
Introduction to Data Management
CSE 344

Unit 4: RDBMS Internals
Logical and Physical Plans

Query Execution
Query Optimization

(3 lectures)

Introduction to Data Management
CSE 344

Lecture 15: Introduction to Query
Evaluation

CSE 344 - 2019wi 2

Announcements

Makeup lecture tomorrow, 4:30pm, BAG 131

HW6: we will use AWS. Do the setup early:
• If no account yet, sign up aws.amazon.com
• Request credits aws.amazon.com/awscredits

CSE 344 - 2019wi 3

http://aws.amazon.com/
http://aws.amazon.com/awscredits/

Class Overview

• Unit 1: Intro
• Unit 2: Relational Data Models and Query Languages
• Unit 3: Non-relational data
• Unit 4: RDMBS internals and query optimization
• Unit 5: Parallel query processing
• Unit 6: DBMS usability, conceptual design
• Unit 7: Transactions
• Unit 8: Advanced topics (time permitting)

4

From Logical RA Plans
to Physical Plans

CSE 344 - 2019wi 5

Query Evaluation Steps Review

6

Parse & Rewrite Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query
optimization

Logical
plan (RA)

Physical
plan

Relational Algebra Operators
• Union ∪, intersection ∩, difference -
• Selection σ
• Projection π
• Cartesian product �, join ⨝
• (Rename ρ)
• Duplicate elimination δ
• Grouping and aggregation ɣ
• Sorting #

CSE 344 - 2019wi 7

RA

Extended RA

Physical Operators

• For each operators above, several possible
algorithms

• Main memory or external memory algorithms
• Examples:

– Main memory hash join
– External memory merge join
– External memory partitioned hash join
– Sort-based group by
– Etc, etc

CSE 344 - 2019wi 8

⨝

ɣ

Main Memory Algorithms

Logical operator:
Supplier ⨝sid=sid Supply

Propose three physical operators for the join, assuming the
tables are in main memory:
1.
2.
3.

CSE 344 - 2019wi 9

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Main Memory Algorithms

Logical operator:
Supplier ⨝sid=sid Supply
Propose three physical operators for the join, assuming the
tables are in main memory:
1. Nested Loop Join O(??)
2. Merge join O(??)
3. Hash join O(??)

CSE 344 - 2019wi 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Main Memory Algorithms

Logical operator:

Supplier ⨝
sid=sid

Supply

Propose three physical operators for the join, assuming the

tables are in main memory:

1. Nested Loop Join O(n2)

2. Merge join O(n log n)

3. Hash join O(n) … O(n2)

CSE 344 - 2019wi 11

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

BRIEF Review of Hash Tables

0
1
2
3
4
5
6
7
8
9

Separate chaining:

h(x) = x mod 10

A (naïve) hash function:

503 103

76 666

48

503

Duplicates OK
WHY ??

Operations:

find(103) = ??
insert(488) = ??

BRIEF Review of Hash Tables

• insert(k, v) = inserts a key k with value v

• Many values for one key
– Hence, duplicate k’s are OK

• find(k) = returns the list of all values v
associated to the key k

CSE 344 - 2019wi 13

Recap of Main Memory
Algorithms

• Join ⨝:
– Nested loop join
– Hash join
– Merge join

• Selection σ
– “on-the-fly”
– Index-based selection (next lecture)

• Group by ɣ
– Hash–based
– Merge-based 14

How Do We Combine Them?

CSE 344 - 2019wi 15

⨝
⨝ ⨝

⨝

R

S T K

W

σ

σ

How Do We Combine Them?

The Iterator Interface

• open()

• next()

• close()

CSE 344 - 2019wi 16

⨝
⨝ ⨝

⨝

R

S T K

W

σ

σ

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Iterator child) {
this.p = p; this.child = child;

}
Tuple next () {
boolean found = false;
while (!found) {

Tuple in = child.next();
if (in == EOF) return EOF;
found = p(in);

}
return in;

}
void close () { child.close(); }

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Iterator child) {
this.p = p; this.child = child;

}
Tuple next () {
boolean found = false;
while (!found) {

Tuple in = child.next();
if (in == EOF) return EOF;
found = p(in);

}
return in;

}
void close () { child.close(); }

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

}

class Select implements Operator {...
void open (Predicate p,

Iterator child) {
this.p = p; this.child = child;

}
Tuple next () {
boolean found = false;
while (!found) {

Tuple in = child.next();
if (in == EOF) return EOF;
found = p(in);

}
return in;

}
void close () { child.close(); }

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Iterator child) {
this.p = p; this.child = child;

}
Tuple next () {
boolean found = false;
while (!found) {

Tuple in = child.next();
if (in == EOF) return EOF;
found = p(in);

}
return in;

}
void close () { child.close(); }

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Operator c) {
this.p = p; this.c = c; c.open();
}

Tuple next () {
boolean found = false;
while (!found) {

Tuple in = child.next();
if (in == EOF) return EOF;
found = p(in);

}

return in;
}
void close () { child.close(); }

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Operator c) {
this.p = p; this.c = c; c.open();
}

Tuple next () {

}

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Operator c) {
this.p = p; this.c = c; c.open();
}

Tuple next () {
boolean found = false;
Tuple r = null;
while (!found) {

r = c.next();
if (r == null) break;
found = p(r);

}

}

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Operator c) {
this.p = p; this.c = c; c.open();
}

Tuple next () {
boolean found = false;
Tuple r = null;
while (!found) {

r = c.next();
if (r == null) break;
found = p(r);

}
return r;

}

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

Implementing Query Operators
with the Iterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Operator c) {
this.p = p; this.c = c; c.open();
}

Tuple next () {
boolean found = false;
Tuple r = null;
while (!found) {

r = c.next();
if (r == null) break;
found = p(r);

}
return r;

}
void close () { c.close(); }

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

26

Operator q = parse(“SELECT ...”);
q = optimize(q);

q.open();
while (true) {
Tuple t = q.next();
if (t == null) break;
else printOnScreen(t);

}
q.close();

Query plan execution
interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

Pipelining

CSE 344 - 2019wi 27

(Nested loop)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Supplier Supply

sid = sid

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

Pipelining

CSE 344 - 2019wi 28

(Nested loop)

(On the fly)

(On the fly)
open()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Supplier Supply

sid = sid

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

Pipelining

CSE 344 - 2019wi 29

(Nested loop)

(On the fly)

(On the fly)
open()

open()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Supplier Supply

sid = sid

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

Pipelining

CSE 344 - 2019wi 30

(Nested loop)

(On the fly)

(On the fly)
open()

open()

open()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Supplier Supply

sid = sid

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

Pipelining

CSE 344 - 2019wi 31

(Nested loop)

(On the fly)

(On the fly)
open()

open()

open()

open()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Supplier Supply

sid = sid

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

Pipelining

CSE 344 - 2019wi 32

(Nested loop)

(On the fly)

(On the fly)
open()

open()

open()

open() open()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Supplier Supply

sid = sid

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

Pipelining

CSE 344 - 2019wi 33

(Nested loop)

(On the fly)

(On the fly)
next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Supplier Supply

sid = sid

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

Pipelining

CSE 344 - 2019wi 34

(Nested loop)

(On the fly)

(On the fly)
next()

next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Supplier Supply

sid = sid

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

Pipelining

CSE 344 - 2019wi 35

(Nested loop)

(On the fly)

(On the fly)
next()

next()

next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Supplier Supply

sid = sid

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

Pipelining

CSE 344 - 2019wi 36

(Nested loop)

(On the fly)

(On the fly)
next()

next()

next()

next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Supplier Supply

sid = sid

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

Pipelining

CSE 344 - 2019wi 37

(Nested loop)

(On the fly)

(On the fly)
next()

next()

next()

next() next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Supplier Supply

sid = sid

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

Pipelining

CSE 344 - 2019wi 38

(Nested loop)

(On the fly)

(On the fly)
next()

next()

next()

next()
next()

next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Supplier Supply

sid = sid

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

Pipelining

CSE 344 - 2019wi 39

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss hash-join
in class

Supplier Supply

sid = sid

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

Pipelining

CSE 344 - 2019wi 40

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss hash-join
in class

Tuples from
here are
“blocked”

Supplier Supply

sid = sid

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

Pipelining

CSE 344 - 2019wi 41

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss hash-join
in class

Tuples from
here are
pipelined

Tuples from
here are
“blocked”

Supplier Supply

sid = sid

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

Blocked Execution

CSE 344 - 2019wi 42

(Merge Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss merge-join
in class

Supplier Supply

sid = sid

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

Blocked Execution

CSE 344 - 2019wi 43

(Merge Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Blocked Blocked

Discuss merge-join
in class

Supplier Supply

sid = sid

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

Pipeline v.s. Blocking

• Pipeline
– A tuple moves all the way through up the query plan
– Advantages: speed
– Disadvantage: need all hash at the same time in

memory
• Blocking

– The entire result of the subplan is computed (and
stored to disk) before the first tuple is sent up the plan

– Advantage: saves memory
– Disadvantage: slower

44

Discussion on Physical Plan

More components of a physical plan:
• Access path selection for each relation

– Scan the relation or use an index (next lecture)
• Implementation choice for each operator

– Nested loop join, hash join, etc.
• Scheduling decisions for operators

– Pipelined execution or intermediate materialization

CSE 344 - 2019wi 45

Introduction to Database Systems
CSE 344

Lecture 16:
Basics of Data Storage and Indexes

CSE 344 - 2019wi 46

Query Performance

To understand query performance, we need to

understand:

• How is data organized on disk

• How to estimate query costs

• In this course we will focus on disk-based
DBMSs

CSE 344 - 2019wi 47

Hard Disk

• Disks are mechanical devices
• A block = unit of read/write
• Once in main memory we call it a page
• Read only at the rotation speed!
• Consequence: sequential scan faster than random

– Good: read blocks 1,2,3,4,5,…
– Bad: read blocks 2342, 11, 321,9, …

• Rule of thumb:
– Random read 1-2% of file ≈ sequential scan entire file;
– 1-2% decreases over time, because of increased density

48

Data Storage

• DBMSs store data in files
• Most common organization is row-wise storage

• On disk, a file is split into

blocks

• Each block contains

a set of tuples

In the example, we have 4 blocks with 2 tuples each

CSE 344 - 2019wi 49

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

block 1

block 2

block 3

Data File Types

The data file can be one of:
• Heap file

– Unsorted
• Sequential file

– Sorted according to some attribute(s) called key

50

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

CSE 344 - 2019wi

Index

• An additional file, that allows fast access to
records in the data file given a search key

51CSE 344 - 2019wi

Index

• An additional file, that allows fast access to
records in the data file given a search key

• The index contains (key, value) pairs:
– Key = an attribute value (e.g., student ID or name)
– Value = a pointer to the record OR the record itself

52CSE 344 - 2019wi

Index

• An additional file, that allows fast access to
records in the data file given a search key

• The index contains (key, value) pairs:
– Key = an attribute value (e.g., student ID or name)
– Value = a pointer to the record OR the record itself

• Could have many indexes for one table

CSE 344 - 2019wi 53

Key = means here search key

This Is Not A Key

Different keys:

• Primary key – uniquely identifies a tuple

• Key of the sequential file – how the data file is

sorted, if at all

• Index key – how the index is organized

CSE 344 - 2019wi 54

55

Example 1:
Index on ID

10

20

50

200

220

240

420

800

CSE 344 - 2019wi

Data File Student

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800
950

…

Index Student_ID on Student.ID

56

Example 2:
Index on fName

CSE 344 - 2019wi

Index Student_fName
on Student.fName

Student

Amy

Ann

Bob

Cho

…

…

…

…

…

…

Tom

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800

Data File Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

Index Organization
• Hash table

• B+ trees – most common
– They are search trees, but they are not binary

instead have higher fan-out
– Will discuss them briefly next

• Specialized indexes: bit maps, R-trees,
inverted index

CSE 344 - 2019wi 57

58

B+ Tree Index by Example

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 <= 80

20 < 40 <= 60

30 < 40 <= 40

CSE 344 - 2019wi

Clustered vs Unclustered

Index entries
(Index File)

(Data file)

Data Records

Index entries

Data Records
CLUSTERED UNCLUSTERED

B+ Tree B+ Tree

59CSE 344 - 2019wi

Every table can have only one clustered and many unclustered indexes
Why?

60

Index Classification

• Clustered/unclustered
– Clustered = records close in index are close in data

• Option 1: Data inside data file is sorted on disk
• Option 2: Store data directly inside the index (no separate files)

– Unclustered = records close in index may be far in data

CSE 344 - 2019wi

61

Index Classification

• Clustered/unclustered
– Clustered = records close in index are close in data

• Option 1: Data inside data file is sorted on disk
• Option 2: Store data directly inside the index (no separate files)

– Unclustered = records close in index may be far in data

• Primary/secondary
– Meaning 1:

• Primary = is over attributes that include the primary key
• Secondary = otherwise

– Meaning 2: means the same as clustered/unclustered

CSE 344 - 2019wi

62

Index Classification

• Clustered/unclustered
– Clustered = records close in index are close in data

• Option 1: Data inside data file is sorted on disk
• Option 2: Store data directly inside the index (no separate files)

– Unclustered = records close in index may be far in data

• Primary/secondary
– Meaning 1:

• Primary = is over attributes that include the primary key
• Secondary = otherwise

– Meaning 2: means the same as clustered/unclustered

• Organization B+ tree or Hash table

CSE 344 - 2019wi

Summary So Far

• Index = a file that enables direct access to
records in another data file
– B+ tree / Hash table
– Clustered/unclustered

• Data resides on disk
– Organized in blocks
– Sequential reads are efficient
– Random access less efficient
– Random read 1-2% of data worse than sequential

CSE 344 - 2019wi 63

Example

CSE 344 - 2019wi 64

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courseID > 300

Assume the database has indexes on these attributes:
• index_takes_courseID = index on Takes.courseID
• index_student_ID = index on Student.ID

Student(ID, fname, lname)
Takes(studentID, courseID)

⨝

Takes

Studentσ

Example

CSE 344 - 2019wi 65

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courseID > 300

Assume the database has indexes on these attributes:
• index_takes_courseID = index on Takes.courseID
• index_student_ID = index on Student.ID

for y in Takes
if courseID > 300 then

for x in Student
if x.ID=y.studentID

output *

Student(ID, fname, lname)
Takes(studentID, courseID)

⨝

Takes

Studentσ

Example

CSE 344 - 2019wi 66

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courseID > 300

Assume the database has indexes on these attributes:
• Takes_courseID = index on Takes.courseID
• Student_ID = index on Student.ID

for y in Takes
if courseID > 300 then

for x in Student
if x.ID=y.studentID

output *

Student(ID, fname, lname)
Takes(studentID, courseID)

⨝

Takes

Studentσ

Example

CSE 344 - 2019wi 67

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courseID > 300

for y’ in Takes_courseID where y’.courseID > 300
y = fetch the Takes record pointed to by y’
for x’ in index_student_ID where x.ID = y.studentID

x = fetch the Student record pointed to by x’
output *

Assume the database has indexes on these attributes:
• Takes_courseID = index on Takes.courseID
• Student_ID = index on Student.ID

for y in Takes
if courseID > 300 then

for x in Student
if x.ID=y.studentID

output *

Student(ID, fname, lname)
Takes(studentID, courseID)

⨝

Takes

Studentσ

Index selection

Example

CSE 344 - 2019wi 68

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courseID > 300

for y’ in Takes_courseID where y’.courseID > 300
y = fetch the Takes record pointed to by y’
for x’ in index_student_ID where x.ID = y.studentID

x = fetch the Student record pointed to by x’
output *

Assume the database has indexes on these attributes:
• Takes_courseID = index on Takes.courseID
• Student_ID = index on Student.ID

for y in Takes
if courseID > 300 then

for x in Student
if x.ID=y.studentID

output *
Index selection

Student(ID, fname, lname)
Takes(studentID, courseID)

⨝

Takes

Studentσ

Example

CSE 344 - 2019wi 69

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courseID > 300

for y’ in Takes_courseID where y’.courseID > 300
y = fetch the Takes record pointed to by y’
for x’ in Student_ID where x’.ID = y.studentID

x = fetch the Student record pointed to by x’
output *

Assume the database has indexes on these attributes:
• Takes_courseID = index on Takes.courseID
• Student_ID = index on Student.ID

for y in Takes
if courseID > 300 then

for x in Student
if x.ID=y.studentID

output *
Index selection

Index join

Student(ID, fname, lname)
Takes(studentID, courseID)

⨝

Takes

Studentσ

Example

CSE 344 - 2019wi 70

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courseID > 300

for y’ in Takes_courseID where y’.courseID > 300
y = fetch the Takes record pointed to by y’
for x’ in Student_ID where x’.ID = y.studentID

x = fetch the Student record pointed to by x’
output *

Assume the database has indexes on these attributes:
• Takes_courseID = index on Takes.courseID
• Student_ID = index on Student.ID

for y in Takes
if courseID > 300 then

for x in Student
if x.ID=y.studentID

output *
Index selection

Index join

Student(ID, fname, lname)
Takes(studentID, courseID)

⨝

Takes

Studentσ

Example

CSE 344 - 2019wi 71

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courseID > 300

for y’ in Takes_courseID where y’.courseID > 300
y = fetch the Takes record pointed to by y’
for x’ in Student_ID where x’.ID = y.studentID

x = fetch the Student record pointed to by x’
output *

Assume the database has indexes on these attributes:
• Takes_courseID = index on Takes.courseID
• Student_ID = index on Student.ID

for y in Takes
if courseID > 300 then

for x in Student
if x.ID=y.studentID

output *
Index selection

Index join

Student(ID, fname, lname)
Takes(studentID, courseID)

⨝

Takes

Studentσ

Index join

Index selection

Getting Practical:
Creating Indexes in SQL

72

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CSE 344 - 2019wi

Getting Practical:
Creating Indexes in SQL

73

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CSE 344 - 2019wi

Getting Practical:
Creating Indexes in SQL

74

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CSE 344 - 2019wi

What does this mean?

Getting Practical:
Creating Indexes in SQL

75

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CSE 344 - 2019wi

What does this mean?

select *
from V
where P=55 and M=77

yes

Getting Practical:
Creating Indexes in SQL

76

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CSE 344 - 2019wi

What does this mean?

select *
from V
where P=55

select *
from V
where P=55 and M=77

yes

Getting Practical:
Creating Indexes in SQL

77

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CSE 344 - 2019wi

What does this mean?

select *
from V
where P=55

select *
from V
where P=55 and M=77

yes

yes

Getting Practical:
Creating Indexes in SQL

78

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CSE 344 - 2019wi

What does this mean?

select *
from V
where P=55

select *
from V
where M=77

select *
from V
where P=55 and M=77

yes

yes

Getting Practical:
Creating Indexes in SQL

79

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CSE 344 - 2019wi

What does this mean?

select *
from V
where P=55

select *
from V
where M=77

select *
from V
where P=55 and M=77

no

yes

yes

Getting Practical:
Creating Indexes in SQL

80

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CREATE INDEX V3 ON V(M, N)

CREATE CLUSTERED INDEX V5 ON V(N)

CSE 344 - 2019wi

CREATE UNIQUE INDEX V4 ON V(N)

What does this mean?

select *
from V
where P=55

select *
from V
where M=77

select *
from V
where P=55 and M=77

no

yes

yes

Not supported
in SQLite

Which Indexes?

• How many indexes could we create?

• Which indexes should we create?

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

CSE 344 - 2019wi 81

Which Indexes?

• How many indexes could we create?

• Which indexes should we create?

In general this is a very hard problem

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

82CSE 344 - 2019wi

Index Selection: Which Search Key

• Make some attribute K a search key if the

WHERE clause contains:

– An exact match on K

– A range predicate on K

– A join on K

83CSE 344 - 2019wi

The Index Selection Problem 1

84

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

CSE 344 - 2019wi

The Index Selection Problem 1

85

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

What indexes ?

CSE 344 - 2019wi

The Index Selection Problem 1

86

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

A: V(N) and V(P) (hash tables or B-trees)

CSE 344 - 2019wi

The Index Selection Problem 2

87

V(M, N, P);

SELECT *
FROM V
WHERE N>? and N<?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

What indexes ?

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSE 344 - 2019wi

The Index Selection Problem 2

88

V(M, N, P);

SELECT *
FROM V
WHERE N>? and N<?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSE 344 - 2019wi

A: definitely V(N) (must B-tree); unsure about V(P)

The Index Selection Problem 3

89

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:

Your workload is this

What indexes ?

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSE 344 - 2019wi

The Index Selection Problem 3

90

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:
Your workload is this

A: V(N, P)

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSE 344 - 2019wi

How does this index differ from:
1. Two indexes V(N) and V(P)?
2. An index V(P, N)?

The Index Selection Problem 4

91

V(M, N, P);

SELECT *
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:
Your workload is this

SELECT *
FROM V
WHERE N>? and N<?

What indexes ?

CSE 344 - 2019wi

The Index Selection Problem 4

92

V(M, N, P);

SELECT *
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:

Your workload is this

SELECT *
FROM V
WHERE N>? and N<?

A: V(N) secondary, V(P) primary index

CSE 344 - 2019wi

Two typical kinds of queries
• Point queries
• What data structure

should be used for
index?

CSE 344 - 2019wi 93

SELECT *
FROM Movie
WHERE year = ?

SELECT *
FROM Movie
WHERE year >= ? AND

year <= ?

• Range queries
• What data structure

should be used for
index?

Basic Index Selection Guidelines

• Consider queries in workload in order of importance

• Consider relations accessed by query
– No point indexing other relations

• Look at WHERE clause for possible search key

• Try to choose indexes that speed-up multiple queries

CSE 344 - 2019wi 94

To Cluster or Not

Remember:

• Rule of thumb:
Random reading 1-2% of file ≈ sequential
scan entire file;

Range queries benefit mostly from clustering
because they may read more than 1-2%

95CSE 344 - 2019wi

96

Percentage tuples retrieved

Cost

0 100

SELECT *
FROM R
WHERE R.K>? and R.K<?

CSE 344 - 2019wi

97

Percentage tuples retrieved

Cost

0 100

Sequential scan

CSE 344 - 2019wi

SELECT *
FROM R
WHERE R.K>? and R.K<?

98

Percentage tuples retrieved

Cost

0 100

Sequential scan

Clustered index

CSE 344 - 2019wi

SELECT *
FROM R
WHERE R.K>? and R.K<?

99

Percentage tuples retrieved

Cost

0 100

Sequential scan

Clustered index

Un
clu

st
er

ed
 in

de
x

CSE 344 - 2019wi

SELECT *
FROM R
WHERE R.K>? and R.K<?

Introduction to Database Systems
CSE 344

Lecture 17:
Basics of Query Optimization and

Query Cost Estimation

CSE 344 - 2019wi 100

Cost Estimation

• The optimizer considers several plans,
estimates their costs, and chooses the
cheapest

• This lecture: cost estimation for relational
operators

• The cost is always dominated by the cost of
reading from, or writing to disk

101

Cost of Reading
Data From Disk

CSE 344 - 2019wi 102

Cost Parameters
• Cost = I/O + CPU + Network BW

– We will focus on I/O in this class

• Parameters (a.k.a. statistics):
– B(R) = # of blocks (i.e., pages) for relation R
– T(R) = # of tuples in relation R
– V(R, a) = # of distinct values of attribute a

103

Cost Parameters
• Cost = I/O + CPU + Network BW

– We will focus on I/O in this class

• Parameters (a.k.a. statistics):
– B(R) = # of blocks (i.e., pages) for relation R
– T(R) = # of tuples in relation R
– V(R, a) = # of distinct values of attribute a

104

When a is a key, V(R,a) = T(R)
When a is not a key, V(R,a) can be anything <= T(R)

Cost Parameters
• Cost = I/O + CPU + Network BW

– We will focus on I/O in this class
• Parameters (a.k.a. statistics):

– B(R) = # of blocks (i.e., pages) for relation R
– T(R) = # of tuples in relation R
– V(R, a) = # of distinct values of attribute a

• DBMS collects statistics about base tables
must infer them for intermediate results

105

When a is a key, V(R,a) = T(R)
When a is not a key, V(R,a) can be anything <= T(R)

Size Estimation

Main principle:
• Size of the output = some fraction of the size

of the input
• The fraction is called the selectivity factor

CSE 344 - 2019wi 106

Selectivity Factors for Conditions

• A = c /* σA=c(R) */
– Selectivity f = 1/V(R,A)

• A < c /* σA<c(R)*/
– Selectivity f = (c - min(R, A))/(max(R,A) - min(R,A))

• c1 < A < c2 /* σc1<A<c2(R)*/
– Selectivity f = (c2 – c1)/(max(R,A) - min(R,A))

• Cond1 ∧ Cond2 ∧ Cond3 ∧ …
– Selectivity = f1*f2*f3* …(assumes independence)

Will use mostly
this…

…and this

Cost of Reading Data From Disk

• Sequential scan for relation R costs B(R)

• Index-based selection
– Estimate selectivity factor f (see previous slide)
– Clustered index: f*B(R)
– Unclustered index f*T(R)

CSE 344 - 2019wi 108

Note: we ignore I/O cost for index pages

Index Based Selection

• Example:

• Table scan:
• Index based selection:

CSE 344 - 2019wi 109

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

Index Based Selection

• Example:

• Table scan: B(R) = 2,000 I/Os
• Index based selection:

CSE 344 - 2019wi 110

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

Index Based Selection

• Example:

• Table scan: B(R) = 2,000 I/Os
• Index based selection:

– If index is clustered:
– If index is unclustered:

CSE 344 - 2019wi 111

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

Index Based Selection

• Example:

• Table scan: B(R) = 2,000 I/Os
• Index based selection:

– If index is clustered: B(R) * 1/V(R,a) = 100 I/Os
– If index is unclustered:

CSE 344 - 2019wi 112

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

Index Based Selection

• Example:

• Table scan: B(R) = 2,000 I/Os
• Index based selection:

– If index is clustered: B(R) * 1/V(R,a) = 100 I/Os
– If index is unclustered: T(R) * 1/V(R,a) = 5,000 I/Os

CSE 344 - 2019wi 113

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

Index Based Selection

• Example:

• Table scan: B(R) = 2,000 I/Os
• Index based selection:

– If index is clustered: B(R) * 1/V(R,a) = 100 I/Os
– If index is unclustered: T(R) * 1/V(R,a) = 5,000 I/Os

CSE 344 - 2019wi 114

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

Lesson: Don’t build unclustered indexes when V(R,a) is small !

Cost of Executing Operators
(Focus on Joins)

CSE 344 - 2019wi 115

Outline

• Join operator algorithms
– One-pass algorithms (Sec. 15.2 and 15.3)
– Index-based algorithms (Sec 15.6)

• Note about readings:
– In class, we discuss only algorithms for joins
– Other operators are easier: read the book

CSE 344 - 2019wi 116

Join Algorithms

• Nested loop join

• Hash join

• Sort-merge join

• Index-join

CSE 344 - 2019wi 117

Join Example

118

Patient Insurance

Patient(pid, name, address)
Insurance(pid, provider, policy_nb)

1 ‘Bob’ ‘Seattle’
2 ‘Ela’ ‘Everett’

3 ‘Jill’ ‘Kent’
4 ‘Joe’ ‘Seattle’

Patient
2 ‘Blue’ 123
4 ‘Prem’ 432

Insurance

4 ‘Prem’ 343
3 ‘GrpH’ 554

Two tuples
per page

Nested Loop Joins
• Tuple-based nested loop R ⋈ S
• R is the outer relation, S is the inner relation

CSE 344 - 2019wi 119

for each tuple t1 in R do
for each tuple t2 in S do

if t1 and t2 join then output (t1,t2)

What is the Cost?

Nested Loop Joins
• Tuple-based nested loop R ⋈ S
• R is the outer relation, S is the inner relation

• Cost: B(R) + T(R) B(S)
• Multiple-pass since S is read many times

CSE 344 - 2019wi 120

What is the Cost?

for each tuple t1 in R do
for each tuple t2 in S do

if t1 and t2 join then output (t1,t2)

Page-at-a-time Refinement

• Cost: B(R) + B(R)B(S)

CSE 344 - 2019wi 121

What is the Cost?

for each page of tuples r in R do

for each page of tuples s in S do

for all pairs of tuples t1 in r, t2 in s

if t1 and t2 join then output (t1,t2)

1 2

Page-at-a-time Refinement

CSE 344 - 2019wi 122

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient

Output buffer
2 2

Input buffer for Insurance2 4

Page-at-a-time Refinement

CSE 344 - 2019wi 123

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient1 2

Output buffer

Input buffer for Insurance4 3

1 2

Page-at-a-time Refinement

124

3 4

Patient
2 4

Insurance

4 3

8 5

9 6

8 9

6 6

1 3

Disk

Input buffer for Patient1 2

Output buffer

Input buffer for Insurance2 8

1 2

2 2

Cost: B(R) + B(R)B(S)

Keep going until read
all of Insurance

Then repeat for next
page of Patient… until end of Patient

1 2

2 8

Block-Nested-Loop Refinement

• Cost: B(R) + B(R)B(S)/(M-1)

CSE 344 - 2019wi 125

What is the Cost?

for each group of M-1 pages r in R do

for each page of tuples s in S do
for all pairs of tuples t1 in r, t2 in s

if t1 and t2 join then output (t1,t2)

Hash Join

Hash join: R ⋈ S
• Scan R, build buckets in main memory
• Then scan S and join
• Cost: B(R) + B(S)
• Which relation to build the hash table on?

CSE 344 - 2019wi 126

Hash Join

Hash join: R ⋈ S
• Scan R, build buckets in main memory
• Then scan S and join
• Cost: B(R) + B(S)
• Which relation to build the hash table on?

• One-pass algorithm when B(R) ≤ M
– M = number of memory pages available

CSE 344 - 2019wi 127

Hash Join Example

128

Patient Insurance

1 2
3 4

Patient
2 4

Insurance

4 3

Showing
pid only

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

Some large-
enough #

This is one page
with two tuples

Hash Join Example

129

Step 1: Scan Patient and build hash table in memory
Can be done in
method open()

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 2

Hash Join Example

130

Step 2: Scan Insurance and probe into hash table
Done during
calls to next()

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 22 4
Output buffer
2 2

Write to disk or
pass to next

operator

Hash Join Example

131

Step 2: Scan Insurance and probe into hash table
Done during
calls to next()

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

Hash h: pid % 5

Input buffer

1 2 43 96 85

1 22 4
Output buffer

4 4

Hash Join Example

132

Step 2: Scan Insurance and probe into hash table
Done during
calls to next()

1 2

3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

Hash h: pid % 5

Input buffer

1 2 43 96 85

1 24 3
Output buffer

4 4

Keep going until read all of Insurance

Cost: B(R) + B(S)

Sort-Merge Join

Sort-merge join: R ⋈ S
• Scan R and sort in main memory
• Scan S and sort in main memory
• Merge R and S

• Cost: B(R) + B(S)
• One pass algorithm when B(S) + B(R) <= M
• Typically, this is NOT a one pass algorithm

CSE 344 - 2019wi 133

Sort-Merge Join Example

134

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 1: Scan Patient and sort in memory

Sort-Merge Join Example

135

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 2: Scan Insurance and sort in memory

1 2 3 4

6 8 8 9

2 3 4 6

Sort-Merge Join Example

136

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer
1 1

Sort-Merge Join Example

137

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer
2 2

Keep going until end of first relation

Index Join
R ⋈S
• Assume S has an index on the join attribute
• Iterate over R, for each tuple fetch

corresponding tuple(s) from S

• Cost:
– If index on S is clustered:

B(R) + T(R) * (B(S) * 1/V(S,a))
– If index on S is unclustered:

B(R) + T(R) * (T(S) * 1/V(S,a))
CSE 344 - 2019wi 138

Cost of Query Plans
Example

CSE 344 - 2019wi 139

Logical Query Plan 1

Supply Supplier

sid = sid

σpno=2�scity=‘Seattle’�sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

Logical Query Plan 1

Supply Supplier

sid = sid

σpno=2�scity=‘Seattle’�sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 10000

Logical Query Plan 1

Supply Supplier

sid = sid

σpno=2�scity=‘Seattle’�sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 10000

T < 1

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’�sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’�sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4 T= 5

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’�sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4 T= 5
Very wrong!

Why?

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’�sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4 T= 5
Very wrong!

Why?

T = 4

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’�sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4 T= 5
Very wrong!

Why?

T = 4

Different
estimate L

Physical Plan 1

Supply Supplier

sid = sid

σpno=2�scity=‘Seattle’�sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 10000

T < 1

Block nested loop join

Scan
Scan

Total cost: 100/10 * 100 = 1000

Physical Plan 1

Supply Supplier

sid = sid

σpno=2�scity=‘Seattle’�sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 10000

T < 1

Block nested loop join

Scan
Scan

Total cost: 100+100*100/10 = 1100

Physical Plan 2

Supply Supplier

sid = sid

σsstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T= 5

T = 4

Unclustered
index lookup
Supply(pno)

Unclustered
index lookup
Supplier(scity)

σscity=‘Seattle’

Cost of Supply(pno) = 4
Cost of Supplier(scity) = 50

Total cost: 54

Main memory join

T= 50

Physical Plan 2

Supply Supplier

sid = sid

σsstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T= 5

T = 4

Unclustered
index lookup
Supply(pno)

Unclustered
index lookup
Supplier(scity)

σscity=‘Seattle’

Cost of Supply(pno) = 4
Cost of Supplier(scity) = 50

Total cost: 54

Main memory join

T= 50

Physical Plan 2

Supply Supplier

sid = sid

σsstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T= 5

T = 4

Unclustered
index lookup
Supply(pno)

Unclustered
index lookup
Supplier(scity)

σscity=‘Seattle’

Cost of Supply(pno) = 4
Cost of Supplier(scity) = 50

Total cost: 54

Main memory join

T= 50

Physical Plan 3

Supply Supplier

sid = sid

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T = 4

Unclustered
index lookup
Supply(pno)

Cost of Supply(pno) = 4
Cost of Index join = 4
Total cost: 8

Clustered
Index join

σscity=‘Seattle’�sstate=‘WA’

Physical Plan 3

Supply Supplier

sid = sid

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T = 4

Unclustered
index lookup
Supply(pno)

Cost of Supply(pno) = 4
Cost of Index join = 4
Total cost: 8

Clustered
Index join

σscity=‘Seattle’�sstate=‘WA’

Physical Plan 3

Supply Supplier

sid = sid

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T = 4

Unclustered
index lookup
Supply(pno)

Cost of Supply(pno) = 4
Cost of Index join = 4
Total cost: 8

Clustered
Index join

σscity=‘Seattle’�sstate=‘WA’

Query Optimizer Summary

• Input: A logical query plan
• Output: A good physical query plan
• Basic query optimization algorithm

– Enumerate alternative plans (logical and physical)
– Compute estimated cost of each plan
– Choose plan with lowest cost

• This is called cost-based optimization

CSE 344 - 2019wi 156

