

Introduction to Data Management BCNF Decomposition

Paul G. Allen School of Computer Science and Engineering University of Washington, Seattle

October 23, 2024

BCNF Decomposition

- HW3 due tonight
- HW4 posted, due on Friday, Nov. 1st

This coming Friday, 10/25, 9:30-10:20, in class

Topics:

- SQL
- Relational Algebra
- E/R Diagrams

Functional Dependencies (FDs); no BCNF

Closed books: cheat sheet included on the midterm

Short review session tomorrow in the sections

UID	Name	Phone	City
234	Fred	206-555-9999	Seattle
234	Fred	206-555-8888	Seattle
987	Joe	415-555-7777	SF

<u>UID</u>	Name	City	UID	Phone
234	Fred	Seattle	234	206-555-9999
987	Joe	SF	234	206-555-8888
			987	415-555-7777

Anomalies:

- Redundancy
- Update
- Deletion

Functional dependencies

- UID \rightarrow Name, City
- UID → Phone

Inference

An Interesting Observation

If all these FDs are true:

Name \rightarrow Color Category \rightarrow Dept Color, Dept \rightarrow Price

Then this FD is also true:

Name, Category \rightarrow Price

Proof: (see last lecture)

Two ways to infer new FDs:

- Armstrong axioms
- The closure operator

Armstrong's Axioms

Armstrong's Axioms

Reflexivity: if $Y \subseteq X$ then $X \to Y$

Augmentation: if $X \to Y$ then $XZ \to YZ$

Transitivity: if $X \to Y$ and $Y \to Z$ then $X \to Z$

Armstrong's Axioms

Augmentation: if $X \to Y$ then $XZ \to YZ$

Transitivity: if $X \to Y$ and $Y \to Z$ then $X \to Z$

Reflexivity: Augmentation: Transitivity: if $Y \subseteq X$ then $X \to Y$ if $X \to Y$ then $XZ \to YZ$ if $X \to Y$ and $Y \to Z$ then $X \to Z$

- 1. Name \rightarrow Color
- 2. Category \rightarrow Dept
- 3. Color, Dept \rightarrow Price

Reflexivity: Augmentation: Transitivity: if $Y \subseteq X$ then $X \to Y$ if $X \to Y$ then $XZ \to YZ$ if $X \to Y$ and $Y \to Z$ then $X \to Z$

- 1. Name \rightarrow Color
- 2. Category \rightarrow Dept
- 3. Color, Dept \rightarrow Price

4. Name, Category \rightarrow Color, Category (Augmentation of 1)

Reflexivity: Augmentation: Transitivity: if $Y \subseteq X$ then $X \to Y$ if $X \to Y$ then $XZ \to YZ$ if $X \to Y$ and $Y \to Z$ then $X \to Z$

- 1. Name \rightarrow Color
- 2. Category \rightarrow Dept
- 3. Color, Dept \rightarrow Price

Name, Category
$$\rightarrow$$
 Price

- 4. Name, Category \rightarrow Color, Category (Augmentation of 1)
- 5. Color, Category \rightarrow Color, Dept (Augmentation of 2)

Reflexivity: Augmentation: Transitivity: if $Y \subseteq X$ then $X \to Y$ if $X \to Y$ then $XZ \to YZ$ if $X \to Y$ and $Y \to Z$ then $X \to Z$

- 1. Name \rightarrow Color
- 2. Category \rightarrow Dept
- 3. Color, Dept \rightarrow Price

- 4. Name, Category \rightarrow Color, Category (Augmentation of 1)
- 5. Color, Category \rightarrow Color, Dept
- (Augmentation of 2)
- 6. Color, Category \rightarrow Price

(Transitivity 5 and 3)

Reflexivity: Augmentation: Transitivity: if $Y \subseteq X$ then $X \to Y$ if $X \to Y$ then $XZ \to YZ$ if $X \to Y$ and $Y \to Z$ then $X \to Z$

- 1. Name \rightarrow Color
- 2. Category \rightarrow Dept
- 3. Color, Dept \rightarrow Price

Name, Category
$$\rightarrow$$
 Price

- 4. Name, Category \rightarrow Color, Category (Augmentation of 1)
- 5. Color, Category \rightarrow Color, Dept
- 6. Color, Category \rightarrow Price
- 7. Name, Category \rightarrow Price

- (Augmentation of 2)
- (Transitivity 5 and 3)
- (Transitivity 4 and 6)

Discussion

- Armstrong's Axioms were introduced in the 70s, shortly after Codd's relational model
- They are widely known today
- But they are cumbersome to use for inference
- Instead, the efficient inference method uses the closure operator: next.

The Closure Operator

Fix a set of Functional Dependencies

The closure X^+ of a set of attributes X is the set of attributes A such that $X \rightarrow A$.

Fix a set of Functional Dependencies

The closure X^+ of a set of attributes X is the set of attributes A such that $X \rightarrow A$.

```
Closure(X):

Repeat:

find a FD Y \rightarrow A

such that Y \subseteq X and A \nsubseteq X

X \coloneqq X \cup A

Until "no more change"
```

Fix a set of Functional Dependencies

The closure X^+ of a set of attributes X is the set of attributes A such that $X \rightarrow A$.

```
Closure(X):

Repeat:

find a FD Y \rightarrow A

such that Y \subseteq X and A \nsubseteq X

X \coloneqq X \cup A

Until "no more change"
```

Name \rightarrow Color Category \rightarrow Dept Color, Dept \rightarrow Price {Name, Category}⁺=

Fix a set of Functional Dependencies

The closure X^+ of a set of attributes X is the set of attributes A such that $X \rightarrow A$.

```
Closure(X):

Repeat:

find a FD Y \rightarrow A

such that Y \subseteq X and A \nsubseteq X

X \coloneqq X \cup A

Until "no more change"
```

Name \rightarrow Color Category \rightarrow Dept Color, Dept \rightarrow Price {Name, Category}⁺= = {Name, Category,

Fix a set of Functional Dependencies

The closure X^+ of a set of attributes X is the set of attributes A such that $X \rightarrow A$.

```
Closure(X):

Repeat:

find a FD Y \rightarrow A

such that Y \subseteq X and A \nsubseteq X

X \coloneqq X \cup A

Until "no more change"
```

Name \rightarrow Color Category \rightarrow Dept Color, Dept \rightarrow Price

{Name, Category}⁺= = {**Name**, Category,

Fix a set of Functional Dependencies

The closure X^+ of a set of attributes X is the set of attributes A such that $X \rightarrow A$.

```
Closure(X):

Repeat:

find a FD Y \rightarrow A

such that Y \subseteq X and A \nsubseteq X

X \coloneqq X \cup A

Until "no more change"
```

Name \rightarrow Color Category \rightarrow Dept Color, Dept \rightarrow Price

{Name, Category}⁺= = {Name, Category, **Color**,

Fix a set of Functional Dependencies

The closure X^+ of a set of attributes X is the set of attributes A such that $X \rightarrow A$.

```
Closure(X):

Repeat:

find a FD Y \rightarrow A

such that Y \subseteq X and A \nsubseteq X

X \coloneqq X \cup A

Until "no more change"
```

Name \rightarrow Color Category \rightarrow Dept Color, Dept \rightarrow Price {Name, Category}⁺ = $(N_{ame}, C_{ategory})^{+}$

= {Name, **Category**, Color,

Fix a set of Functional Dependencies

The closure X^+ of a set of attributes X is the set of attributes A such that $X \rightarrow A$.

```
Closure(X):

Repeat:

find a FD Y \rightarrow A

such that Y \subseteq X and A \nsubseteq X

X \coloneqq X \cup A

Until "no more change"
```

Name \rightarrow Color Category \rightarrow Dept Color, Dept \rightarrow Price {Name, Category}⁺=

= {Name, Category, Color, **Dept**,

Fix a set of Functional Dependencies

The closure X^+ of a set of attributes X is the set of attributes A such that $X \rightarrow A$.

```
Closure(X):

Repeat:

find a FD Y \rightarrow A

such that Y \subseteq X and A \nsubseteq X

X \coloneqq X \cup A

Until "no more change"
```

Name \rightarrow Color Category \rightarrow Dept Color, Dept \rightarrow Price {Name, Category}+=

= {Name, Category, **Color**, **Dept**,

Fix a set of Functional Dependencies

The closure X^+ of a set of attributes X is the set of attributes A such that $X \rightarrow A$.

```
Closure(X):

Repeat:

find a FD Y \rightarrow A

such that Y \subseteq X and A \nsubseteq X

X \coloneqq X \cup A

Until "no more change"
```

Name \rightarrow Color Category \rightarrow Dept Color, Dept \rightarrow Price {Name, Category}⁺=

= {Name, Category, Color, Dept, **Price**}

Fix a set of Functional Dependencies

The closure X^+ of a set of attributes X is the set of attributes A such that $X \rightarrow A$.

```
Closure(X):

Repeat:

find a FD Y \rightarrow A

such that Y \subseteq X and A \nsubseteq X

X \coloneqq X \cup A

Until "no more change"
```

Name \rightarrow Color Category \rightarrow Dept Color, Dept \rightarrow Price {Name, Category}⁺=

= {Name, Category, Color, Dept, Price}

 $\{Color\}^+ =$

Fix a set of Functional Dependencies

The closure X^+ of a set of attributes X is the set of attributes A such that $X \rightarrow A$.

```
Closure(X):

Repeat:

find a FD Y \rightarrow A

such that Y \subseteq X and A \nsubseteq X

X \coloneqq X \cup A

Until "no more change"
```

Name \rightarrow Color Category \rightarrow Dept Color, Dept \rightarrow Price {Name, Category}⁺=

= {Name, Category, Color, Dept, Price}

```
\{Color\}^+ = \{Color\}
```

Goal is to detect/remove anomalies

- Anomalies are caused by unwanted FDs
 - UID \rightarrow Name, City
 - UID → Phone

UID determines something UID is not a key

Next : Keys

• Fix a relation $R(A_1, ..., A_n)$ and a set of FDs

• A super-key is a set X such that $X \to A_i$ for every attribute A_i

• Fix a relation $R(A_1, ..., A_n)$ and a set of FDs

• A super-key is a set X such that $X \rightarrow A_i$ for every attribute A_i Equivalently:

 $X^+ = A_1 \dots A_n$

• Fix a relation $R(A_1, ..., A_n)$ and a set of FDs

• A super-key is a set X such that $X \rightarrow A_i$ for every attribute A_i Equivalently:

A key is a minimal super-key X

 $X^+ = A_1 \dots A_n$

• Fix a relation $R(A_1, ..., A_n)$ and a set of FDs

• A super-key is a set X such that $X \rightarrow A_i$ for every attribute A_i Equivalently:

A key is a minimal super-key X

In other words, no super-key Y ⊊ X exists

 $X^+ = A_1 \dots A_n$

Example: Find the Keys

UID	Name	Phone	City
234	Fred	206-555-9999	Seattle
234	Fred	206-555-8888	Seattle
987	Joe	415-555-7777	SF

 $UID^+ = UID$, Name, City
UID	Name	Phone	City	
234	Fred	206-555-9999	Seattle	UID → Name. Citv
234	Fred	206-555-8888	Seattle	
987	Joe	415-555-7777	SF	
				Not a key:

 $UID^+ = UID$, Name, City

Not a key: missing Phone

UID	Name	Phone	City	
234	Fred	206-555-9999	Seattle	UID → Name. Citv
234	Fred	206-555-8888	Seattle	
987	Joe	415-555-7777	SF	
				Not a key:

 $UID^+ = UID$, Name, City

Not a key: missing Phone

(UID, Phone)⁺ = **??**

UID	Name	Phone	City	
234	Fred	206-555-9999	Seattle	UID → Name. Citv
234	Fred	206-555-8888	Seattle	
987	Joe	415-555-7777	SF	
UID ⁺ = UID, Name, City				Not a key: missing Phone

```
(UID, Phone)<sup>+</sup> = UID, Name, Phone, City
```

UID	Name	Phone	City	
234	Fred	206-555-9999	Seattle	UID → Name. Citv
234	Fred	206-555-8888	Seattle	,,,
987	Joe	415-555-7777	SF	
UID ⁺ = UID, Name, City				Not a key: missing Phone

(UID, Phone)⁺ = UID, Name, Phone, City

UID	Name	Phone	City	
234	Fred	206-555-9999	Seattle	$UID \rightarrow Name, Citv$
234	Fred	206-555-8888	Seattle	,,
987	Joe	415-555-7777	SF	
UID ⁺ = UID, Name, City				Not a key: missing Phone

(UID, Phone)⁺ = UID, Name, Phone, City

(UID, Name, Phone) $^+$ = ??

UID	Name	Phone	City	
234	Fred	206-555-9999	Seattle	$UID \rightarrow Name, City$
234	Fred	206-555-8888	Seattle	, ,
987	Joe	415-555-7777	SF	
UID+ =	UID, Na	Not a key: missing Phone		
(UID, Phone) ⁺ = UID, Name, Phone, City				

(UID, Name, Phone)⁺ = UID, Name, Phone, City

Compute X⁺, for larger and larger sets X, until X⁺= [all-attributes]

Name \rightarrow Color Category \rightarrow Dept Color, Dept \rightarrow Price

Compute X⁺, for larger and larger sets X, until X⁺= [all-attributes]

Name \rightarrow Color Category \rightarrow Dept Color, Dept \rightarrow Price

Compute X⁺, for larger and larger sets X, until X⁺= [all-attributes]

Name \rightarrow Color Category \rightarrow Dept Color, Dept \rightarrow Price

Name⁺ = Name, Color; Color⁺ = Color; Category⁺ = Category, Dept; Dept⁺ = Dept

Compute X⁺, for larger and larger sets X, until X⁺= [all-attributes]

Name \rightarrow Color Category \rightarrow Dept Color, Dept \rightarrow Price

Name⁺ = Name, Color; Color⁺ = Color; Category⁺ = Category, Dept; Dept⁺ = Dept

(Name, Color)⁺ = Name, Color;

Compute X⁺, for larger and larger sets X, until X⁺= [all-attributes]

Name \rightarrow Color Category \rightarrow Dept Color, Dept \rightarrow Price

Name⁺ = Name, Color; Color⁺ = Color; Category⁺ = Category, Dept; Dept⁺ = Dept

(Name, Color)⁺ = Name, Color; (Name, Category)⁺ = Name, Color, Category, Dept, Price;

Compute X⁺, for larger and larger sets X, until X⁺= [all-attributes]

Name \rightarrow Color Category \rightarrow Dept Color, Dept \rightarrow Price

Name⁺ = Name, Color; Color⁺ = Color; Category⁺ = Category, Dept; Dept⁺ = Dept

(Name, Color)⁺ = Name, Color; (Name, Category)⁺ = Name, Color, Category, Dept, Price; // no need to try (Name, Category, Dept)⁺ why? Sets X of size 2

Compute X⁺, for larger and larger sets X, until X⁺= [all-attributes]

Name \rightarrow Color Category \rightarrow Dept Color, Dept \rightarrow Price

Name⁺ = Name, Color; Color⁺ = Color; Category⁺ = Category, Dept; Dept⁺ = Dept

Sets X of size 2

Compute X⁺, for larger and larger sets X, until X⁺= [all-attributes]

Name \rightarrow Color Category \rightarrow Dept Color, Dept \rightarrow Price

Name⁺ = Name, Color; Color⁺ = Color; Category⁺ = Category, Dept; Dept⁺ = Dept

There is only one key: Name, Category

Sets X of size 2

Compute X⁺, for larger and larger sets X, until X⁺= [all-attributes]

Name \rightarrow Color Category \rightarrow Dept Color, Dept \rightarrow Price

Name⁺ = Name, Color; Color⁺ = Color; Category⁺ = Category, Dept; Dept⁺ = Dept

(Name, Color)⁺ = Name, Color; (Name, Category)⁺ = Name, Color, Category, Dept, Price; // no need to try (Name, Category, Dept)⁺ why? (Name, Dept)⁺ = ... and so on until we find all keys

There is only one key: Name, Category

A quicker way: any key X must contain Name (why?) and Category (why?)

R(A,B,C)

R(A,B,C)

$$\begin{array}{c} A \rightarrow B, C \\ B \rightarrow A, C \end{array}$$

 $A^+ = B^+ = ABC$

A is a key B is a key

R(A,B,C)

$$\begin{array}{c} A \rightarrow B, C \\ B \rightarrow A, C \end{array}$$

 $A^+ = B^+ = ABC$

A is a key B is a key

October 23, 2024

$\begin{array}{c} A \rightarrow B, C \\ B \rightarrow A, C \end{array}$

 $A^+ = B^+ = ABC$

A is a key B is a key

Don't confuse with

$$A,B \rightarrow C$$

Don't confuse with

$$A,B \rightarrow C$$

 $A^+ = A, B^+ = B$ (AB)+=ABC

AB is a key

Note the difference:

- AB is a key v.s.
- A and B are keys

• Our redundancies come this FD:

UID \rightarrow Name, City

- The problem is that UID is not a key.
- Boyce-Codd Normal Form captures this intuition.
- Next: BCNF

BCNF

BCNF

• Fix a relation $R(A_1, ..., A_n)$ and a set of FDs

R is in Boyce-Codd Normal Form (BCNF), if every FD $X \rightarrow Y$ is either from a superkey X or is trivial: $Y \subseteq X$

Equivalently: for every set X, either X⁺ = X or X⁺ = [all-attributes]

Algorithm BCNF $R(A_1, ..., A_n)$

```
Find set X s.t. X \subsetneq X^+ \subsetneq \{A_1, \dots, A_n\}
```


$$X^+ - X$$
 $X \{A_1, ..., A_n\} - X^+$

Algorithm BCNF $R(A_1, ..., A_n)$ Find set X s.t. $X \subsetneq X^+ \subsetneq \{A_1, ..., A_n\}$ If not found then return $R(A_1, ..., A_n)$ // already in BCNF Decompose: $R(A_1, ..., A_n) = R_1(X^+) \bowtie R_2(\{A_1, ..., A_n\} - X^+)$

Algorithm BCNF $R(A_1, ..., A_n)$ Find set X s.t. $X \subsetneq X^+ \subsetneq \{A_1, ..., A_n\}$ If not found then return $R(A_1, ..., A_n)$ // already in BCNF Decompose: $R(A_1, ..., A_n) = R_1(X^+) \bowtie R_2(\{A_1, ..., A_n\} - X^+)$ Call recursively BCNF on $R_1(X^+)$ Call recursively BCNF on $R_2(\{A_1, ..., A_n\} - X^+)$

UID	Name	Phone	City
234	Fred	206-555-9999	Seattle
234	Fred	206-555-8888	Seattle
987	Joe	415-555-7777	SF

UID	Name	Phone	City
234	Fred	206-555-9999	Seattle
234	Fred	206-555-8888	Seattle
987	Joe	415-555-7777	SF

Find set X s.t. $X \subsetneq X^+ \subsetneq \{UID, Name, Phone, City\}$

UID	Name	Phone	City
234	Fred	206-555-9999	Seattle
234	Fred	206-555-8888	Seattle
987	Joe	415-555-7777	SF

Find set X s.t. $X \subsetneq X^+ \subsetneq \{UID, Name, Phone, City\}$

 $X = UID, X^+ = \{UID, Name, City\}$

UID	Name	Phone	City
234	Fred	206-555-9999	Seattle
234	Fred	206-555-8888	Seattle
987	Joe	415-555-7777	SF

Find set X s.t. $X \subsetneq X^+ \subsetneq \{UID, Name, Phone, City\}$

 $X = UID, X^+ = \{UID, Name, City\}$

R(Name, Color, Category, Dept, Price)

Name \rightarrow Color Category \rightarrow Dept Color, Dept \rightarrow Price

R(Name, Color, Category, Dept, Price)

X = Name $X^+ = {Name, Color}$

October 23, 2024

Name \rightarrow Color Category \rightarrow Dept Color, Dept \rightarrow Price

BCNF because: Name+ = Name, Color Color⁺ = Color

BCNF because: Name+ = Name, Color Color⁺ = Color

X = Category X⁺ = {Category, Dept}

R(Name, Color, Category, Dept, Price)

Name \rightarrow Color Category \rightarrow Dept Color, Dept \rightarrow Price

Decomposition is not unique

October 23, 2024

R(Name, Color, Category, Dept, Price)

Name \rightarrow Color Category \rightarrow Dept Color, Dept \rightarrow Price

X = Color, Dept X⁺ = {Color, Dept, Price}

BCNF

 $X^+ = \{Name, Color\}$

- The BCNF decomposition eliminates all anomalies
- In general, we may not be able to recover all FDs
- The 3rd Normal Form is another kind of decomposition, which recovers all FDs, but does not eliminate all anomalies
- We won't discuss 3NF: it is very similar to BCNF but a lot more complicated