

CSE 344: Intro to Data Management Nulls and Aggregates

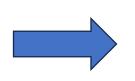
Paul G. Allen School of Computer Science and Engineering University of Washington, Seattle

Announcements

Homework 1 due tonight!

Homework 2:

Posted


Due next Wednesday

Sqlite

Recap: Inner Join

For each employee, find the cars that they drive

SELECT P.Name, R.Car
FROM Payroll AS P
 JOIN Regist AS R
 ON P.UserID = R.UserID;

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

Payroll

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

Recap: Inner Join

For each employee, find the cars that they drive

SELECT P.Name, R.Car
FROM Payroll AS P
 JOIN Regist AS R
 ON P.UserID = R.UserID;

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

Payroll

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

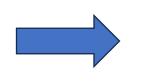
UserID	Car
123	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

Recap: Outer Join

For each employee, find the cars that they drive

```
SELECT P.Name, R.Car
FROM Payroll AS P
    LEFT OUTER JOIN Regist AS R
    ON P.UserID = R.UserID;
```

Payroll


UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

Recap: Outer Join

For each employee, find the cars that they drive

SELECT P.Name, R.Car
FROM Payroll AS P
 LEFT OUTER JOIN Regist AS R
 ON P.UserID = R.UserID;

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto
Allison	NULL
Dan	NULL

NULL means "unknown" or "missing"

Payroll

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

Recap: Outer Join

- LEFT OUTER JOIN
 - Add missing tuples from the LEFT
- RIGHT OUTER JOIN
 - Add missing tuples from the RIGHT

- FULL OUTER JOIN
 - Add missing tuples from both

Let's discuss NULLs...

NULLs

A NULL value means missing, or unknown, or undefined, or inapplicable

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	NULL	60000
567	Magda	Prof	90000
789	Dan	Prof	NULL
432	NULL	Prof	NULL

A NULL value means missing, or unknown, or undefined, or inapplicable

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	NULL	60000
567	Magda	Prof	90000
789	Dan	Prof	NULL
432	NULL	Prof	NULL

A NULL value means missing, or unknown, or undefined, or inapplicable

Tells Sqlite how to print it

.nullvalue NULL

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	NULL	60000
567	Magda	Prof	90000
789	Dan	Prof	NULL
432	NULL	Prof	NULL

A NULL value means missing, or unknown, or undefined, or inapplicable

Complications:

- Expressions with NULLs?
- Conditions with NULLs?

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	NULL	60000
567	Magda	Prof	90000
789	Dan	Prof	NULL
432	NULL	Prof	NULL

If any term is NULL, the entire expression is NULL

Give everyone a 10% raise

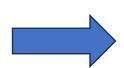
UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	NULL	60000
567	Magda	Prof	90000
789	Dan	Prof	NULL
432	NULL	Prof	NULL

If any term is NULL, the entire expression is NULL

Give everyone a 10% raise

```
SELECT Name, Salary*1.1 as NewSalary
FROM Payroll;
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	NULL	60000
567	Magda	Prof	90000
789	Dan	Prof	NULL
432	NULL	Prof	NULL


If any term is NULL, the entire expression is NULL

Give everyone a 10% raise

```
SELECT Name, Salary*1.1 as NewSalary
FROM Payroll;
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	NULL	60000
567	Magda	Prof	90000
789	Dan	Prof	NULL
432	NULL	Prof	NULL

Name	NewSalary
Jack	55000
Allison	66000
Magda	99000
Dan	NULL
NULL	NULL

If any term is NULL, the entire expression is NULL

Everybody works for free!

```
SELECT Name, Salary*0 as NewSalary
FROM Payroll;
```

NULL*0 is not 0

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	NULL	60000
567	Magda	Prof	90000
789	Dan	Prof	NULL
432	NULL	Prof	NULL

Name	NewSalary
Jack	0
Allison	0
Magda	0
Dan	NULL
NULL	NULL

16

If any term is NULL, the entire expression is NULL

Everybody works for free!

```
SELECT Name, 0 as NewSalary
FROM Payroll;
```

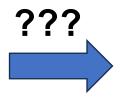

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	NULL	60000
567	Magda	Prof	90000
789	Dan	Prof	NULL
432	NULL	Prof	NULL

Name	NewSalary
Jack	0
Allison	0
Magda	0
Dan	0
NULL	0

How should NULLs affect conditions in WHERE?

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	NULL	60000
567	Magda	Prof	90000
789	Dan	Prof	NULL
432	NULL	Prof	NULL

How should NULLs affect conditions in WHERE?

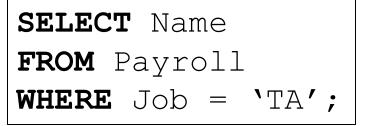

```
SELECT Name
FROM Payroll
WHERE Job = 'TA';
```

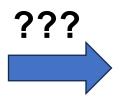
Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	NULL	60000
567	Magda	Prof	90000
789	Dan	Prof	NULL
432	NULL	Prof	NULL

How should NULLs affect conditions in WHERE?

SELECT	Nam	e		
FROM Pa	<u> </u>			
WHERE J	Job	=	'TA'	;




Name	Job
Jack	TA
Allison??	???

20

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	NULL	60000
567	Magda	Prof	90000
789	Dan	Prof	NULL
432	NULL	Prof	NULL

How should NULLs affect conditions in WHERE?

Name	Job		
Jack	TA		
Allison??	???		
Not included: SQL uses 3 valued logic.			

21

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	NULL	60000
567	Magda	Prof	90000
789	Dan	Prof	NULL
432	NULL	Prof	NULL

false =
$$0$$
; unknown = 0.5 ; true = 1

```
false = 0; unknown = 0.5; true = 1

x \text{ AND } y = \min(x,y);

x \text{ OR } y = \max(x,y);

x \text{ not } x = 1-x
```

```
false = 0; unknown = 0.5; true = 1

x \text{ AND } y = \min(x,y);

x \text{ OR } y = \max(x,y);

x \text{ not } x = 1-x
```

What are these conditions?

■ true AND unknown = min(1, 0.5) = unknown

```
false = 0; unknown = 0.5; true = 1

x \text{ AND } y = \min(x,y);

x \text{ OR } y = \max(x,y);

x \text{ not } x = 1-x
```

What are these conditions?

true AND unknown = unknown

```
false = 0; unknown = 0.5; true = 1

x \text{ AND } y = \min(x,y);

x \text{ OR } y = \max(x,y);

x \text{ not } x = 1-x
```

What are these conditions?

- true AND unknown = unknown
- true OR unknown =

```
false = 0; unknown = 0.5; true = 1

x \text{ AND } y = \min(x,y);

x \text{ OR } y = \max(x,y);
```

What are these conditions?

true AND unknown = unknown

■ true OR unknown = true

not x = 1-x

```
false = 0; unknown = 0.5; true = 1
```

$$x AND y = min(x,y);$$

 $x OR y = max(x,y);$
 $not x = 1-x$

What are these conditions?

true AND unknown = unknown

■ true OR unknown = true

unknown AND false =

```
false = 0; unknown = 0.5; true = 1
```

$$x AND y = min(x,y);$$

 $x OR y = max(x,y);$
 $not x = 1-x$

What are these conditions?

true AND unknown = unknown

true OR unknown = true

unknown AND false = false

false =
$$0$$
; unknown = 0.5 ; true = 1

$$x ext{ AND } y = min(x,y);$$

 $x ext{ OR } y = max(x,y);$
 $not ext{ } x = 1-x$

What are these conditions?

- true AND unknown = unknown
- true OR unknown = true
- unknown AND false = false

A = value A < value

 $\Lambda \sim \text{value}$

A > value

false =
$$0$$
; unknown = 0.5 ; true = 1

$$x ext{ AND } y = min(x,y);$$

 $x ext{ OR } y = max(x,y);$
 $not ext{ } x = 1-x$

What are these conditions?

true AND unknown = unknown

true OR unknown = true

unknown AND false = false

A = value

A < value

A > value

When A is NULL then unknown

What does this query return?

```
SELECT *
FROM Payroll
WHERE Job != 'Prof'
   or Salary > 80000;
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	NULL	60000
567	Magda	Prof	90000
789	Dan	Prof	NULL
432	NULL	Prof	NULL

October 2, 2024 Aggregates 32

True

What does this query return?

```
SELECT *
FROM Payroll
WHERE Job != 'Prof'
   or Salary > 80000;
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	NULL	60000
567	Magda	Prof	90000
789	Dan	Prof	NULL
432	NULL	Prof	NULL

True

Unknown

What does this query return?

```
SELECT *
FROM Payroll
WHERE Job != 'Prof'
   or Salary > 80000;
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	NULL	60000
567	Magda	Prof	90000
789	Dan	Prof	NULL
432	NULL	Prof	NULL

True

Unknown

34

True

What does this query return?

```
SELECT *
FROM Payroll
WHERE Job != 'Prof'
   or Salary > 80000;
```

Payroll

UserID	Name	Job	Salary	
123	Jack	TA	50000	True
345	Allison	NULL	60000	Unknown
567	Magda	Prof	90000	True
789	Dan	Prof	NULL	Unknown
432	NULL	Prof	NULL	Unknown

October 2, 2024 Aggregates

What does this query return?

```
SELECT *
FROM Payroll
WHERE Job != 'Prof'
   or Salary > 80000;
```

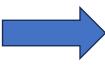
UserID	Name	Job	Salary
123	Jack	TA	50000
567	Magda	Prof	90000

36

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	NULL	60000
567	Magda	Prof	90000
789	Dan	Prof	NULL
432	NULL	Prof	NULL

True Unknown True Unknown


Unknown

NULLs are the nightmare of query optimizers

```
SELECT *
FROM Payroll
WHERE Job != 'Prof' or Job = 'Prof';
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	NULL	60000
567	Magda	Prof	90000
789	Dan	Prof	NULL
432	NULL	Prof	NULL

37

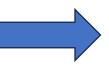
NULLs are the nightmare of query optimizers

```
SELECT *
FROM Payroll
WHERE Job != 'Prof' or Job = 'Prof';
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	NULL	60000
567	Magda	Prof	90000
789	Dan	Prof	NULL
432	NULL	Prof	NULL

Should return everyone, but...

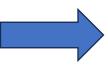

NULLs are the nightmare of query optimizers

```
SELECT *
FROM Payroll
WHERE Job != 'Prof' or Job = 'Prof';
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	NULL	60000
567	Magda	Prof	90000
789	Dan	Prof	NULL
432	NULL	Prof	NULL

Should return everyone, but...


...we are missing Allison!

NULLs are the nightmare of query optimizers

```
SELECT *
FROM Payroll
WHERE Job !='Prof' or Job ='Prof' or Job isNull;
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	NULL	60000
567	Magda	Prof	90000
789	Dan	Prof	NULL
432	NULL	Prof	NULL

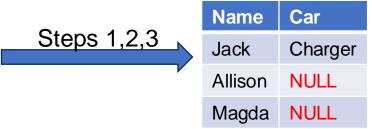
Now we get everyone!

Discussion

- NULL: convenient way to represent missing values
- Need 3-valued logic
- However, leads to huge complications for the optimizer, and even counterintuitive query behavior
- Better avoid NULLs if possible
- One exception: LEFT OUTER Joins. Let's revisit

```
SELECT P.Name, R.Car
FROM Payroll AS P
   LEFT OUTER JOIN Regist AS R
   ON P.UserID = R.UserID
   AND R.Car = 'Charger';
```

- 1. Perform the join with the ON clause
- 2. Add all missing tuples from LEFT
- 3. Check the WHERE clause (if any)


Payroll

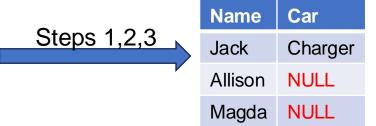
UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000

UserID	Car
123	Charger
567	Civic
567	Pinto

```
SELECT P.Name, R.Car
FROM Payroll AS P
   LEFT OUTER JOIN Regist AS R
   ON P.UserID = R.UserID
   AND R.Car = 'Charger';
```

- 1. Perform the join with the ON clause
- Add all missing tuples from LEFT
- 3. Check the WHERE clause (if any)

Payroll


UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000

UserID	Car
123	Charger
567	Civic
567	Pinto

```
SELECT P.Name, R.Car
FROM Payroll AS P
   LEFT OUTER JOIN Regist AS R
   ON P.UserID = R.UserID
   AND R.Car = 'Charger';
```

```
SELECT P.Name, R.Car
FROM Payroll AS P
    LEFT OUTER JOIN Regist AS R
    ON P.UserID = R.UserID
WHERE R.Car = 'Charger';
```

- 1. Perform the join with the ON clause
- 2. Add all missing tuples from LEFT
- 3. Check the WHERE clause (if any)

What differs if we place R.Car='Charger' in the WHERE clause?

Payroll

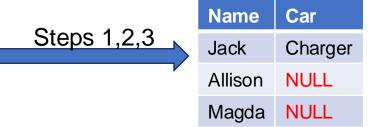
UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000

UserID	Car
123	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

```
SELECT P.Name, R.Car
FROM Payroll AS P
   LEFT OUTER JOIN Regist AS R
   ON P.UserID = R.UserID
   AND R.Car = 'Charger';
```

```
SELECT P.Name, R.Car
FROM Payroll AS P
    LEFT OUTER JOIN Regist AS R
    ON P.UserID = R.UserID
WHERE R.Car = 'Charger';
```

- 1. Perform the join with the ON clause
- 2. Add all missing tuples from LEFT
- 3. Check the WHERE clause (if any)


Payroll

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000

UserID	Car
123	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

```
SELECT P.Name, R.Car
FROM Payroll AS P
   LEFT OUTER JOIN Regist AS R
   ON P.UserID = R.UserID
   AND R.Car = 'Charger';
```

- 1. Perform the join with the ON clause
- Add all missing tuples from LEFT
- 3. Check the WHERE clause (if any)

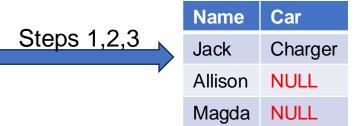
SELECT P.Name, R.Car	
FROM Payroll AS P	
LEFT OUTER JOIN Regist AS R	
ON P.UserID = R.UserID	
<pre>WHERE R.Car = 'Charger';</pre>	

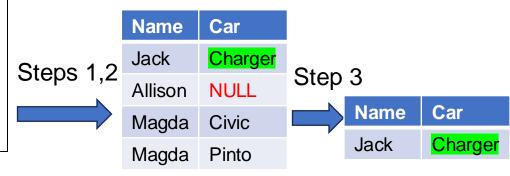
	Name	Car
Steps 1,2	Jack	Charger
	Allison	NULL
	Magda	Civic
	Magda	Pinto

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000

Regist

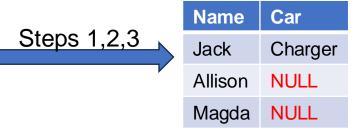

UserID	Car
123	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto


```
SELECT P.Name, R.Car
   LEFT OUTER JOIN Regist AS R
   ON P.UserID = R.UserID
      AND R.Car = 'Charger';
```

FROM Payroll AS P

- **SELECT** P.Name, R.Car FROM Payroll AS P LEFT OUTER JOIN Regist AS R
 - **ON** P.UserID = R.UserID
- WHERE R.Car = 'Charger';

- Perform the join with the ON clause
- Add all missing tuples from LEFT
- Check the WHERE clause (if any)


Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000

Regist

UserID	Car
123	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

- SELECT P.Name, R.Car
 FROM Payroll AS P
 LEFT OUTER JOIN Regist AS R
 ON P.UserID = R.UserID
 AND R.Car = 'Charger';
- 1. Perform the join with the ON clause
- Add all missing tuples from LEFT
- 3. Check the WHERE clause (if any)

SELECT P.Name, R.Car
FROM Payroll AS P
LEFT OUTER JOIN Regist AS R
ON P.UserID = R.UserID
<pre>WHERE R.Car = 'Charger';</pre>

	Name	Car			
Steps 1,2	Jack	Charger	C4 - 1-	0	
Steps 1,2	Allison	NULL	Step 3		
	Magda	Civic		Name	Car
	Magda	Pinto	ŕ	Jack	Cha

Payroll

ON, WHERE differ

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000

UserID	Car
123	Charger
567	Civic
<mark>567</mark>	Pinto

Outer Joins

Now understand OUTER JOINs really well!

Aggregate: many values to one value

Aggregate: many values to one value

- Aggregates in SQL:
 - sum(1, 4, 3, 4) = 1+4+3+4 = 12

Aggregate: many values to one value

- Aggregates in SQL:
 - sum(1, 4, 3, 4) = 1+4+3+4 = 12
 - max(1, 4, 3, 4) = 4
 - min(1, 4, 3, 4) = 1

Aggregate: many values to one value

- Aggregates in SQL:
 - sum(1, 4, 3, 4) = 1+4+3+4 = 12
 - max(1, 4, 3, 4) = 4
 - min(1, 4, 3, 4) = 1
 - count(1, 4, 3, 4) = 4

Aggregate: many values to one value

- Aggregates in SQL:
 - sum(1, 4, 3, 4) = 1+4+3+4 = 12
 - max(1, 4, 3, 4) = 4
 - min(1, 4, 3, 4) = 1
 - count(1, 4, 3, 4) = 4
 - avg(1, 4, 3, 4) = 3

Aggregate: many values to one value

- Aggregates in SQL:
 - sum(1, 4, 3, 4) = 1+4+3+4 = 12
 - max(1, 4, 3, 4) = 4
 - min(1, 4, 3, 4) = 1
 - count(1, 4, 3, 4) = 4
 - avg(1, 4, 3, 4) = 3

The collection may have duplicates!

How many records are in Payroll?

SELECT count(*) as C
FROM Payroll;

C

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

57

How many records are in Payroll?

SELECT count(*)
FROM Payroll;

count(*)

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

58

How many records are in Payroll?

How many cars are in the database?

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

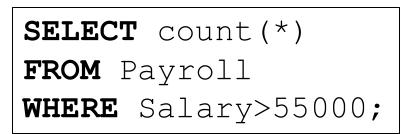
How many records are in Payroll?

How many cars are in the database?

How many TA's are there?

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000


UserID	Car
123	Charger
567	Civic
567	Pinto

How many records are in Payroll?

How many cars are in the database?

How many TA's are there?

•••	
3	

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

SUM, MIN, MAX, AVG

What is the sum of all salaries?

SELECT sum(Salary)
FROM Payroll;

sum(...) 300000

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

SUM, MIN, MAX, AVG

What is the sum of all salaries?

SELECT sum(Salary)
FROM Payroll;

sum(...) 300000

What is the average salary?

SELECT avg(Salary)
FROM Payroll;

avg(...) 75000

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

SUM, MIN, MAX, AVG

What is the sum of all salaries?

SELECT sum(Salary)
FROM Payroll;

sum(...)

What is the average salary?

SELECT avg(Salary)
FROM Payroll;

avg(...) 75000 What is the smallest salary? What is the largest salary?

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

```
SELECT agg(attrs)
FROM ... WHERE ...;
```

```
count or sum or ... SELECT agg (attrs) FROM ... WHERE ...;
```

count or sum or ...

SELECT agg (attrs)

FROM ... WHERE ...;

count or sum or ...

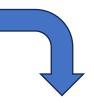
SELECT agg(attrs) - FROM ... WHERE ...

* or Salary or ...

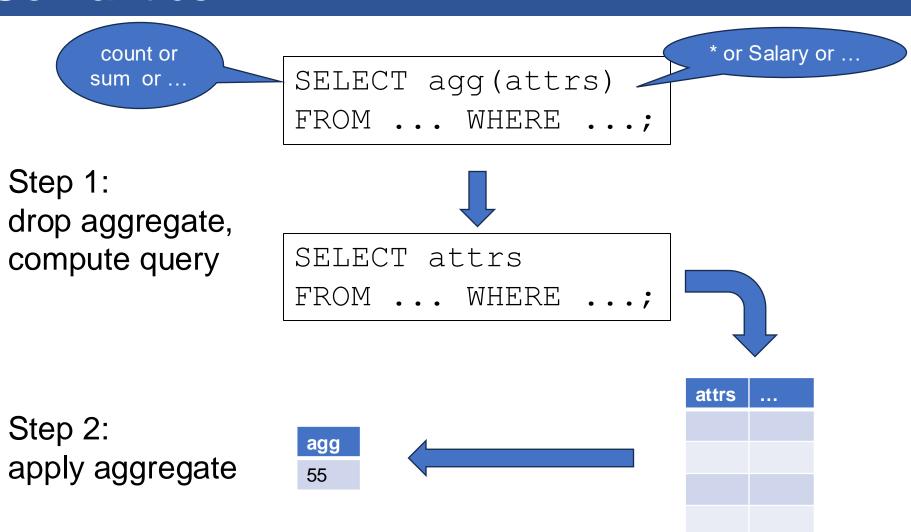
Step 1: drop aggregate, compute query

SELECT attrs
FROM ... WHERE ...;

count or sum or ...


SELECT agg(attrs) FROM ... WHERE ...

* or Salary or ...


Step 1: drop aggregate, compute query

SELECT attrs
FROM ... WHERE ...;

attrs	

SELECT count(*)
FROM Payroll;

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

SELECT count(*)
FROM Payroll;

SELECT *
FROM Payroll;

...

4

72

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000


```
SELECT *
FROM Payroll;
```


...

4

73

How many job are there in this institution?

```
SELECT count (Job)
FROM Payroll;
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

```
SELECT count(*)
FROM Payroll;
```


SELECT *
FROM Payroll;

...

4

74

How many job are there in this institution?

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

SELECT count(*)
FROM Payroll;

SELECT *
FROM Payroll;

...

4

75

How many job are there in this institution?

SELECT count(Job)
FROM Payroll;

SELECT Job FROM Payroll; Job

TA

TA

Prof

Prof

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

SELECT count(*)
FROM Payroll;

SELECT *
FROM Payroll;

...

4

How many job are there in this institution?

SELECT count(Job)
FROM Payroll;

TA TA Prof

Job

Prof

...

4

76

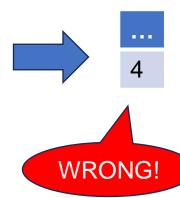
UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

SELECT count(*)
FROM Payroll;

SELECT *
FROM Payroll;

...

77


4

How many job are there in this institution?

SELECT count (Job)
FROM Payroll;

Job
TA
TA
Prof
Prof

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

SELECT count (*) FROM Payroll;

SELECT FROM Payroll;

How many job are there in this institution?

SELECT count (Job) FROM Payroll;

TA TA

Job

78

Prof

Prof

SELECT count (DISTINCT Job)

FROM Payroll;

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

SELECT count (*) FROM Payroll;

SELECT FROM Payroll;

How many job are there in this institution?

SELECT count (Job) FROM Payroll;

Job TA

TA

Prof

Prof

79

SELECT count (**DISTINCT** Job)

FROM Payroll;

Job

TA

Prof

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

SELECT count(*)
FROM Payroll;

SELECT *
FROM Payroll;

...

4

How many job are there in this institution?

SELECT count(Job)
FROM Payroll;

TA

Job

TA

Prof

Prof

4

SELECT count (DISTINCT Job)

FROM Payroll;

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Job

TA

Prof

2

Correct

Aggregates and NULLs

Aggregates ignore NULLs:

Sum: same as 0

Avg: NOT the same as 0

■ Min/max: same as $+\infty$, $-\infty$

Count: doesn't include them, but it's more subtle

Aggregates and NULLs

SELECT sum(Salary)
FROM Payroll;

sum(...) 200000

50000 + 60000 + 90000

82

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	NULL	60000
567	Magda	Prof	90000
789	Dan	Prof	NULL
432	NULL	Prof	NULL

Aggregates and NULLs

SELECT sum(Salary)
FROM Payroll;

sum(...) 200000

50000 + 60000 + 90000

SELECT avg(Salary)
FROM Payroll;

avg(...)

66667

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	NULL	60000
567	Magda	Prof	90000
789	Dan	Prof	NULL
432	NULL	Prof	NULL

NULLs are just ignored. Just as you expected.

83

Discussion: Aggregates

Semantics: two steps

NULLs are ignored

Joins combine records from multiple tables

Aggregates: many values to one value

Together they form a very powerful SQL tool

86

Find the average salary of people driving a Pinto

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
123	Pinto
567	Civic
<mark>567</mark>	Pinto

Find the average salary of people driving a Pinto

```
SELECT avg(P.Salary)
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
and R.Car = 'Pinto';
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
<mark>123</mark>	Pinto
567	Civic
<mark>567</mark>	Pinto

88

Find the average salary of people driving a Pinto

```
SELECT avg(P.Salary)
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
and R.Car = 'Pinto';
```

SELECT P.Salary **FROM** Payroll P, Regist R
...;

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
123	Pinto
567	Civic
<mark>567</mark>	Pinto

Find the average salary of people driving a Pinto

```
SELECT avg(P.Salary)
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
and R.Car = 'Pinto';
```

SELECT P.Salary **FROM** Payroll P, Regist R
...;

	—
Name	Salary
Jack	50000
Magda	90000
	avg()
	70000

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
123	Pinto
567	Civic
<mark>567</mark>	Pinto

 Need to watch for duplicates introduced when we join two tables

Sometimes duplicates are easy to deal with, e.g.
 COUNT(DISTINCT ...)

 Sometimes they are much harder to deal with, and we will discuss this in future lectures

How many people drive a car?

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

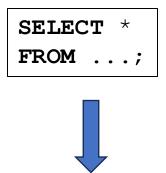
UserID	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

How many people drive a car?

```
SELECT count(*)
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID;
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000


Regist

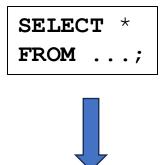
UserID	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

October 2, 2024 Aggregates 93

How many people drive a car?

```
SELECT count(*)
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID;
```


UserID	Name	Job	Salary	UserID	Car
123	Jack	TA	50000	123	Charger
567	Magda	Prof	90000	567	Civic
567	Magda	Prof	90000	567	Pinto


Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
<mark>567</mark>	Pinto

How many people drive a car?

```
SELECT count(*)
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID;
```


UserID	Name	Job	Salary	UserID	Car
123	Jack	TA	50000	123	Charger
567	Magda	Prof	90000	567	Civic
567	Magda	Prof	90000	567	Pinto

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

95

How many people drive a car?

```
SELECT count(DISTINCT UserID)
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID;
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

How many people drive a car?

```
SELECT count(DISTINCT UserID)
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID;
```

SELECT DISTINCT UserID
FROM ...;

UserID 123 567

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

How many people drive a car?

SELECT count (**DISTINCT** UserID) **FROM** Payroll P, Regist R

WHERE P.UserID = R.UserID;

SELECT DISTINCT UserID
FROM ...;

count(*)

UserID

123

<u>567</u>

Payroll

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

98

What is the average salary of car drivers?

```
SELECT avg(P.Salary)
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID;
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

What is the average salary of car drivers?

SELECT avg(P.Salary)
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID;

SELECT P.Salary
FROM ...;

Name	Salary
Jack	50000
Magda	90000
Magda	90000

Payroll

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

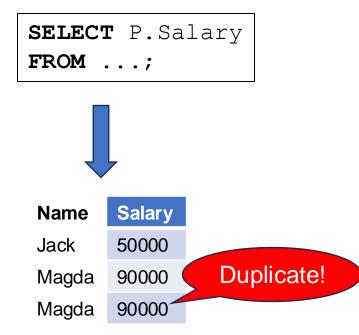
What is the average salary of car drivers?

SELECT avg(P.Salary)
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID;

SELECT P. Salary **FROM** ...;

NameSalaryJack50000Magda90000Magda90000

avg(...) 76667


Payroll

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

What is the average salary of car drivers?

```
SELECT avg(P.Salary)
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID;
```


UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
<mark>567</mark>	Pinto

What is the average salary of car drivers?

```
SELECT avg(DISTINCT P.Salary)
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID;
```

Does DISTINCT fix it?

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

What is the average salary of car drivers?

```
SELECT avg(DISTINCT P.Salary)
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID;
```

SELECT DISTINCT P.Salary
FROM ...;

Does DISTINCT fix it?

Payroll

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	50000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
345	Tesla
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

October 2, 2024 Aggregates 104

What is the average salary of car drivers?

SELECT avg(DISTINCT P.Salary)
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID;

SELECT DISTINCT P.Salary
FROM ...;

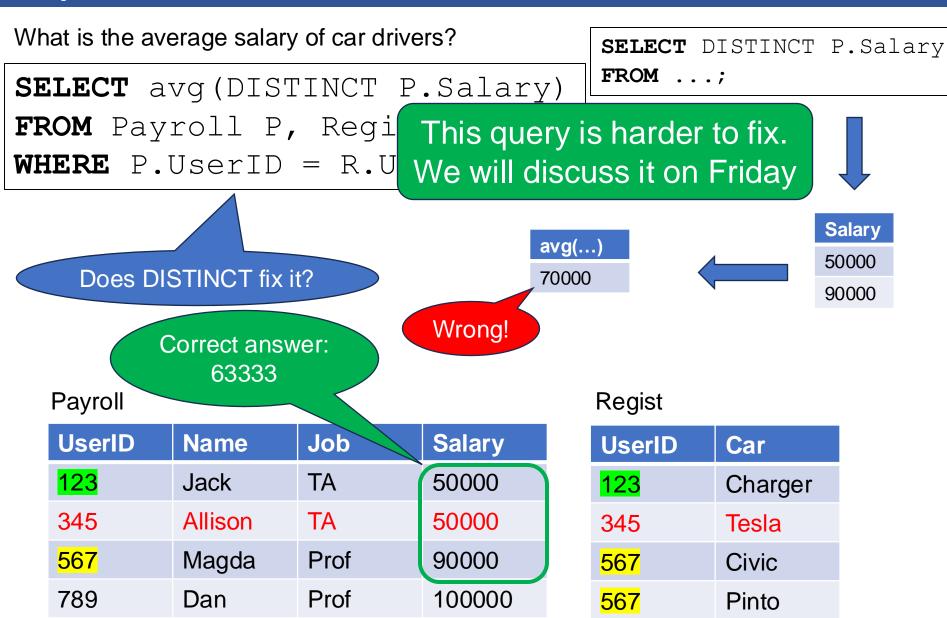
Salary 50000

90000

Does DISTINCT fix it?

Wrong!

Payroll


UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	50000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

Regist

avg(...)

70000

UserID	Car
123	Charger
345	Tesla
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

Summary for Today

NULLs:

- Once a NULL, always a NULL
- 3-Valued Logic (3VL)
- · Outer-joins revisited

Aggregates

- sum, min, max, count, avg
- Two steps semantics
- Subtle interactions with joins, duplicates, nulls