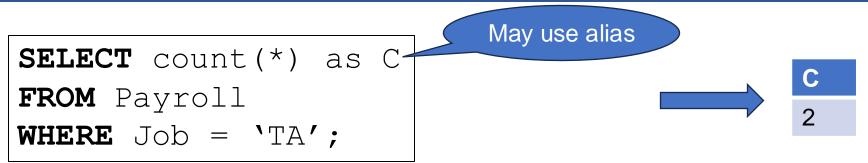


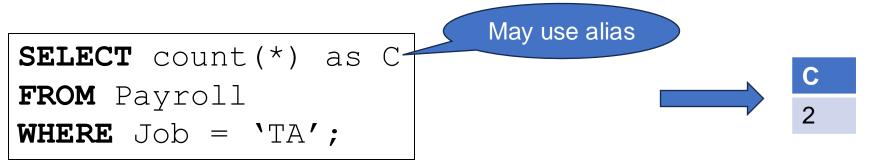
CSE 344: Intro to Data Management Aggregates

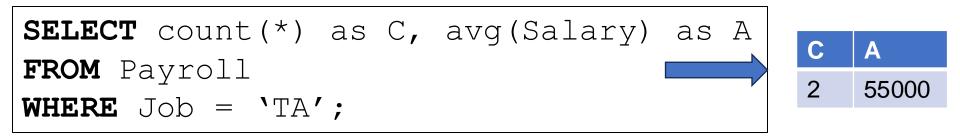
Paul G. Allen School of Computer Science and Engineering University of Washington, Seattle


Aggregates

Homework 2

- Posted
- Due on Wednesday
- Sqlite
- Homework 3: coming up soon (SQL Azure)


Today's lecture is more challenging! Please study the slides carefully at home Will review the "witness problem" on Monday


Aggregates

UserID	Name	Job	Salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Aggregates

Payroll

UserID	Name	Job	Salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

We may compute several aggreges

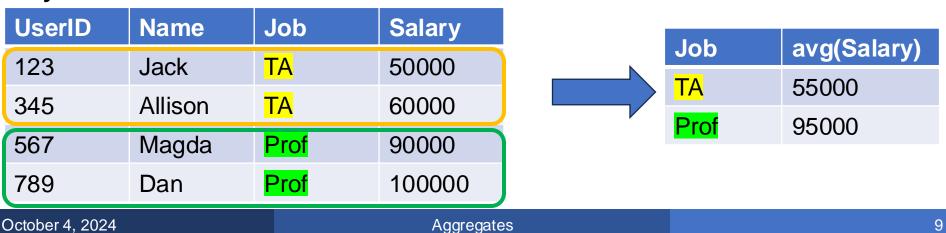
Today: GROUP BY

So far, a single aggregate, or a tuple of aggregates

count(*)	avg(Salary)	count(distinct Job)

Next: compute a set of aggregates, one per group:

 count(*)


SELECT Job, avg(Salary) FROM Payroll GROUP BY Job;

UserID	Name	Job	Salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

SELECT Job, avg(Salary) FROM Payroll GROUP BY Job;

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	<mark>TA</mark>	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

SELECT Job, avg(Salary) FROM Payroll GROUP BY Job;

Find total revenue for each product.

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Find total revenue for each product.

```
SELECT Product, sum(Price*Quant)as Rev
FROM Sales
GROUP BY Product;
```

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Find total revenue for each product.

```
SELECT Product, sum(Price*Quant)as Rev
FROM Sales
GROUP BY Product;
```

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Find total revenue for each product.

```
SELECT Product, sum(Price*Quant)as Rev
FROM Sales
GROUP BY Product;
```

				Or	ne row for e	ach nro
Product	Price	Quant	Month			ach pro
Bagel	3	20	Jan			
Bagel	5	10	Jan		Product	Rev
Bagel	1.50	20	March		Bagel	140
Banana	0.5	50	Feb		Banana	75
Banana	5	10	Feb		Apple	40
Apple	4	10	March			

Find total revenue for each month.

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Find total revenue for each month.

SELECT Month, sum(Price*Quant)as Rev
FROM Sales
GROUP BY Month;

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Find total revenue for each month.

SELECT Month, sum(Price*Quant)as Rev
FROM Sales
GROUP BY Month;

Sales

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

GROUP BY Month

			1
Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Banana	0.5	50	Feb
Banana	5	10	Feb
Bagel	1.50	20	March
Apple	4	10	March

Find total revenue for each month.

SELECT Month, sum(Price*Quant)as Rev
FROM Sales
GROUP BY Month;

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

GROUP BY Month

	Product	Price	Quant	Month			
ſ	Bagel	3	20	<mark>Jan</mark>			
l	Bagel	5	10	<mark>Jan</mark>			
	Banana	0.5	50	Feb			
	Banana	5	10	Feb			
ſ	Bagel	1.50	20	March			
	Apple	4	10	March			

Find total revenue for each month.							e row for ch month	
SELECT	SELECT Month, sum(Price*Quant)as Rev							
	FROM Sales Month Rev							
GROUP	BY Mo	onth;				<mark>Jan</mark>	140	60+50
						<mark>Feb</mark>	75	25+50
						March	40	40+30
Sales					GROUP BY	Month		
Product	Price	Quant	Month		Product	Price	Quant	Month
Bagel	3	20	Jan	(Bagel	3	20	Jan
Bagel	5	10	Jan		Bagel	5	10	Jan
Bagel	1.50	20	March		Banana	0.5	50	Feb
Banana	0.5	50	Feb		Banana	5	10	Feb
Banana	5	10	Feb	ſ	Bagel	1.50	20	March
Apple	4	10	March		Apple	4	10	March

October 4, 2024

Find total revenue per month, for sales over 2.50

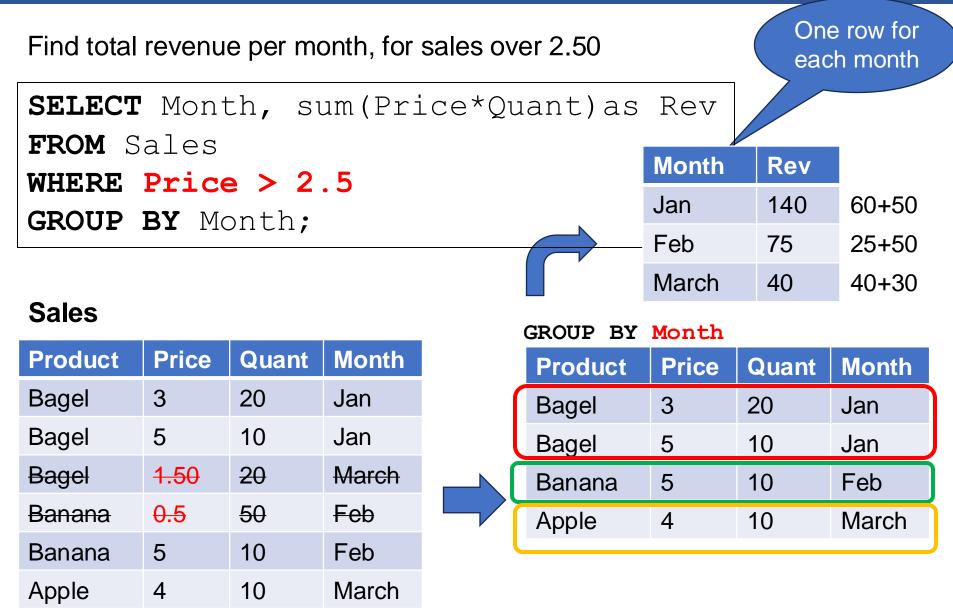
```
SELECT Month, sum(Price*Quant)as Rev
FROM Sales
WHERE Price > 2.5
GROUP BY Month;
```

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Find total revenue per month, for sales over 2.50

```
SELECT Month, sum(Price*Quant)as Rev
FROM Sales
WHERE Price > 2.5
GROUP BY Month;
```

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March


Find total revenue per month, for sales over 2.50

```
SELECT Month, sum(Price*Quant)as Rev
FROM Sales
WHERE Price > 2.5
GROUP BY Month;
```

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

GROUP BY Month

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Banana	5	10	Feb
Apple	4	10	March

October 4, 2024

Find total revenue for each product and each month.

```
SELECT Product, Month, sum(Price*Quant) as Rev
FROM Sales
GROUP BY Product, Month;
```

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Find total revenue for each product and each month.

```
SELECT Product, Month, sum(Price*Quant) as Rev
FROM Sales
GROUP BY Product, Month;
```

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

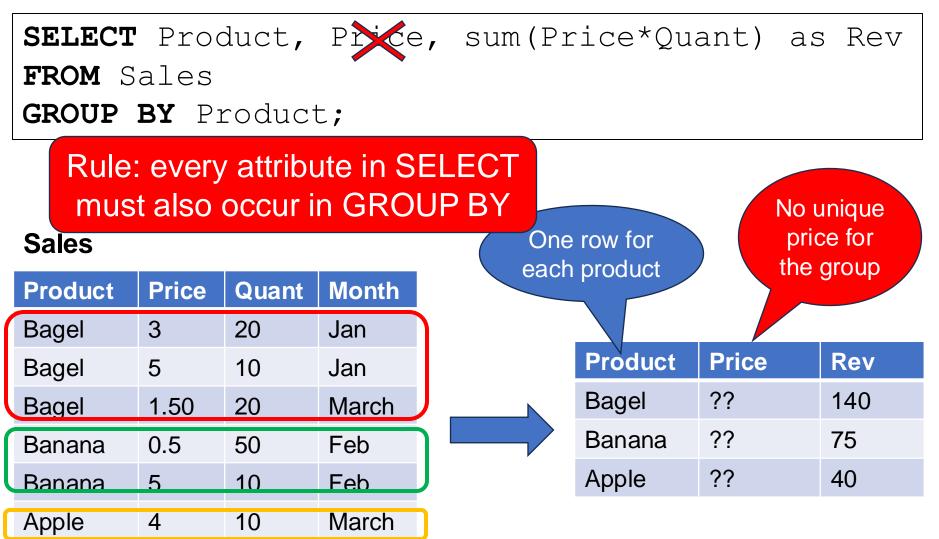
A Source of Errors

What does this query return?

```
SELECT Product, Price, sum(Price*Quant) as Rev
FROM Sales
GROUP BY Product;
```

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

A Source of Errors


What does this query return?

SELECT Product, Price, sum(Price*Quant) as Rev FROM Sales GROUP BY Product;

Sales					row for product	pri	uniq ce fo grou
Product	Price	Quant	Month	Cacil			9.0
Bagel	3	20	Jan				
Bagel	5	10	Jan		Product	Price	Re
Bagel	1.50	20	March		Bagel	??	14
Banana	0.5	50	Feb		Banana	??	75
Banana	5	10	Feb		Apple	??	40
Apple	4	10	March				

A Source of Errors

What does this query return?

GROUP BY: list of attributes

SELECT: some group-by attrs, and aggregates

One output tuple for each group

Semantics

Semantics

```
SELECT attr1, attr2,.., agg1(..), agg2(..),..
FROM Tables
WHERE Condition
GROUP BY attr1, attr2,..;
```

- Step 1: compute SELECT * FROM .. WHERE..
- Step 2: GROUP BY
- Step 3: for each group emit 1 output

SELECT Month, sum(Quant)
FROM Sales
WHERE Price < 4.5
GROUP BY Month;</pre>

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

```
SELECT Month, sum(Quant)
FROM Sales
WHERE Price < 4.5
GROUP BY Month;</pre>
```

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Step 1	Product	Price	Quant	Month
•	Bagel	3	20	Jan
SELECT * FROM Sales WHERE Price < 4.5;	Bagel	1.50	20	March
	Banana	0.5	50	Feb
WHERE Price < 4.5;	Apple	4	10	March

SELECT Month, sum(Quant)
FROM Sales
WHERE Price < 4.5
GROUP BY Month;</pre>

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Step 1				
SELECT *				
FROM Sales				
WHERE Price <	4.5;			

	Product	Price	Quant	Month
٦	Bagel	3	20	Jan
	Bagel	1.50	20	March
	Banana	0.5	50	Feb
	Apple	4	10	March

Step 2 Group-by

Product	Price	Quant	Month
Bagel	3	20	Jan
Banana	0.5	50	Feb
Bagel	1.50	20	March
Apple	4	10	March

SELECT Month, sum(Quant)
FROM Sales
WHERE Price < 4.5
GROUP BY Month;</pre>

Each group, one output

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Step 1

SELECT *		
FROM Sales		
WHERE Price	<	4.5;

	Product	Price	Quant	Month
]	Bagel	3	20	Jan
	Bagel	1.50	20	March
	Banana	0.5	50	Feb
	Apple	4	10	March

Product	Price	Quant	Month		Month	Quant
Bagel	3	20	Jan) —>	Jan	20
Banana	0.5	50	Feb		Feb	50
Bagel	1.50	20	March		March	30
Apple	4	10	March			

Step 3

Multiple Aggregates

SELECT Product,	count(*),	sum(Quant)	
FROM Sales			
GROUP BY Product	_ •		

Product	count	sum
Bagel	3	50
Banana	2	60
Apple	1	10

__

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March
Octobor 4 2024			

Multiple Aggregates

SELECT Pa	roduct,	count(*),	sum(Quar	nt)
FROM Sale	es			
GROUP BY	Product	- • - /		

Product	count	sum
Bagel	3	50
Banana	2	60
Apple	1	10

SELECT Product, count(*)

FROM Sales

GROUP BY Product;

Product	Price	Quant	Month	
Bagel	3	20	Jan	
Bagel	5	10	Jan	
Bagel	1.50	20	March	
Banana	0.5	50	Feb	
Banana	5	10	Feb	
Apple	4	10	March	
October 1, 2021				

SELECT Product, count(*), sum(Quant)		Product	count	sum
FROM Sales	_<	Bagel	3	50
GROUP BY Product;		Banana	2	60
		Apple	1	10
SELECT Product, count(*)		Product	count	
FROM Sales		Bagel	3	
GROUP BY Product;	۲	Banana	2	
		Apple	1	

Product	Price	Quant	Month	
Bagel	3	20	Jan	
Bagel	5	10	Jan	
Bagel	1.50	20	March	
Banana	0.5	50	Feb	
Banana	5	10	Feb	
Apple	4	10	March	
Octobor 4, 2024				

SELECT Product	, count(*),	sum(Quant)
FROM Sales		
GROUP BY Produ	ct;	

Product	count	sum
Bagel	3	50
Banana	2	60
Apple	1	10

	Product	count
\rightarrow	Bagel	3
•	Banana	2
	Apple	1

SELECT Product, count(*)
FROM Sales
GROUP BY Product;

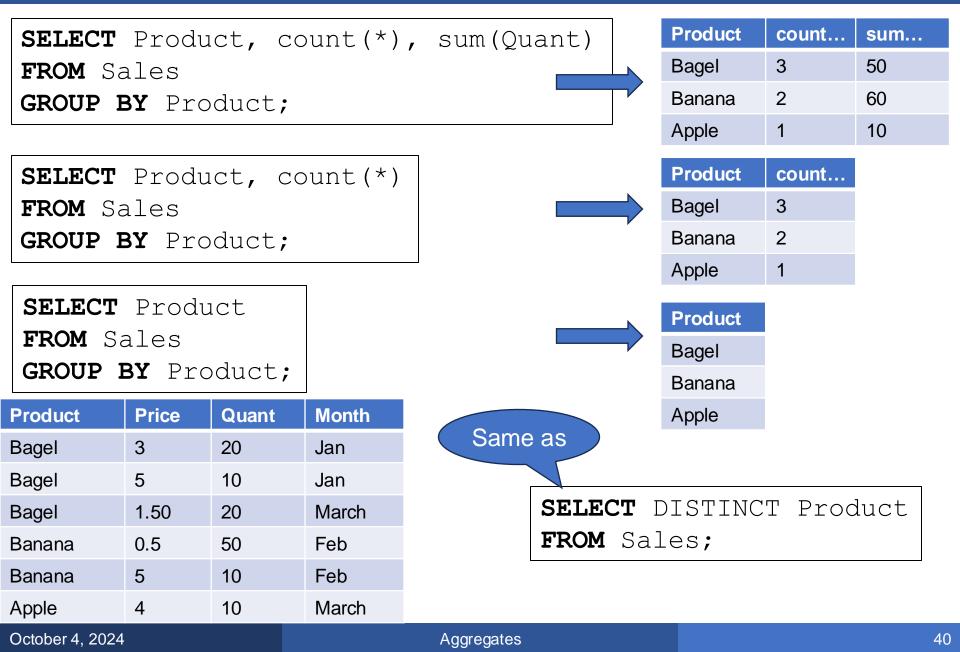
SELECT Product FROM Sales GROUP BY Product;

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March
October 4, 2024			

SELECT Pr	roduct,	count(*),	sum(Quar	nt)
FROM Sale	es			
GROUP BY	Product	- • ~ /		

SELEC	[Product,	count(*)
FROM	52	ales	

GROUP BY Product;


SELECT Pa	roduct
FROM Sale	es
GROUP BY	Product;

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Product	count	sum
Bagel	3	50
Banana	2	60
Apple	1	10

Product	count
Bagel	3
Banana	2
Apple	1
	Bagel Banana

Product Bagel Banana Apple

- A group is never empty, by definition!
- Therefore $count(*) \ge 1$
- Sometimes we want answers with count(...)=0
- Then we use outer-joins

SELECT Job, count(*)
FROM Payroll	
GROUP BY Job;	

Job	Count(*)
ТА	2
Prof	2

Count people per job

UserID	Name	Job	Salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000
October 4, 2024			

<pre>SELECT Job, count(*)</pre>
FROM Payroll
GROUP BY Job;

Job	Count(*)
ТА	2
Prof	2

SELECT Job, count(*)
FROM Payroll
WHERE Salary > 55000
GROUP BY Job;

UserID	Name	Job	Salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000
October 4, 20			

<pre>SELECT Job, count(*)</pre>
FROM Payroll
GROUP BY Job;

<pre>SELECT Job, count(*)</pre>				
FROM Payroll				
WHERE Salary > 55000				
GROUP BY Job;				

Job		Count(*)	
TA		<mark>2</mark>	
Prof		2	
	Jo	b	Count(*)
	ТА		1
	Pro	of	2

•			
UserID	Name	Job	Salary
123	Jack	ŦA	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000
October 4, 20			

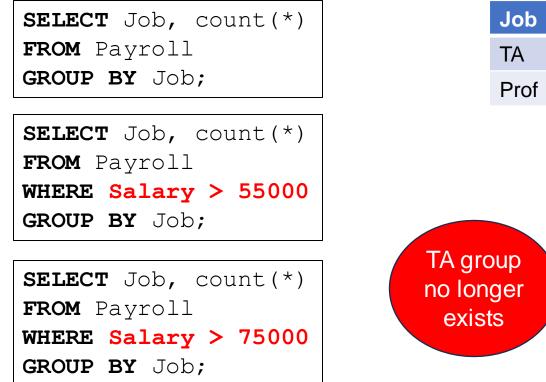
SELECT Job, count(*)
FROM Payroll
GROUP BY Job;

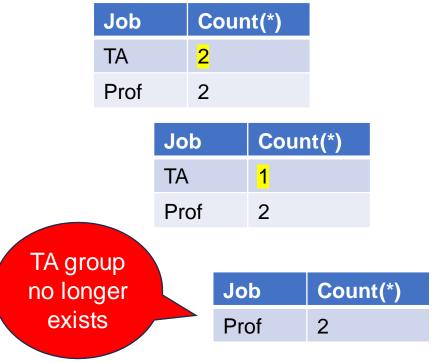
<pre>SELECT Job, count(*)</pre>				
FROM Payroll				
WHERE Salary > 55000				
GROUP BY Job;				

```
SELECT Job, count(*)
FROM Payroll
WHERE Salary > 75000
GROUP BY Job;
```

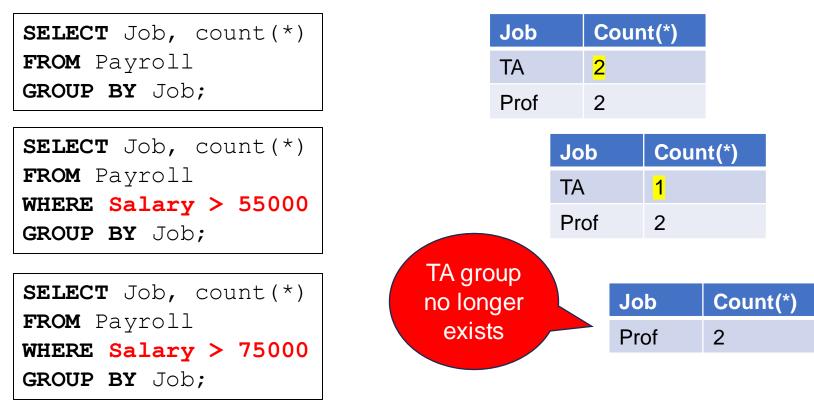
Payroll

October 4, 2024


UserID	Name	Job	Salary
123	Jack	ŦA	50000
345	Allison	ŦA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000


Job		Cour	nt(*)	
TA		<mark>2</mark>		
Prof		2		
	Jo	b	Count(*)
	ТА		1	

2


Prof

Aggregates

-			
UserID	Name	Job	Salary
123	Jack	ŦA	50000
345	Allison	ŦA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Payroll

UserID	Name	Job	Salary
123	Jack	ŦA	50000
345	Allison	ŦA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000
October 4, 2	024		

Can never have count(*)=0 If we want them: outer joins!

How many cars does each person drive?

Let's start with a simpler example

Payroll

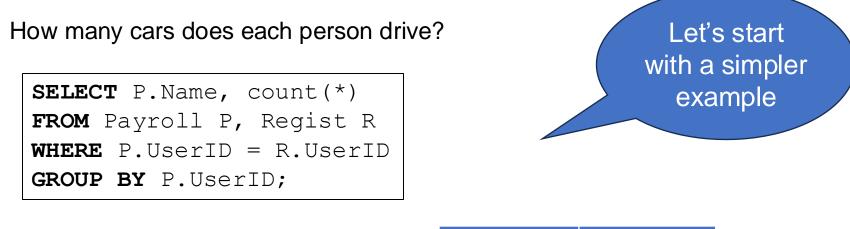
UserID	Name	Job	Salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000
October 4, 20	24		

Regist

Aggregates

UserID	Car
123	Charger
567	Civic
567	Pinto

How many cars does each person drive?


SELECT P.Name, count(*)
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
GROUP BY P.UserID;

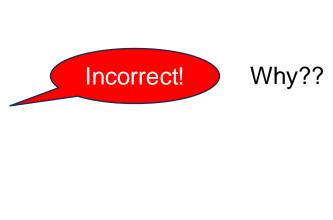
Let's start with a simpler example

Payroll

UserID	Name	Job	Salary
<mark>123</mark>	Jack	ТА	50000
345	Allison	ТА	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000
October 4, 20	24		

UserID	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

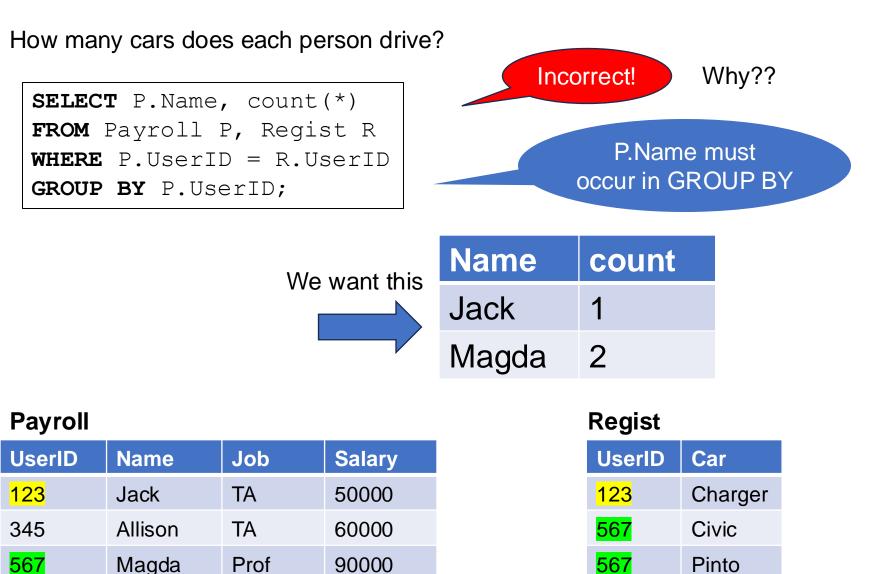
We want this	Name	count
	Jack	1
	Magda	2


Payroll

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000
October 4, 2	024		

UserID	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto


```
SELECT P.Name, count(*)
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
GROUP BY P.UserID;
```



We want this	Name	count
	Jack	1
	Magda	2

Payroll

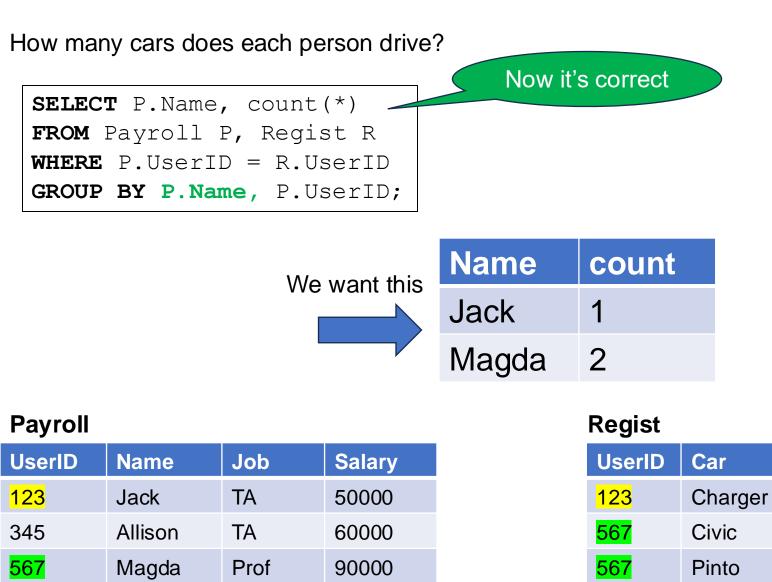
-			
UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000
October 4, 2	024		

UserID	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

Dan

Prof

789


100000

789

October 4, 2024

Dan

Prof

100000

Aggregates

How many cars does each person drive?

<pre>SELECT P.Name, count(*)</pre>
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
GROUP BY P.Name, P.UserID;

Steps 1,2:	P.UserID	P.Name	P.Job	P.Salary	R.UserID	R.Car
	123	Jack	TA	50000	123	Charger
	567	Magda	Prof	90000	567	Civic
	567	Magda	Prof	90000	567	Pinto

Payroll

-			
UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000
October 4, 2			

UserID	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

How many cars does each person drive?

<pre>SELECT P.Name, count(*)</pre>
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
GROUP BY P.Name, P.UserID;

Payroll

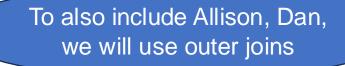
UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000
October 4, 2024			

UserID	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

How many cars does each person drive?

SELECT P.Name, count(*)
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
GROUP BY P.Name, P.UserID;

To also include Allison, Dan, we will use outer joins


	P.UserID	P.Name	P.Job	P.Salary	R.UserID	R.Car	Name	count
Steps 1,2:	123	Jack	TA	50000	123	Charger	Jack	1
	567	Magda	Prof	90000	567	Civic	Magda	2
	567	Magda	Prof	90000	567	Pinto		

Payroll

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000
October 4, 2024			

UserID	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

How many cars does each person drive?

Payroll

UserID	Name	Job	Salary
<mark>123</mark>	Jack	ТА	50000
345	Allison	ТА	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000
October 4, 20	24		

Regist

Aggregates

UserID	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

How many cars does each person drive?

SELECT P.Name, count(*)
FROM Payroll P LEFT OUTER JOIN Regist R ON P.UserID = R.UserID
GROUP BY P.Name, P.UserID;

Payroll

UserID	Name	Job	Salary
<mark>123</mark>	Jack	ТА	50000
345	Allison	ТА	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000
October 4 20	24		

UserID	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

How many cars does each person drive?

SELECT P.Name, count(*)

FROM Payroll P LEFT OUTER JOIN Regist R ON P.UserID = R.UserID
GROUP BY P.Name, P.UserID;

		P.UserID	P.Name	P.Job	P.Salary	R.UserID	R.Car
		123	Jack	ТА	50000	123	Charger
		345	Allison	ТА	60000	NULL	NULL
Step	1	567	Magda	Prof	90000	567	Civic
		567	Magda	Prof	90000	567	Pinto
		789	Dan	Prof	100000	NULL	NULL

Payroll

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000
October 4, 2	024		

Regist

UserID	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

60

How many cars does each person drive?

SELECT P.Name, count(*)

FROM Payroll P LEFT OUTER JOIN Regist R ON P.UserID = R.UserID
GROUP BY P.Name, P.UserID;

	P.UserID	P.Name	P.Job	P.Salary	R.UserID	R.Car
	123	Jack	TA	50000	123	Charger
	345	Allison	TA	60000	NULL	NULL
Steps 1,2:	567	Magda	Prof	90000	567	Civic
	567	Magda	Prof	90000	567	Pinto
	789	Dan	Prof	100000	NULL	NULL

Payroll

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000
October 4, 2	024		

UserID	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

How many cars does each person drive?

SELECT P.Name, count(*)

FROM Payroll P LEFT OUTER JOIN Regist R ON P.UserID = R.UserID
GROUP BY P.Name, P.UserID;

	P.UserID	P.Name	P.Job	P.Salary	R.UserID	R.Car		
	123	Jack	TA	50000	123	Charger	Name	count
	345	Allison	TA	60000	NULL	NULL	Jack	1
Steps 1,2:	567	Magda	Prof	90000	567	Civic	Allison	1
	567	Magda	Prof	90000	567	Pinto	Magda	2
	789	Dan	Prof	100000	NULL	NULL	Dan	1

Payroll

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000
October 4, 2	024		

Regist

UserID	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

62

How many cars does each person drive?

SELECT P.Name, count(*)

FROM Payroll P LEFT OUTER JOIN Regist R ON P.UserID = R.UserID
GROUP BY P.Name, P.UserID;

How many cars does each person drive?Count ignores NULLsSELECT P.Name, count (R.UserID)FROM Payroll P LEFT OUTER JOIN Regist R ON P.UserID = R.UserIDGROUP BY P.Name, P.UserID;

		P.Userl	D P.Name	P.Job	P.Salary	R.UserID	R.Car			
	123	Jack	TA	50000	123	Charger		Name	count	
		345	Allison	TA	60000	NULL	NULL		Jack	1
Steps 1	1,2:	567	Magda	Prof	90000	567	Civic	_	Allison	0
		567	Magda	Prof	90000	567	Pinto		Magda	2
		789	Dan	Prof	100000	NULL	NULL		Dan	0
Payroll							Regist			
Fayton							Regist		_	
UserID	Nam	e	Job	Salary			UserID	Car		ow it's

Aggregates

UserID	Name	JOD	Salary
<mark>123</mark>	Jack	ТА	50000
345	Allison	ТА	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

October 4, 2024

For each job, how many people earn more than 75000?

UserID	Name	Job	Salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000
October 4, 20	24		

For each job, how many people earn more than 75000?

<pre>SELECT Job, count(*)</pre>
FROM Payroll
WHERE Salary > 75000
GROUP BY Job;

Job	Count(*)
Prof	2

UserID	Name	Job	Salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000
October 4, 20	24		

For each job, how many people earn more than 75000?

SELECT	Job,	cou	int(*)
FROM Pa	yrol	L	
WHERE S	Salary	y >	75000
GROUP E	yy Joł);	

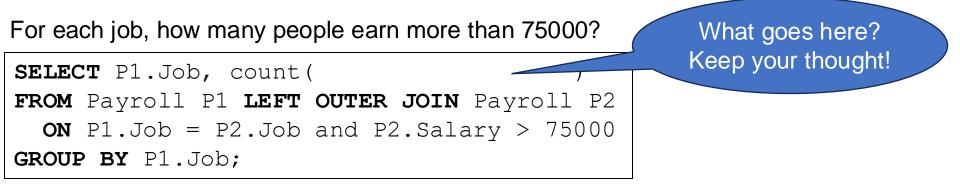
Job	Count(*)
Prof	2

Payroll

UserID	Name	Job	Salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000
October 4, 20	24		

Aggregates

To include users where count(*)=0, we will use a self-outer-join


For each job, how many people earn more than 75000?

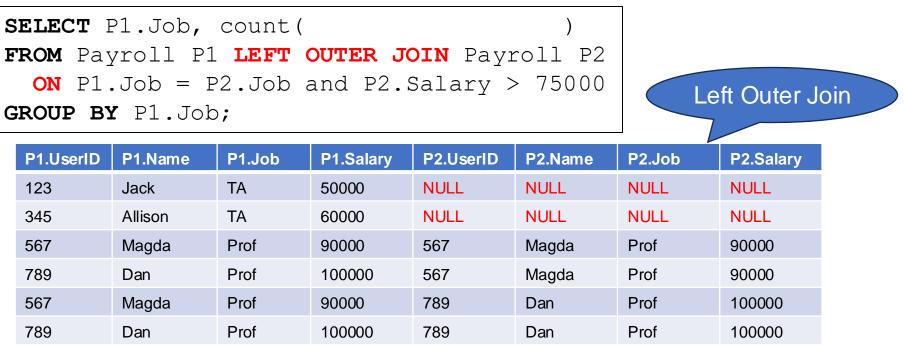
SELECT P1.Job, count()
FROM Payroll P1 LEFT OUTER JOIN Payroll P2
ON P1.Job = P2.Job and P2.Salary > 75000
GROUP BY P1.Job;

Payroll

UserID	Name	Job	Salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000
October 4, 20	24		

To include users where count(*)=0, we will use a self-outer-join

UserID	Name	Job	Salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000
October 4, 20	24		


For each job, how many people earn more than 75000?

SELECT P1.Job, count()
FROM Payroll P1 LEFT OUTER JOIN Payroll P2
ON P1.Job = P2.Job and P2.Salary > 75000
GROUP BY P1.Job;

-			
UserID	Name	Job	Salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000
October 4, 20	24		

For each job, how many people earn more than 75000?

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000
October 4, 2	024		

We want to include <u>all</u> jobs, even when the count is 0. Need an outer join with the Jobs

For each job, how many people earn more than 75000?

SELECT P1.Job, count()
FROM Payroll P1 LEFT OUTER JOIN Payroll P2
ON P1.Job = P2.Job and P2.Salary > 75000
GROUP BY P1.Job;

P1.UserID	P1.Name	P1.Job	P1.Salary	P2.UserID	P2.Name	P2.Job	P2.Salary
123	Jack	ТА	50000	NULL	NULL	NULL	NULL
345	Allison	ТА	60000	NULL	NULL	NULL	NULL
567	Magda	Prof	90000	567	Magda	Prof	90000
789	Dan	Prof	100000	567	Magda	Prof	90000
567	Magda	Prof	90000	789	Dan	Prof	100000
789	Dan	Prof	100000	789	Dan	Prof	100000

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000
October 4, 2	024		

We want to include <u>all</u> jobs, even when the count is 0. Need an outer join with the Jobs

72

Coping with Empty Groups

For each job, how many people earn more than 7500	What do we w	rite her	e?
SELECT Pl.Job, count()			
FROM Payroll P1 LEFT OUTER JOIN Payroll P2		Job	
ON P1.Job = P2.Job and P2.Salary > 75000	Want this:	ТА	0
GROUP BY Pl.Job;		Prof	2

P1.UserID	P1.Name	P1.Job	P1.Salary	P2.UserID	P2.Name	P2.Job	P2.Salary
123	Jack	ТА	50000	NULL	NULL	NULL	NULL
345	Allison	ТА	60000	NULL	NULL	NULL	NULL
567	Magda	Prof	90000	567	Magda	Prof	90000
789	Dan	Prof	100000	567	Magda	Prof	90000
567	Magda	Prof	90000	789	Dan	Prof	100000
789	Dan	Prof	100000	789	Dan	Prof	100000

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000
October 4, 2	024		

We want to include <u>*all*</u> jobs, even when the count is 0. Need an outer join with the Jobs

Coping with Empty Groups

For each job, how many people earn more than 75000?

SELECT P1.Job, count(DISTINCT P2.UserID)
FROM Payroll P1 LEFT OUTER JOIN Payroll P2
ON P1.Job = P2.Job and P2.Salary > 75000
GROUP BY P1.Job;

P1.UserID P1.Name P2.UserID P1.Job P1.Salary 2.Name P2.Job P2.Salary NULL NULL 123 Jack TA 50000 NULL NULL NULL 345 Allison TA 60000 NULL NULL NULL Magda Prof 90000 567 Magda Prof 90000 567 789 Dan Prof 100000 567 Magda Prof 90000 567 Magda Prof 90000 789 Dan Prof 100000 789 789 Prof 100000 Dan Prof 100000 Dan

Payroll

UserID	Name	Job	Salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000
October 4, 20	24		

We want to include <u>all</u> jobs, even when the count is 0. Need an outer join with the Jobs

Count this

Coping with Empty Groups

For each job, how many people earn more than 75000?

SELEC	CT P1.Job, count(DISTINCT P2.UserID)
FROM	Payroll P1 LEFT OUTER JOIN Payroll P2
ON	P1.Job = P2.Job and P2.Salary > 75000
GROUI	PBY P1.Job;

Job	Count()
TA	0
Prof	2

P1.UserID	P1.Name	P1.Job	P1.Salary	P2.UserID	P2.Name	P2.Job	P2.Salary	
123	Jack	ТА	50000	NULL	NULL	NULL	NULL	
345	Allison	ТА	60000	NULL	NULL	NULL	NULL	
567	Magda	Prof	90000	567	Magda	Prof	90000	
789	Dan	Prof	100000	567	Magda	Prof	90000	
567	Magda	Prof	90000	789	Dan	Prof	100000	
789	Dan	Prof	100000	789	Dan	Prof	100000	

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000
October 4, 2	024		

We want to include <u>*all*</u> jobs, even when the count is 0. Need an outer join with the Jobs Coping with empty groups requires some creativity

Use Left-outer-join

Sometimes, you need a self-left-outer-join

• WHERE:

- Applies a predicate to a single tuple*
- Cannot use any aggregate operation

HAVING:

- Applies a predicate to an entire group
- May use aggregate operations
- Can only check attributes occurring in GROUP-BY

* Actually, to one tuple from each relation in the FROM clause

Find the total quantity of products that were sold ≥ 2 times.

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Find the total quantity of products that were sold ≥ 2 times.

SELECT Product, sum(Quant)
FROM Sales
GROUP BY Product
HAVING count(*) >= 2;

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

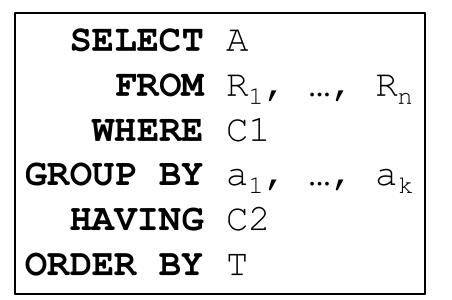
Find the total quantity of products that were sold ≥ 2 times.

SELECT Product, sum(Quant)
FROM Sales
GROUP BY Product
HAVING count(*) >= 2;

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Find the total quantity of products that were sold ≥ 2 times.

SELECT Product, sum(Quant)
FROM Sales
GROUP BY Product
HAVING count(*) >= 2;


Product	Price	Quant	Month	
Bagel	3	20	Jan	
Bagel	5	10	Jan	count(*)=3
Bagel	1.50	20	March	
Banana	0.5	50	Feb	a = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
Banana	5	10	Feb	count(*)=2
Apple	4	10	March	count(*)=1 NOT included

Find the total quantity of products that were sold ≥ 2 times.

SELECT Product, sum(Quant)
FROM Sales
GROUP BY Product
HAVING count(*) >= 2;

Product	Price	Quant	Month				
Bagel	3	20	Jan				
Bagel	5	10	Jan	count(*)=3		Product	sum
Bagel	1.50	20	March			Bagel	50
Banana	0.5	50	Feb	++(*)-2		Banana	60
Banana	5	10	Feb	count(*)=2	,		
Apple	4	10	March	count(*)=1 N	IOT inclu	uded	

SQL Query Summary

A = any attributes from $a_1, ..., a_k$ and/or any aggregates

 $C1 = any condition on the attributes in R_1, ..., R_n$

C2 = any condition on $a_1, ..., a_k$ and/or any aggregates

T = any attributes from $a_1, ..., a_k$ and/or any aggregates

Discussion: WHERE v.s. HAVING

• WHERE:

- Applies to single tuple from each table
- May decrease size of groups, even make them empty
- Cannot use aggregates (count(*)=5, sum(...) > 10)

HAVING:

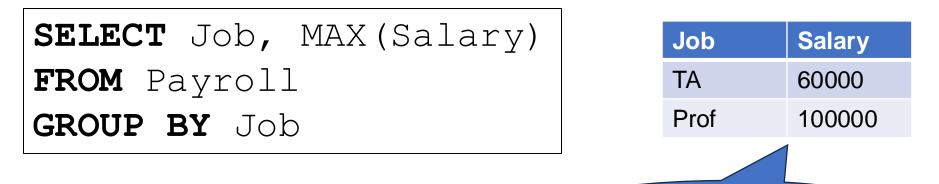
- Applies to entire group: keep it or drop it
- May use aggregates (count(*)=5, sum(...) > 10)
- May only use attributes in GROUP-BY

The Witness

The Witness

- SQL provides the aggregate operators min, max
- SQL does not have argmin or argmax
- Often we want to find the record that achieves that minimum or maximum: we call it The Witness
- One way to compute it is using the HAVING clause
- A simpler way discussed on Monday

Find the person with highest salary for each job

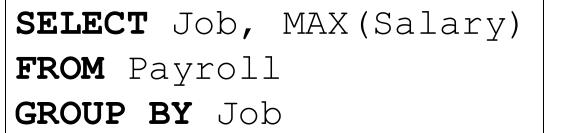

UserID	Name	Job	Salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

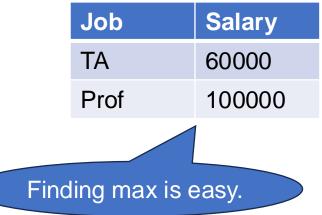
Find the person with highest salary for each job

	Job	Name	Salary
Desired answer:	ТА	Allison	60000
	Prof	Dan	100000

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find the person with highest salary for each job




Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Finding max is easy.

Find the person with highest salary for each job

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

But we want argmax. How do we find the witness?

Find the person with highest salary for each job

SELECT Job, Name, MAX(Salary)
FROM Payroll
GROUP BY Job

Does this work?

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find the person with highest salary for each job

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Sqlite does not return an error, but returns junk outputs. Don't use this.

Find the person with highest salary for each job

Plan:

Compute the max(Salary) for each Job
 Join back with Payroll on Job

3. Return the users where Salary = max(Salary)

UserID	Name	Job	Salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find the person with highest salary for each job

Plan: 1. Compute the max(Salary) for each Job 2. Join back with Payroll on Job 3. Return the users where Salary = max(Salary)

Payroll

UserID	Name	Job	Salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Goes in HAVING

Find the person with highest salary for each job

SELECT P1.Job, MAX(P1.Salary)
FROM Payroll AS P1

GROUP BY P1.Job

UserID	Name	Job	Salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find the person with highest salary for each job

SELECT P1.Job, MAX(P1.Salary) FROM Payroll AS P1

GROUP BY P1.Job

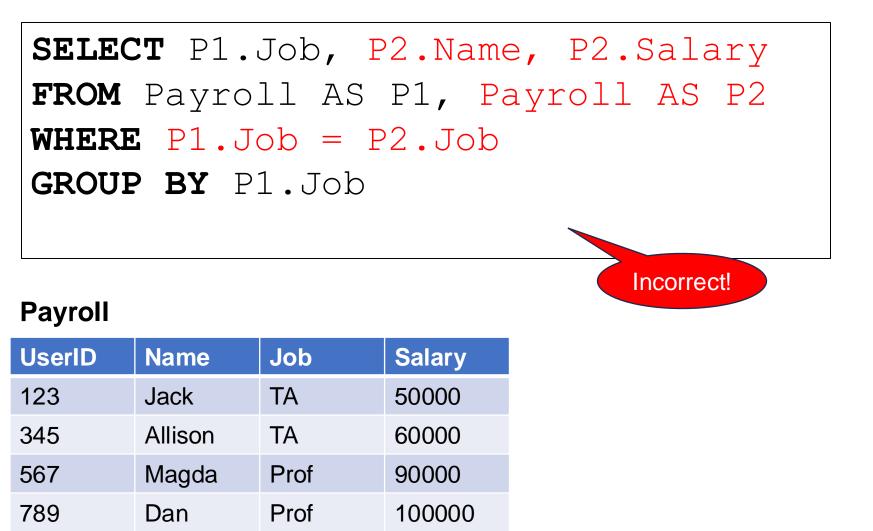
UserID	Name	Job	Salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find the person with highest salary for each job

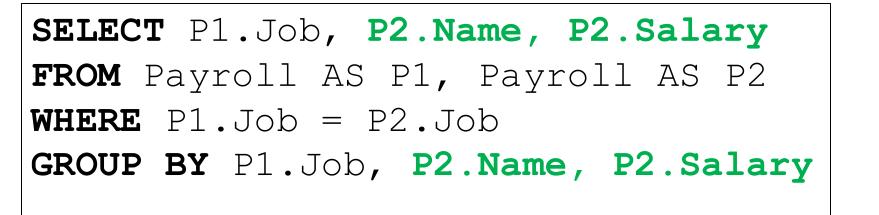
SELECT P1.Job

FROM Payroll AS P1

GROUP BY P1.Job


UserID	Name	Job	Salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find the person with highest salary for each job


SELECT P1.Job, P2.Name, P2.Salary
FROM Payroll AS P1, Payroll AS P2
WHERE P1.Job = P2.Job
GROUP BY P1.Job

UserID	Name	Job	Salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find the person with highest salary for each job

Find the person with highest salary for each job

Correct; but not done!

UserID	Name	Job	Salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find the person with highest salary for each job

SELECT P1.Job, P2.Name, P2.	Salary
FROM Payroll AS P1, Payroll	AS P2
WHERE P1.Job = P2.Job	
GROUP BY P1.Job, P2.Name, P	2.Salary

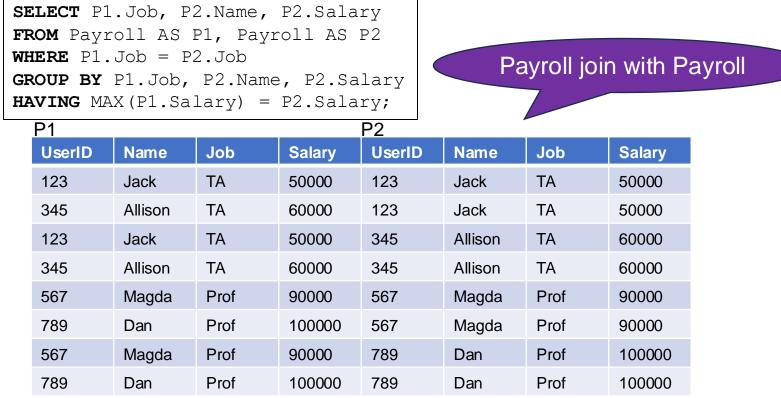
Payroll

UserID	Name	Job	Salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Which P2 should we return for each Job?

Find the person with highest salary for each job

SELECT P1.Job, P2.Name, P2.Salary
FROM Payroll AS P1, Payroll AS P2
WHERE P1.Job = P2.Job
GROUP BY P1.Job, P2.Name, P2.Salary
HAVING P2.Salary = MAX(P1.Salary)

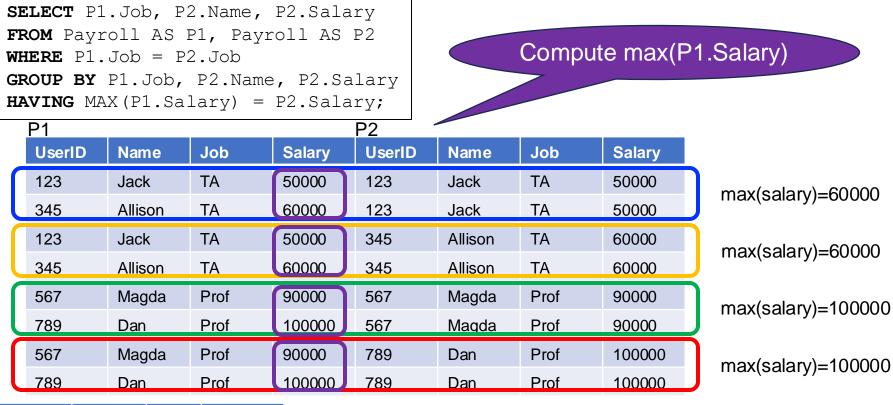

UserID	Name	Job	Salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find the person with highest salary for each job

SELECT P1.Job, P2.Name, P2.Salary
FROM Payroll AS P1, Payroll AS P2
WHERE P1.Job = P2.Job
GROUP BY P1.Job, P2.Name, P2.Salary
HAVING MAX(P1.Salary) = P2.Salary;

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

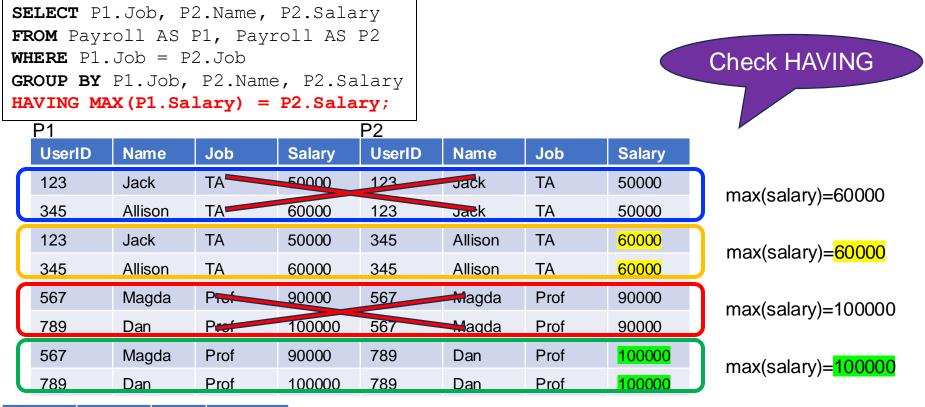
Find the person with highest salary for each job


UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find the person with highest salary for each job

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find the person with highest salary for each job



Aggregates

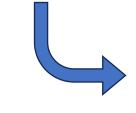
UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

October 4, 2024

Find the person with highest salary for each job

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find the person with highest salary for each job


October 4, 2024

Find the person with highest salary for each job

SELECT P1.Job, P2.Name, P2.Salary
FROM Payroll AS P1, Payroll AS P2
WHERE P1.Job = P2.Job
GROUP BY P1.Job, P2.Name, P2.Salary
HAVING MAX(P1.Salary) = P2.Salary;

Final output has the witnesses

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

P1.Job	P2.Name	P2.Salary
ТА	Allison	60000
Prof	Dan	100000

October 4, 2024

Summary

Group-by can be subtle!

- Empty groups
- Having clause
- Finding the witness