Setup

— 7 [senmn
Senphame
~
Lslp SetupType
FK1 | SestioniD Device
NumberOfTrial Sctshaies
K2 |SetupiD Filtes
tes |sabjeaio SetupCondiion
P
puraton
ket
Sttapblaker
RecortedMinieh
Note
Trial_has_Timecourse Trial_has_Trajectory
rer [Per | Toaio
re2 | rimecousen rez [Tmectonyio
Tanacouse Toietory
[Temecounen o | Teieasrro
Frequency frequency
Seemenio seqmentid
Kiadoroats indoroata
Neeam Markers
) NP oesiniing
—

Walder.

N N

e
=
rolih
/ i Luﬁ,\ys N
VAN 4 !
/X Bt
y :‘_a?w! R-c?a!d / Ecm* 'Hos(ev

¥

JoffeNtargation

ey
iy

Var
o

y HE X Condr
. B s 7 Podik oY
Toras A KeviShae
/ ct
« Waltoh
3 Myroetia Gregor
deric e \

HyperCube

gCube shuffle-based parallel g

Introduction to Data Management

RA and ER Diagrams

Paul G. Allen School of Computer Science and Engineering

University of Washington, Seattle

RA and ER

Announcements

* This Friday (10/18) we resume In-person lectures.

* HW3 due on Wednesday, 10/23

= Midterm on Friday, 10/25 in class

« Material up to date
» Closed books, no cheat sheet (you won't need it)

« Some practice midterms on the course website

October 11, 2024 Subqueries

= Finish discussion of RA

= Start discussing conceptual desgin

October 11, 2024 RA and ER

Recap: Relational Algebra

» SQL: declarative language; we say what

* RA: an algebra for saying how

= Optimizer converts SQL to RA

October 11, 2024 RA and ER

Recap: Relational Algebra

1. Selection 6,4pngition (S)
2. Projection Il ;05 (S)

3. JoiInR g S =0g(R XS)
4. Union U

5. Set difference —

Rename p

October 11, 2024 RA and ER

Recap: Relational Algebra

1. Selection 6.ongition(S) O

2. Projection Il ;05 (S)

il \ionot
3. JoinR Xxg S = og(R X S§)
4. Union U p
5. Set difference — >

Rename P Monotone, but doesn’t do anything

October 11, 2024 RA and ER

Simple SQL to RA

SQL to RA

Single SELECT-FROM-WHERE query: I, trs
SELECT attrs Ocondition
FROM T7,,T,,...,T, '

WHERE condition;
X

October 11, 2024 RA and ER

SQL to RA

Single SELECT-FROM-WHERE query: I, trs
SELECT attrs Ocondition
FROM T7,,T,,...,T, '

WHERE condition;
X

Next: to convert group-by
we need to extend RA

October 11, 2024 RA and ER

Extended Relational Algebra

* Duplicate elimination 6

» Group-by aggregate Yattr1,attr2,...aggl, ...

October 11, 2024 RA and ER

Duplicate Elimination

5(T)

Eliminates duplicates
fromthe bag T

SELECT DISTINCT *
FROM T;

October 11, 2024

RA and ER

Duplicate Elimination

5(T)

Eliminates duplicates
fromthe bag T

5(R) =
SELECT DISTINCT *
FROM T; R ENEN
1 10
2 10
2 10
2 20
1 10

October 11, 2024 RA and ER

Duplicate Elimination

A B
6(T) T=
2 10
2 20
Eliminates duplicates
fromthe bag T ’
6(R) =
SELECT DISTINCT *
FROM T; r NEN
1 10
2 10
2 10
2 20
1 10

October 11, 2024 RA and ER

GroupBy-Aggregate

Vatt‘rl,attrz,...,agg1,...(T)

Group-by, then aggregate

SELECT attrl,...,aggl, ...
FROM T
GROUP BY attrl,...;

October 11, 2024 RA and ER

GroupBy-Aggregate

Vatt‘rl,attrz,...,agg1,...(T)

Group-by, then aggregate

Yjob,avg(Salary)—S (Payroll) =

SELECT attrl,...,aggl, ... Payroll
FROM 1 COCTIENETR
GROUP BY attrl,...; Jack 50000

345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

October 11, 2024 RA and ER 15

GroupBy-Aggregate

Vatt‘rl,attrz,...,agg 1,... (T) TA 55000
Prof 95000

Group-by, then aggregate

YIOb,an(Salary)es(Payron) = J

SELECT attrl,...,aggl, ... Payroll
FROM 1 COCTIENETR
GROUP BY attrl,...; Jack TA 50000

345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

October 11, 2024 RA and ER 16

GroupBy-Aggregate

No need for a HAVING operator!

Find all jobs where the
average salary of employees
earning over 55000

Is < 70000

Payroll
R N T
Jack 50000

345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

October 11, 2024 RA and ER 17

GroupBy-Aggregate

No need for a HAVING operator!

Find all jobs where the

average salary of employees

earning over 55000
Is < 70000

SELECT Job

FROM Payroll

WHERE Salary > 55000
GROUP BY Job

HAVING avg (Salary)<70000;

RA and ER

Payroll

COCTIERETS

Jack TA 50000

345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

October 11, 2024

GroupBy-Aggregate

No need for a HAVING operator!

Find all jobs where the
average salary of employees
earning over 55000

Is < 70000

SELECT Job

FROM Payroll

WHERE Salary > 55000
GROUP BY Job

HAVING avg (Salary)<70000;

Payroll

COCTIERETS

345
567
789

l_[]ob

0sS<70000’

Yjob,avg(Salary)—S

OSalary>55000

Payroll

Jack 50000
Allison TA 60000
Magda Prof 90000
Dan Prof 100000

October 11, 2024 RA and ER

GroupBy-Aggregate

No need for a HAVING operator! Myop

05<70000’

Find all jobs where the
average salary of employees y
earning over 55000 "’b'a"g(s‘a‘ary”s

IS <
Is < 70000 @ OSalary>55000

SELECT Job Payroll
Payroll
FROM Payroll

WHERE Salary > 55000 -

Jack 50000
GROUP BY Job
HAVING avg (Salary)<70000;

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

October 11, 2024 RA and ER 20

GroupBy-Aggregate

No need for a HAVING operator! Myop

@ 05<70000’

Find all jobs where the
average salary of employees y
earning over 55000 "’b'a"g(s‘a‘ary”s

IS <
Is < 70000 @ OSalary>55000

SELECT Job Payroll
Payroll

FROM Payroll
WHERE Salary > 55000 -

GROUP BY Job Jack TA 50000
HAVING avg (Salary)<70000;

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

October 11, 2024 RA and ER 21

Discussion

The Greek alphabet soup:

'0';1_[;5;]/

» They are standard RA symbols, get used to them

Next: converting nested SQL queries to RA

October 11, 2024 RA and ER

Nested SQL to RA

Nested Queries to RA

» RAis an algebra: has no nested expressions

= \We cannot write EXISTS or NOT EXISTS In o

* First unnest SQL query, then convert to RA

October 11, 2024 RA and ER

A Simple Case: the WITH Clause

WITH Cardrivers AS
(SELECT DISTINCT P.*
FROM Payroll P, Regist R
WHERE P.UserId=R.UserID)
SELECT avg (Salary)
FROM Cardrivers;

October 11, 2024 RA and ER

A Simple Case: the WITH Clause

WITH Cardrivers AS
(SELECT DISTINCT P.*
FROM Payroll P, Regist R
WHERE P.UserId=R.UserID)
SELECT avg (Salary)
FROM Cardrivers; 0

Yavg(P.Salary)

/ Mp yserID=R.UserID \

Payroll P Regist R

October 11, 2024 RA and ER

A Simple Case: the WITH Clause

WITH Cardrivers AS
(SELECT DISTINCT P.*
FROM Payroll P, Regist R
WHERE P.UserId=R.UserID)
SELECT avg (Salary)
FROM Cardrivers; 0

Yavg(P.Salary)

Computes

Cardrivers

/ M p yserID=R.UserID \

Payroll P Regist R

October 11, 2024 RA and ER

A Simple Case: the WITH Clause

WITH Cardrivers AS
(SELECT DISTINCT P.*
FROM Payroll P, Regist R
WHERE P.UserId=R.UserID)

SELECT avg (Salary)

FROM Cardrivers; 0

Does the rest

Yavg(P.Salary)

Computes

Cardrivers

/ M p yserID=R.UserID \

Payroll P Regist R

October 11, 2024 RA and ER

A Simple Case: a Monotone Query

SELECT P.UserID, P.Name
FROM Payroll P
WHERE exists
(SELECT *
FROM Regist R
WHERE P.UserID = R.UserID);

October 11, 2024 RA and ER

A Simple Case: a Monotone Query

SELECT P.UserID, P.Name
FROM Payroll P
WHERE exists

(SELECT *

FROM Regist R

WHERE P.UserID = R.UserID);

First
unnest

SELECT DISTINCT P.UserlID,
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID;

P.Name

October 11, 2024

RA and ER

A Simple Case: a Monotone Query

SELECT P.UserID, P.Name
FROM Payroll P 5
WHERE exists

(SELECT *

FROM Regist R

WHERE P.UserID = R.UserID); I1p yserID, P.Name
First Xp UserID=R.UserID
unnest

Payroll P Regist R

SELECT DISTINCT P.UserID, P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID;

The convert
to RA

October 11, 2024 RA and ER

A Simple Case: a Monotone Query

SELECT P.UserID, P.Name

FROM Payroll P 5 @
WHERE exists

(SELECT *

FROM Regist R

WHERE P.UserID = R.USGIID) ’ HP.USEI‘ID, P.Name
First ™Xp UserID=R.UserID
unnest

Payroll P Regist R

SELECT DISTINCT P.UserID, P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID;

The convert
to RA

October 11, 2024 RA and ER

A Difficult Case: a Non-Monotone Query

SELECT P.UserID
FROM Payroll P
WHERE not exists
(SELECT ~*
FROM Regist R
WHERE P.UserID = R.UserID);

October 11, 2024 RA and ER

A Difficult Case: a Non-Monotone Query

SELECT P.UserID

FROM Payroll P

WHERE not exists
(SELECT *
FROM Regist R
WHERE P.UserID = R.UserID); Totally, totally

wrong!

Onot(exists(...))

Regist R
Payroll P

October 11, 2024 RA and ER

A Difficult Case: a Non-Monotone Query

SELECT P.UserID

FROM Payroll P

WHERE not exists
(SELECT *
FROM Regist R
WHERE P.UserID = R.UserID); Totally, totally

wrong!

Onot(exists(...))
There are no

subqueries in RA.

Regist R
Payroll P

October 11, 2024 RA and ER

A Difficult Case: a Non-Monotone Query

SELECT P.UserID

FROM Payroll P

WHERE not exists
(SELECT *
FROM Regist R
WHERE P.UserID = R.UserID); Totally, totally

wrong!

Onot(exists(...))
There are no

subqueries in RA.

Need to unnest, Payroll P
but first need to de-correlate.

October 11, 2024 RA and ER

Regist R

A Difficult Case: a Non-Monotone Query

SELECT P.UserID
FROM Payroll P
WHERE not exists
(SELECT ~*
FROM Regist R
WHERE P.UserID = R.UserID);

First
de-correlate

SELECT P.UserID

FROM Payroll P

WHERE P.UserID not in
(SELECT R.UserID
FROM Regist R);

October 11, 2024 RA and ER

A Difficult Case: a Non-Monotone Query

SELECT P.UserID

FROM Payroll P

WHERE not exists
(SELECT ~*
FROM Regist R
WHERE P.UserID =

R.UserID) ;

First
de-correlate

SELECT P.UserID

FROM Payroll P

WHERE P.UserID not in
(SELECT R.UserID
FROM Regist R);

October 11, 2024

Then unnest
using set difference

——>

RA and ER

SELECT P.UserID
FROM Payroll P
EXCEPT
SELECT R.UserID
FROM Regist R;

A Difficult Case: a Non-Monotone Query

SELECT P.UserID

FROM Payroll P

WHERE not exists
(SELECT ~*
FROM Regist R
WHERE P.UserID =

R.UserID) ;

First
de-correlate

SELECT P.UserID

FROM Payroll P

WHERE P.UserID not in
(SELECT R.UserID
FROM Regist R);

October 11, 2024

Then unnest
using set difference

——>

RA and ER

/N

l_[P.UserID l_[R.UserID
Payroll P Regist R
Finally,

rewrite to RA

SELECT P.UserID
FROM Payroll P
EXCEPT
SELECT R.UserID
FROM Regist R;

Discussion

» SQL = declarative language; what we want
RA = an algebra; how to get it

= \We write in SQL, optimizers generates RA

» Some language resemble RA more than SQL,
e.g. Spark

Next topic: how to design a database from scratch

October 11, 2024 RA and ER

Database Design

Database Design

= New application needs persistent database.

» The database will persist for a long period of time.
We need a good design from day 1.

= Incorporate feedback from many stakeholders

« Programmers, business teams, analysts, data
scientists, product managers, ...

October 11, 2024 RA and ER

The Database Design Process

Conceptual Model

Today

Relational Model
+ Schema
+ Constraints

=i
—)

October 11, 2024

RA and ER

The Database Design Process

Conceptual Model

Today

Relational Model

+ Schema
+ Constraints

=i
—)

Conceptual Schema
+ Normalization

Next Lectures

October 11, 2024

RA and ER

The Database Design Process

Conceptual Model

=i

Relational Model 1 _/

+ Schema
+ Constraints

Today

Conceptual Schema EEEEEE R
+ Normalization

Next Lectures

Physical Schema —
+ Partitioning / &
+ Indexing

Later...

October 11, 2024 RA and ER

ER Diagrams

Entity-Relationship (ER) Diagrams

= A visual way to describe the schema of a database

» Language independent: may implement in SQL, or
some other data model

October 11, 2024 RA and ER

Application to track the lifetime of products

» Keep information about Products: name, price, ...

* Who manufactures them? Company name,
address, their workers, ...

* \Who buys them? Customers with their names, ...

October 11, 2024 RA and ER

Example: designing the Entity Sets

October 11, 2024 RA and ER

Example: designing the Entity Sets

October 11, 2024 RA and ER

Example: designing the Entity Sets

October 11, 2024 RA and ER

Example: designing the Entity Sets

s —

Should these be
different entity sets?

Worker

October 11, 2024 RA and ER

Example: designing the Entity Sets

Let's keep things
simple for now

October 11, 2024 RA and ER

Example: adding Attributes

Next, let's design
their attributes

October 11, 2024 RA and ER

Example: adding Attributes

October 11, 2024 RA and ER

Example: adding Attributes

o e %%m

Person

October 11, 2024 RA and ER

Example: adding Attributes

Address

Company

Person Determine ALL

attributes that
your application
needs

October 11, 2024 RA and ER

Example: adding Attributes

@ - Address

Company

October 11, 2024 RA and ER

Example: adding Relationships

Address

Company

Next, design the
relationships

October 11, 2024 RA and ER

Example: adding Relationships

October 11, 2024 RA and ER

Example: adding Relationships

October 11, 2024 RA and ER

Example: adding Relationships

October 11, 2024 RA and ER

Example: Refining the Schema

October 11, 2024 RA and ER

Example: Refining the Schema

@ - Address

Company

<>

October 11, 2024 RA and ER

Example: Refining the Schema

October 11, 2024 RA and ER

Example: Refining the Schema

dd
a

October 11, 2024 RA and ER

Example: Refining the Schema

October 11, 2024 RA and ER

Example: Refining the Schema

<>
R

Customer i

name

1D

Duplication

dd
fREE u address

Address

Company

name

@ '‘Worker

Employs

October 11, 2024

RA and ER

Example: Refining the Schema

October 11, 2024 RA and ER

Discussion

* ER diagram are easy to design,
yet rigorous enough to convert to SQL

= Lots of ER diagram "dialects"
» Textbook use rectangles/diamonds/ovals
 Industry uses other standards

= |n class we use the textbook version

Next lecture: E/R diagrams in detalil

October 11, 2024 RA and ER

	Slide 1
	Slide 2: Announcements
	Slide 3: Agenda
	Slide 4: Recap: Relational Algebra
	Slide 5: Recap: Relational Algebra
	Slide 6: Recap: Relational Algebra
	Slide 7
	Slide 8: SQL to RA
	Slide 9: SQL to RA
	Slide 10: Extended Relational Algebra
	Slide 11: Duplicate Elimination
	Slide 12: Duplicate Elimination
	Slide 13: Duplicate Elimination
	Slide 14: GroupBy-Aggregate
	Slide 15: GroupBy-Aggregate
	Slide 16: GroupBy-Aggregate
	Slide 17: GroupBy-Aggregate
	Slide 18: GroupBy-Aggregate
	Slide 19: GroupBy-Aggregate
	Slide 20: GroupBy-Aggregate
	Slide 21: GroupBy-Aggregate
	Slide 22: Discussion
	Slide 23
	Slide 24: Nested Queries to RA
	Slide 25: A Simple Case: the WITH Clause
	Slide 26: A Simple Case: the WITH Clause
	Slide 27: A Simple Case: the WITH Clause
	Slide 28: A Simple Case: the WITH Clause
	Slide 29: A Simple Case: a Monotone Query
	Slide 30: A Simple Case: a Monotone Query
	Slide 31: A Simple Case: a Monotone Query
	Slide 32: A Simple Case: a Monotone Query
	Slide 33: A Difficult Case: a Non-Monotone Query
	Slide 34: A Difficult Case: a Non-Monotone Query
	Slide 35: A Difficult Case: a Non-Monotone Query
	Slide 36: A Difficult Case: a Non-Monotone Query
	Slide 37: A Difficult Case: a Non-Monotone Query
	Slide 38: A Difficult Case: a Non-Monotone Query
	Slide 39: A Difficult Case: a Non-Monotone Query
	Slide 40: Discussion
	Slide 41
	Slide 42: Database Design
	Slide 43: The Database Design Process
	Slide 44: The Database Design Process
	Slide 45: The Database Design Process
	Slide 46: ER Diagrams
	Slide 47: Example
	Slide 48: Example: designing the Entity Sets
	Slide 49: Example: designing the Entity Sets
	Slide 50: Example: designing the Entity Sets
	Slide 51: Example: designing the Entity Sets
	Slide 52: Example: designing the Entity Sets
	Slide 53: Example: adding Attributes
	Slide 54: Example: adding Attributes
	Slide 55: Example: adding Attributes
	Slide 56: Example: adding Attributes
	Slide 57: Example: adding Attributes
	Slide 58: Example: adding Relationships
	Slide 59: Example: adding Relationships
	Slide 60: Example: adding Relationships
	Slide 61: Example: adding Relationships
	Slide 62: Example: Refining the Schema
	Slide 63: Example: Refining the Schema
	Slide 64: Example: Refining the Schema
	Slide 65: Example: Refining the Schema
	Slide 66: Example: Refining the Schema
	Slide 67: Example: Refining the Schema
	Slide 68: Example: Refining the Schema
	Slide 69: Discussion

