Alice

-- and also withdraws $100

b = SELECT balance

 FROM acc

 WHERE user = ‘Alice’;

-- Is b >= 100? Yes:

-- Dispense money

UPDATE acc SET balance=b-100

WHERE user = ‘Alice’

time

Discussion

▪ Users Alice, Bob, … can access the same
database concurrently

▪ This may lead to the database being inconsistent,
which is a big problem

October 28, 2024 Serializability 31

October 28, 2024 Serializability 32

Consistency

Database Consistency

▪ Consistency: a property that should always hold
• Every account balance is ≥0

• The sum of all balances is constant,
or changes exactly by the amount deposited/withdrawn

▪ If we write the application correctly, we expect the
database to remain consistent

▪ But (without transactions!) things can go wrong
during concurrency. Next.

October 28, 2024 Serializability 33

October 28, 2024 Serializability 34

Conflicts Between

Concurrent Operations

We will return

to these in a

later lectrue

Common Concurrency Conflicts

▪ Dirty/Inconsistent Read

▪ Unrepeatable Read

▪ Phantom Read

▪ Lost Update

These have popular names, but all sorts of other
conflicts can happen. Let’s see these.

October 28, 2024 Serializability 35

Transactions: Serializability 36

Dirty/Inconsistent Read

Manager wants to

balance project budgets

CEO wants to check

company balance

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

A inconsistent read happens when

data is read "during" a write

Transactions: Serializability 37

Dirty/Inconsistent Read

-$10mil from project A

+$7mil to project B

+$3mil to project C

SELECT SUM(money) …

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

Manager wants to

balance project budgets

CEO wants to check

company balance

A inconsistent read happens when

data is read "during" a write

Transactions: Serializability 38

Dirty/Inconsistent Read

-$10mil from project A

+$7mil to project B

+$3mil to project C

SELECT SUM(money) …

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

Manager wants to

balance project budgets

CEO wants to check

company balance

A inconsistent read happens when

data is read "during" a write

Transactions: Serializability 39

Dirty/Inconsistent Read

-$10mil from project A

+$7mil to project B

+$3mil to project C

SELECT SUM(money) …

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

Manager wants to

balance project budgets

CEO wants to check

company balance

A inconsistent read happens when

data is read "during" a write

Transactions: Serializability 40

Dirty/Inconsistent Read

-$10mil from project A

+$7mil to project B

+$3mil to project C

SELECT SUM(money) …

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

Manager wants to

balance project budgets

CEO wants to check

company balance

Database is

temporarily

inconsistent

A inconsistent read happens when

data is read "during" a write

Transactions: Serializability 41

Unrepeatable Read

SELECT inventory

FROM Products

WHERE pid = 1

SELECT inventory*price

FROM Products

WHERE pid = 1

UPDATE Products

SET inventory = 0

WHERE pid = 1

Might get a value that doesn’t

correspond to previous read!

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

Accountant wants to

check company assets

Warehouse updates

inventory levels

An unrepeatable read happens when

data read twice differs

Transactions: Serializability 42

Phantom Read

Accountant wants to

check company assets

SELECT *

FROM products

WHERE price < 20.00

SELECT *

FROM products

WHERE price < 10.00

INSERT INTO Products

VALUES (‘nuts’, 10, 8.99)

Returns a “new” row that should

have been in the last read!

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

Warehouse receives new

products

A phantom read happens when

a record is inserted/delete during reads

Transactions: Serializability 43

Lost Update

User 1 wants to pool

money into account 1

User 2 wants to pool money

into account 2

Account 1 = 100, Account 2 = 100

ti
m

e

A lost update happens

when a write "disappears"

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

Transactions: Serializability 44

Lost Update

Set account 1 = 200

Set account 2 = 0

Account 1 = 100, Account 2 = 100

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

User 1 wants to pool

money into account 1

User 2 wants to pool money

into account 2

A lost update happens

when a write "disappears"

Transactions: Serializability 45

Lost Update

Set account 2 = 200

Set account 1 = 200

Set account 2 = 0

Set account 1 = 0

Account 1 = 100, Account 2 = 100

ti
m

e

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

User 1 wants to pool

money into account 1

User 2 wants to pool money

into account 2

A lost update happens

when a write "disappears"

Transactions: Serializability 46

Lost Update

Set account 2 = 200

Set account 1 = 200

Set account 2 = 0

Set account 1 = 0

Account 1 = 100, Account 2 = 100

ti
m

e

At end: Account 1 = 0, Account 2 = 200

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

User 1 wants to pool

money into account 1

User 2 wants to pool money

into account 2

A lost update happens

when a write "disappears"

Transactions: Serializability 47

Lost Update

User 1 wants to pool

money into account 1

User 2 wants to pool money

into account 2

Set account 2 = 200

Set account 1 = 200

Set account 2 = 0

Set account 1 = 0

Account 1 = 100, Account 2 = 100

ti
m

e

At end: Account 1 = 0, Account 2 = 0

• Dirty/Inconsistent Read

• Unrepeatable Read

• Phantom Read

• Lost Update

A lost update happens

when a write "disappears"

October 28, 2024 Serializability 48

Transactions

Transactions

▪ A transaction is a set of read and writes to the
database that execute all or nothing

October 28, 2024 Serializability 49

BEGIN TRANSACTION

 ...SQL Statements

COMMIT

BEGIN TRANSACTION

 ...SQL Statements

ROLLBACK

No part of txn is executedEntire txn is executed

Transactions

▪ Prevent all concurrency control conflicts

▪ Easy to use in app: group statements in txns

▪ Let’s see how they work

October 28, 2024 Serializability 50

October 28, 2024 Serializability 51

DEMO:

lec16_txn_demo_txn_yes.sql

	Slide 1
	Slide 2: Announcement
	Slide 3: Terminology
	Slide 4: Applications and Databases
	Slide 5: Simple Banking App in Python
	Slide 6: Simple Banking App in Python
	Slide 7: Simple Banking App in Python
	Slide 8: Simple Banking App in Python
	Slide 9
	Slide 10: Terminology: Client/Server
	Slide 11: Parameterized Query
	Slide 12: Parameterized Query
	Slide 13: Parameterized Query
	Slide 14
	Slide 15: Simple Banking App in Python
	Slide 16: Simple Banking App in Python
	Slide 17: Simple Banking App in Python
	Slide 18: Simple Banking App in Python
	Slide 19: Simple Banking App in Python
	Slide 20: Simple Banking App in Python
	Slide 21: Simple Banking App in Python
	Slide 22: Simple Banking App in Python
	Slide 23: Simple Banking App in Python
	Slide 24
	Slide 25: Discussion so Far
	Slide 26
	Slide 27: Single-Server
	Slide 28: Client-Server or Two-Tier Architecture
	Slide 29
	Slide 30: What We Have Seen
	Slide 31: Discussion
	Slide 32
	Slide 33: Database Consistency
	Slide 34
	Slide 35: Common Concurrency Conflicts
	Slide 36: Dirty/Inconsistent Read
	Slide 37: Dirty/Inconsistent Read
	Slide 38: Dirty/Inconsistent Read
	Slide 39: Dirty/Inconsistent Read
	Slide 40: Dirty/Inconsistent Read
	Slide 41: Unrepeatable Read
	Slide 42: Phantom Read
	Slide 43: Lost Update
	Slide 44: Lost Update
	Slide 45: Lost Update
	Slide 46: Lost Update
	Slide 47: Lost Update
	Slide 48
	Slide 49: Transactions
	Slide 50: Transactions
	Slide 51

