Introduction to Data Management
CSE 344

Unit 4: RDBMS Internals

Logical and Physical Plans
Query Execution
Query Optimization

(3 lectures)

Introduction to Data Management
CSE 344

Lecture 15: Introduction to Query
Evaluation

CSE 344 - 2019wi

Announcements

Makeup lecture tomorrow, 4:30pm, BAG 131

HWG: we will use AWS. Do the setup early:
* If no account yet, sign up aws.amazon.com
« Request credits aws.amazon.com/awscredits

CSE 344 - 2019wi

http://aws.amazon.com/
http://aws.amazon.com/awscredits/

Class Overview

 Unit 1: Intro
« Unit 2: Relational Data Models and Query Languages

‘ « Unit 4: RDMBS internals and query optimization

« Unit 5: Parallel query processing

« Unit 6: DBMS usability, conceptual design
« Unit 7: Transactions

« Unit 8: Advanced topics (time permitting)

From Logical RA Plans
to Physical Plans

CSE 344 - 2019wi

Query Evaluation Steps Review

SQL query

!
[Parse & Rewrite QueryJ

~ ' .
i Sglec Low
optimization™ }
[Select Physical PIanJ
\ Physical
[Query Execution}

“ 6

Relational Algebra Operators
Union U, intersection, difference - B
Selection o

Projection 1
Cartesian product X, join < f
(Rename p)

Duplicate elimination 0 -

RA

Grouping and aggregation y Extended RA

Sorting T B

CSE 344 - 2019wi 7

Physical Operators

* For each operators above, several possible
algorithms

« Main memory or external memory algorithms

« Examples:

— Main memory hash join
— External memory merge join <]
— External memory partitioned hash join

— Sort-based group by } Y
— Etc, efc

CSE 344 - 2019wi

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Main Memory Algorithms

Logical operator:

Supplier Pgjg=sig SUPPly

Propose three physical operators for the join, assuming the
tables are in main memory:

1.

2.

3.

CSE 344 - 2019wi

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Main Memory Algorithms

Logical operator:
Supplier Pgg-siq SUpply

Propose three physical operators for the join, assuming the
tables are in main memory:

1. Nested Loop Join O(?7?)
2. Merge join O(?7?)
3. Hash join O(?7?)

CSE 344 - 2019wi

10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Main Memory Algorithms

Logical operator:
Supplier Pgg-siq SUpply

Propose three physical operators for the join, assuming the
tables are in main memory:

1. Nested Loop Join O(n?)
2. Merge join O(n log n)
3. Hash join O(n) ... O(n?)

CSE 344 - 2019wi 11

BRIEF Review of Hash Tables

Separate chaining:

A (naive) hash function:

h(x) =x mod 10

Operations:

find(103) = ??
insert(488) = ??

© 00 N O O b WO N -~ O

Duplicates OK
WHY ?7?

503 103 503
76 666
48

BRIEF Review of Hash Tables

* Insert(k, v) = inserts a key k with value v

« Many values for one key
— Hence, duplicate k's are OK

 find(k) = returns the list of all values v
associated to the key k

CSE 344 - 2019wi

13

Recap of Main Memory
Algorithms

« Join X:

— Nested loop join

— Hash join

— Merge join
« Selection o

— “on-the-fly”

— Index-based selection (next lecture)
 Group by vy

— Hash-based

— Merge-based

14

How Do We Combine Them?

CSE 344 - 2019wi

How Do We Combine Them?

The lterator Interface

|
+ open() TN
" TN W
* nex < D>
20
» close() T s T K

CSE 344 - 2019wi

Implementing Query Operators
with the lterator Interface

Example “on the fly” selection operator

interface Operator {

Implementing Query Operators
with the lterator Interface

Example “on the fly” selection operator

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

Implementing Query Operators
with the lterator Interface

Example “on the fly” selection operator

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

Implementing Query Operators
with the lterator Interface

Example “on the fly” selection operator

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

Implementing Query Operators
with the lterator Interface

Example “on the fly” selection operator

interface Operator { class Select implements Operator {...
void open (Predicate p,
// initializes operator state Operator c) {
// and sets parameters this.p = p; this.c = c; c.open();
void open (...); }

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

Implementing Query Operators
with the lterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

Example “on the fly” selection operator

class Select implements Operator {...
void open (Predicate p,
Operator c) {
this.p = p; this.c = c; c.open();
}
Tuple next () {

Implementing Query Operators
with the lterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

Example “on the fly” selection operator

class Select implements Operator {...

void open (Predicate p,
Operator c) {
this.p = p; this.c = c; c.open();
}
Tuple next () {
boolean found = false;
Tuple r = null;
while (!found) {
r = c.next();
if (r == null) break;
found = p(r);
}

Implementing Query Operators
with the lterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

Example “on the fly” selection operator

class Select implements Operator {...

void open (Predicate p,
Operator c) {
this.p = p; this.c = c; c.open();
}
Tuple next () {
boolean found = false;
Tuple r = null;
while (!found) {
r = c.next();
if (r == null) break;
found = p(r);
}

return r;

}

Implementing Query Operators
with the lterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

Example “on the fly” selection operator

class Select implements Operator {...

}

void open (Predicate p,
Operator c) {
this.p = p; this.c = c; c.open();
}
Tuple next () {
boolean found = false;

Tuple r = null;

while (!found) {
r = c.next();
if (r == null) break;
found = p(r);

}

return r;

}

void close () { c.close(); }

Implementing Query Operators
with the lterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

Query plan execution

Operator g = parse(“SELECT ...”);
g = optimize(q);

q.open();

while (true) {
Tuple t = g.next();
if (t == null) break;
else printOnScreen(t);

}
g.close();

26

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity) P|pe||n|ng

Discuss: open/next/close
for nested loop join
(On the fly) Mename _

(On the ﬂy) Oscity= ‘Seattle’ and sstate= ‘WA’ and pno=2

(Nested loop) =]
sid = sid
Supplier Supply
(File scan) (File scan)

CSE 344 - 2019wi 27

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity) P|pe||n|ng

Discuss: open/next/close
open() for nested loop join

(On the fly) Mename

(On the ﬂy) Oscity= ‘Seattle’ and sstate= ‘WA’ and pno=2

(Nested loop) =]
sid = sid
Supplier Supply
(File scan) (File scan)

CSE 344 - 2019wi 28

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity) P|pe||n|ng

Discuss: open/next/close
open() for nested loop join

(On the fly) Mename

open()
(On the ﬂy) Oscity= ‘Seattle’ and sstate= ‘WA’ and pno=2

(Nested loop) =]
sid = sid
Supplier Supply
(File scan) (File scan)

CSE 344 - 2019wi

29

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity) P|pe||n|ng

Discuss: open/next/close

open o
(On the fly) Trsnamep () for nested loop join
open()
(On the ﬂy) Oscity= ‘Seattle’ and s‘state= ‘WA’ and pno=2
open()
(Nested loop) =
sid = sid
Supplier Supply
(File scan) (File scan)

CSE 344 - 2019wi

30

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity) P|pe||n|ng

Discuss: open/next/close

open .
(On the fly) Trsnamep () for nested loop join
open()
(On the ﬂy) Oscity= ‘Seattle’ and s‘state= ‘WA’ and pno=2
open()
(Nested loop) =
sid = sid
open
Supplier Supply
(File scan) (File scan)

CSE 344 - 2019wi

31

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity) P|pe||n|ng

Discuss: open/next/close

open .
(On the ﬂy) Trsnamep () for nested loop join
open()
(On the ﬂy) Oscity= ‘Seattle’ and s‘state= ‘WA’ and pno=2
open()
(Nested loop) =
sid = sid
open open()
Supplier Supply
(File scan) (File scan)

CSE 344 - 2019wi

32

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity) P|pe||n|ng

Discuss: open/next/close
next() for nested loop join

(On the fly) Mename

(On the ﬂy) Oscity= ‘Seattle’ and sstate= ‘WA’ and pno=2

(Nested loop) =]
sid = sid
Supplier Supply
(File scan) (File scan)

CSE 344 - 2019wi 33

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity) P|pe||n|ng

Discuss: open/next/close
next() for nested loop join

(On the fly) Mename

next()
(On the ﬂy) Oscity= ‘Seattle’ and sstate= ‘WA’ and pno=2

(Nested loop) =]
sid = sid
Supplier Supply
(File scan) (File scan)

CSE 344 - 2019wi

34

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity) P|pe||n|ng

Discuss: open/next/close
next() for nested loop join

(On the fly) Mename

next()
(On the ﬂy) Oscity= ‘Seattle’ and sstate= ‘WA’ and pno=2

next()
(Nested loop) =]
sid = sid
Supplier Supply
(File scan) (File scan)

CSE 344 - 2019wi

35

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity) P|pe||n|ng

Discuss: open/next/close
next() for nested loop join

(On the fly) Mename

next()
(On the ﬂy) Oscity= ‘Seattle’ and sstate= ‘WA’ and pno=2

next()
(Nested loop) =]
sid = sid
next(
Supplier Supply
(File scan) (File scan)

CSE 344 - 2019wi

36

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity) P|pe||n|ng

Discuss: open/next/close

next ;-
(On the ﬂy) Merame () for nested loop join

next()
(On the ﬂy) Oscity= ‘Seattle’ and sstate= ‘WA’ and pno=2

next()
(Nested loop) ??
next()/ \ next()
Supplier Supply
(File scan) (File scan)

CSE 344 - 2019wi 37

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity) P|pe||n|ng

Discuss: open/next/close

next ;o
(On the ﬂy) Merame () for nested loop join

next()
(On the ﬂy) Oscity= ‘Seattle’ and sstate= ‘WA’ and pno=2

next()
(Nested loop) iﬁ
next()
next()/ \ next()
Supplier Supply
(File scan) (File scan)

CSE 344 - 2019wi 38

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity) P|pe||n|ng

Discuss hash-join
(On the fly) Tsname in class

(On the ﬂy) Oscity= ‘Seattle’ and sstate= ‘WA’ and pno=2

(Hash Join) / d><d\
Supplier Supply
(File scan) (File scan)

CSE 344 - 2019wi 39

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity) P|pe||n|ng

Discuss hash-join
(On the fly) Tsname in class

(On the ﬂy) Oscity= ‘Seattle’ and sstate= ‘WA’ and pno=2

(Hash Join) =]

sid = sid

Tuples from
here are
“blocked”

Supplier Supply

(File scan) (File scan)
CSE 344 - 2019wi 40

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity) P|pe||n|ng

Discuss hash-join
(On the fly) Tsname in class

(On the ﬂy) Oscity= ‘Seattle’ and sstate= ‘WA’ and pno=2

(Hash Join) =]

sid = sid

Tuples from
here are
“blocked”

Tuples from
here are
pipelined

Supplier Supply

(File scan) (File scan)
CSE 344 - 2019wi 41

Supplier(sid, sname, scity, sstate)

supply(sid. pno. aB{ycked Execution

(On the fly) Mename

Discuss merge-join
In class

(On the ﬂy) Oscity= ‘Seattle’ and sstate= ‘WA’ and pno=2

(Merge Join) / o \
Supplier Supply
(File scan) (File scan)

CSE 344 - 2019wi 42

Supplier(sid, sname, scity, sstate)

supply(sid. pno. aB{ycked Execution

(On the fly) Mename

Discuss merge-join
In class

(On the ﬂy) Oscity= ‘Seattle’ and sstate= ‘WA’ and pno=2

(Merge Join)

sid = sid

Supplier Supply

(File scan) (File scan)
CSE 344 - 2019wi 43

Pipeline v.s. Blocking

* Pipeline
— A tuple moves all the way through up the query plan
— Advantages: speed
— Disadvantage: need all hash at the same time in
memory

» Blocking

— The entire result of the subplan is computed (and
stored to disk) before the first tuple is sent up the plan

— Advantage: saves memory

— Disadvantage: slower
44

Discussion on Physical Plan

More components of a physical plan:

* Access path selection for each relation
— Scan the relation or use an index (next lecture)
* Implementation choice for each operator
— Nested loop join, hash join, etc.

« Scheduling decisions for operators
— Pipelined execution or intermediate materialization

CSE 344 - 2019wi 45

Introduction to Database Systems
CSE 344

Lecture 16:
Basics of Data Storage and Indexes

CSE 344 - 2019wi

46

Query Performance

To understand query performance, we need to
understand.:

* How is data organized on disk
* How to estimate query costs

* |n this course we will focus on disk-based
DBMSs

CSE 344 - 2019wi

47

Hard Disk

Disks are mechanical devices

A block = unit of read/write

Once in main memory we call it a page
Read only at the rotation speed!

Consequence: sequential scan faster than random
— Good: read blocks 1,2,3,4,5,...
— Bad: read blocks 2342, 11, 321,9, ...

Rule of thumb:
— Random read 1-2% of file = sequential scan entire file;

— 1-2% decreases over time, because of increased density

48

Data Storage

DBMSs store data in files

Student

ID fName IName
10 | Tom Hanks
20 | Amy Hanks

On disk, a file is split into |°

Tom

Hanks

Amy

Hanks

20
blocks
50

Most common organization is row-wise storage

block 1

block 2

Each block contains 200

a set of tuples 220

block 3

240

420

800

In the example, we have 4 blocks with 2 tuples each

CSE 344 - 2019wi

49

Student

ID

fName

IName

Data File Types [

Tom

Hanks

20

Amy

Hanks

The data file can be one of:

« Heap file
— Unsorted
« Sequential file

— Sorted according to some attribute(s) called key

CSE 344 - 2019wi

50

Index

* An additional file, that allows fast access to
records in the data file given a search key

CSE 344 - 2019wi

51

Index

* An additional file, that allows fast access to
records in the data file given a search key

* The index contains (key, value) pairs:

— Key = an attribute value (e.g., student ID or name)
— Value = a pointer to the record OR the record itself

CSE 344 - 2019wi 52

Index

* An additional file, that allows fast access to
records in the data file given a search key

* The index contains (key, value) pairs:

— Key = an attribute value (e.g., student ID or name)
— Value = a pointer to the record OR the record itself

« Could have many indexes for one table

[Key = means here search key}

CSE 344 - 2019wi 53

This Is Not A Key

Different keys:
* Primary key — uniquely identifies a tuple

+ Key of the sequential file — how the data file is
sorted, if at all

* Index key — how the index is organized

| PV

Lhins 4s not a pune.

CSE 344 - 2019wi

Index Student_ID on Student.ID

/_H

Example 1:
Index on |ID

Student

ID | fName | IName
10 | Tom Hanks
20 | Amy Hanks

Data File Student] ...

10

10

20

| — 120

K'/\
Tom Hanks
Amy Hanks

50

[——| 50

200

[——— | 200

220

240

220

420

240

800

950

420

800

CSE 344 - 2019wi

95

on Student.fName
—

Example 2:
Index on fName

Index Student_fName

—

Student

ID | fName | IName
10 | Tom Hanks
20 | Amy Hanks

Data File Student] ...

Amy

—_

Tom

Hanks

Ann

Amy

Hanks

Bob

10
ﬁi 20
» | 50

Cho

200

220

240

420

800

Tom

CSE 344 - 2019wi

56

Index Organization
 Hash table

e B+ trees — most common

— They are search trees, but they are not binary
instead have higher fan-out

— Will discuss them briefly next

« Specialized indexes: bit maps, R-trees,
Inverted index

CSE 344 - 2019wi

Y

B+ Tree Index by Example

d = 2 Find the key 40
80
20 | 60 100 | 120 | 140
\ T~

15| 18 20 | 30| 40 | 50 60 | 65 80 | 85 | 90

\ v v Tl - T

RANAC =

N\ R N
15| | 18| |[20| [30||40| 50|/ 60|/ 65| 80 |85]| |90

CSE 344 - 2019wi 58

Clustered vs Unclustered

/‘I\ B+ T

J N Index entries / \

Index entries -
/A |\ ANNN (Index File) m /X

/4 NN Datafil) /X N\ No4 T I

Data Records Data Records

CLUSTERED UNCLUSTERED

[Every table can have only one clustered and many unclustered indexes}
Why?

CSE 344 - 2019wi 59

Index Classification

Clustered/unclustered

— Clustered = records close in index are close in data
« Option 1: Data inside data file is sorted on disk
« Option 2: Store data directly inside the index (no separate files)

— Unclustered = records close in index may be far in data

CSE 344 - 2019wi

60

Index Classification

e Clustered/unclustered

— Clustered = records close in index are close in data
« Option 1: Data inside data file is sorted on disk
« Option 2: Store data directly inside the index (no separate files)

— Unclustered = records close in index may be far in data
 Primary/secondary
— Meaning 1:
* Primary = is over attributes that include the primary key
« Secondary = otherwise

— Meaning 2: means the same as clustered/unclustered

CSE 344 - 2019wi

61

Index Classification

e Clustered/unclustered

— Clustered = records close in index are close in data
« Option 1: Data inside data file is sorted on disk
« Option 2: Store data directly inside the index (no separate files)

— Unclustered = records close in index may be far in data

 Primary/secondary
— Meaning 1:
* Primary = is over attributes that include the primary key
« Secondary = otherwise

— Meaning 2: means the same as clustered/unclustered
« Organization B+ tree or Hash table

CSE 344 - 2019wi

62

Summary So Far

* [Index = a file that enables direct access to
records in another data file
— B+ tree / Hash table
— Clustered/unclustered

« Data resides on disk
— Organized in blocks
— Sequential reads are efficient
— Random access less efficient
— Random read 1-2% of data worse than sequential

CSE 344 - 2019wi 63

SELECT *

Student(ID, fname, Iname) FROM Student x, Takes y

Takes(studentID, courselD)

WHERE x.ID=y.studentID AND y.courselD > 300

N Example

ol Student

Takes

CSE 344 - 2019wi 64

SELECT *

Student(ID, fname, Iname) FROM Student x, Takes y

Takes(studentlID, courselD)

WHERE x.ID=y.studentID AND y.courselD > 300

N Example

ol Student

Takes

for y in Takes
if courselD > 300 then
for x in Student
if x.ID=y.studentID
output *

CSE 344 - 2019wi 65

SELECT *

Student(ID, fname, Iname) FROM Student x, Takes y

Takes(studentlID, courselD)

WHERE x.ID=y.studentID AND y.courselD > 300

/7N Example

ol Student

Takes

for y in Takes
if courselD > 300 then I Assume the database has indexes on these attributes:
for x in Student « Takes_courselD = index on Takes.courselD

it x.[D=y.studentlD | . gtydent_ID = index on Student.ID
output

CSE 344 - 2019wi 66

SELECT *

Student(ID, fname, Iname) FROM Student x, Takes y

Takes(studentlID, courselD)

WHERE x.ID=y.studentID AND y.courselD > 300

N Example

ol Student

Takes

for y in Takes

if courselD >300then | Assume the database has indexes on these attributes:
for x in Student « Takes_courselD = index on Takes.courselD

ifx.ID=y.studentlD | ., gtydent ID = index on Student.ID

output *

for y’ in Takes_courselD where y’.courselD > 300

CSE 344 - 2019wi 67

SELECT *

Student(ID, fname, Iname) FROM Student x, Takes y

Takes(studentlID, courselD)

WHERE x.ID=y.studentID AND y.courselD > 300

N Example

ol Student

Takes

for y in Takes

if courselD > 300 then I Assume the database has indexes on these attributes:
for x in Student « Takes_courselD = index on Takes.courselD
ifx.ID=y.studentlD | . stydent_ID = index on Student.ID

output *

for y’ in Takes_courselD where y’.courselD > 300
y = fetch the Takes record pointed to by y’

CSE 344 - 2019wi 68

SELECT *

Student(ID, fname, Iname) FROM Student x, Takes y

Takes(studentlID, courselD)

WHERE x.ID=y.studentID AND y.courselD > 300

N Example

ol Student

Takes

for y in Takes
if courselD >300then | Assume the database has indexes on these attributes:

for x in Student « Takes_courselD = index on Takes.courselD
ifx.ID=y.studentlD } . gt,dent_ID = index on Student.ID
output * —

Index selection

for y’ in Takes_courselD where y’.courselD > 300
y = fetch the Takes record pointed to by y’

for x’ in Student_ID where x'.ID = y.studentID
x = fetch the Student record pointed to by x’

CSE 344 - 2019wi 69

SELECT *

Student(ID, fname, Iname) FROM Student x, Takes y

Takes(studentlID, courselD)

WHERE x.ID=y.studentID AND y.courselD > 300

N Example

ol Student

Takes

for y in Takes
if courselD >300then | Assume the database has indexes on these attributes:

for x in Student « Takes_courselD = index on Takes.courselD
ifx.ID=y.studentlD } . gt,dent_ID = index on Student.ID
output * —

Index selection

for y’ in Takes_courselD where y’.courselD > 300
y = fetch the Takes record pointed to by y’

for x’ in Student_ID where x'.ID = y.studentID
x = fetch the Student record pointed to by x’

output *

CSE 344 - 2019wi 70

SELECT *

Student(ID, fname, Iname)

FROM Student x, Tak
Takes(studentlID, courselD) Haent x, “axes y

WHERE x.ID=y.studentID AND y.courselD > 300

/7T Example

ol Student

| Index selection

Takes

for y in Takes
if courselD >300then | Assume the database has indexes on these attributes:

for x in Student « Takes_courselD = index on Takes.courselD
ifx.ID=y.studentlD } . gt,dent_ID = index on Student.ID
output * —

Index selection

for y’ in Takes_courselD where y’.courselD > 300
y = fetch the Takes record pointed to by y’

for x’ in Student_ID where x'.ID = y.studentID
x = fetch the Student record pointed to by x’

output *

CSE 344 - 2019wi 71

Getting Practical:
Creating Indexes in SQL

CREATE TABLE V(M int, Nvarchar(20), P int); I
CREATE INDEX V1 ON V(N) I

CSE 344 - 2019wi

72

Getting Practical:
Creating Indexes in SQL

CREATE TABLE V(M int, Nvarchar(20), P int); I
CREATE INDEX V1 ON V(N) I
CREATE INDEX V2 ON V(P, M) I

CSE 344 - 2019wi

73

Getting Practical:
Creating Indexes in SQL

CREATE TABLE V(M int, Nvarchar(20), P int); I
CREATE INDEX V1 ON V(N) |
CREATE INDEX V2 ON V(P, M) j/ What does this mean? >

CSE 344 - 2019wi 74

Getting Practical:
Creating Indexes in SQL

CREATE TABLE V(M int, N varchar(20), P int); ves
select *
CREATE INDEX V1 ON V(N) I fom \/
where P=55 and M=77
CREATE INDEX V2 ON V(P, M) j‘ What do l .

CSE 344 - 2019wi 75

Getting Practical:
Creating Indexes in SQL

CREATE TABLE V(M int, Nvarchar(20), P int); yes

CREATE INDEX V1 ON V(N) | select "

where P=55 and M=77

CREATE INDEX V2 ON V(P, M) j‘ What do |

select *
from V
where P=55

CSE 344 - 2019wi 76

Getting Practical:
Creating Indexes in SQL

CREATE TABLE V(M int, Nvarchar(20), P int); yes

CREATE INDEX V1 ON V(N) | select "

where P=55 and M=77

CREATE INDEX V2 ON V(P, M) j‘ What do |

select *
from V yes
where P=55

CSE 344 - 2019wi 77

Getting Practical:
Creating Indexes in SQL

CREATE TABLE V(M int, Nvarchar(20), P int); yes

CREATE INDEX V1 ON V(N) | select "

where P=55 and M=77

CREATE INDEX V2 ON V(P, M) j‘ What do

select *
from V yes
where P=55

select *
from V
where M=77

CSE 344 - 2019wi 78

Getting Practical:

Creating Indexes in SQL

CREATE TABLE V(M int, N varchar(20), P int);

yes

CREATE INDEX V1 ON V(N) I

select *
from V
where P=55 and M=77

CREATE INDEX V2 ON V(P, M) j‘ What do

select *
from V yes
where P=55

CSE 344 - 2019wi

select *
from V No
where M=77

79

Getting Practical:
Creating Indexes in SQL

CREATE INDEX V1 ON V(N) I

CREATE INDEX V3 ON V(M, N) I
CREATE UNIQUE INDEX V4 ON V(N) I

CREATE INDEX V2 ON V(P, M) j‘ What do

CREATE TABLE V(M int, N varchar(20), P int);

yes

select *
from V
where P=55 and M=77

select *
from V
where P=55

select *
from V

CSE 344 - 2019

CREATE CLUSTERED INDEX V5 ON V(N)

where M=77

Not supported
in SQLite

yes

Nno

80

Student

ID

fName

IName

Which Indexes? [w

Tom

Hanks

20

Amy

Hanks

 How many indexes could we create?

 Which indexes should we create?

CSE 344 - 2019wi

81

Student

ID

fName

IName

Which Indexes? [w

Tom

Hanks

20

Amy

Hanks

 How many indexes could we create?

 Which indexes should we create?

[In general this is a very hard problem}

CSE 344 - 2019wi

82

Index Selection: Which Search Key

« Make some attribute K a search key if the
WHERE clause contains:
— An exact match on K
— A range predicate on K
— Ajoinon K

CSE 344 - 2019wi 83

The Index Selection Problem 1

V(M, N, P);

Your workload is this

100000 queries: 100 queries:
SELECT * SELECT *
FROM YV FROM YV
WHERE N=? WHERE P=7?

CSE 344 - 2019wi

The Index Selection Problem 1

V(M, N, P); I

Your workload is this

100000 queries: 100 queries:
SELECT * SELECT *
FROM YV FROM YV
WHERE N=? WHERE P=7?

[What Indexes ’?}

CSE 344 - 2019wi

The Index Selection Problem 1

V(M, N, P);

Your workload is this

100000 queries: 100 queries:
SELECT * SELECT *
FROM YV FROM YV
WHERE N=? WHERE P=7?

[A: V(N) and V(P) (hash tables or B-trees)}

CSE 344 - 2019wi

The Index Selection Problem 2

V(M, N, P); I

Your workload is this

100000 queries: 100 queries: 100000 queries:
SELECT * SELECT * INSERT INTO V
FROM V FROM YV VALUES (?, ?, ?)
WHERE N>?7 and N<? | | WHERE P=?

[What Indexes ’?}

CSE 344 - 2019wi 87

The Index Selection Problem 2

V(M, N, P);

Your workload is this

100000 queries: 100 queries: 100000 queries:
SELECT * SELECT * INSERT INTO V
FROM V FROM YV VALUES (?, ?, ?)
WHERE N>?7 and N<? | | WHERE P=?

[A: definitely V(N) (must B-tree); unsure about V(P)}

CSE 344 - 2019wi 88

The Index Selection Problem 3

V(M, N, P); I

Your workload is this
100000 queries: 1000000 queries: 100000 queries:

SELECT * SELECT * INSERT INTO V
FROM V FROM V VALUES (2, ?, ?)
WHERE N=? WHERE N=? and P>?

[What Indexes ’?}

CSE 344 - 2019wi 89

The Index Selection Problem 3

V(M, N, P); I

Your workload is this
100000 queries: 1000000 queries: 100000 queries:

SELECT * SELECT * INSERT INTO V
FROM V FROM V VALUES (2, ?, ?)

WHERE N=? WHERE N=? and P>?

[A: V(N, P)} How does this index differ from:
1. Two indexes V(N) and V(P)?
cse3 2. Anindex V(P, N)?

The Index Selection Problem 4

V(M, N, P); I

Your workload is this

1000 queries: 100000 queries:
SELECT * SELECT *
FROM YV FROM YV
WHERE N>7? and N<? WHERE P>7 and P<?

[What Indexes ?}

CSE 344 - 2019wi 91

The Index Selection Problem 4

V(M, N, P);

Your workload is this

1000 queries: 100000 queries:
SELECT * SELECT *
FROM YV FROM YV
WHERE N>7? and N<? WHERE P>7 and P<?

[A: V(N) secondary, V(P) primary index}

CSE 344 - 2019wi 92

Two typical kinds of queries

« Point queries

SELECT . What data structure
FROM Movie

WHERE year = ? should be used for
S — iIndex?

SELECT * * Range queries
FROM Movie \What data structure

WHERE year >=? AND should be used for
year <=7 index?

CSE 344 - 2019wi 93

Basic Index Selection Guidelines

Consider queries in workload in order of importance

Consider relations accessed by query
— No point indexing other relations

Look at WHERE clause for possible search key

Try to choose indexes that speed-up multiple queries

CSE 344 - 2019wi 94

To Cluster or Not

Remember:

* Rule of thumb:
Random reading 1-2% of file = sequential
scan entire file;

Range queries benefit mostly from clustering
because they may read more than 1-2%

CSE 344 - 2019wi

95

SELECT *
FROM R
WHERE R.K>? and R.K«?

Cost

0 100
Percentage tuples retrieved
CSE 344 - 2019wi 96

Cost

SELECT *
FROM R
WHERE R.K>? and R.K«?

Sequential scan

0 100
Percentage tuples retrieved
CSE 344 - 2019wi 97

Cost

SELECT *
FROM R
WHERE R.K>? and R.K«?

Sequential scan

.~det
ytef o0
C\

100
Percentage tuples retrieved
CSE 344 - 2019wi 98

Cost

SELECT *

WHERE R.K>? and R.K«?

X
S
'S
o
NS FROM R
Q2
3
S
W)

Sequential scan

.~det
ytef o0
C\

0 100
Percentage tuples retrieved
CSE 344 - 2019wi 99

Introduction to Database Systems
CSE 344

Lecture 17:
Basics of Query Optimization and
Query Cost Estimation

CSE 344 - 2019wi 100

Cost Estimation

* The optimizer considers several plans,
estimates their costs, and chooses the
cheapest

 This lecture: cost estimation for relational
operators

* The cost is always dominated by the cost of

reading from, or writing to disk
101

Cost of Reading
Data From Disk

CSE 344 - 2019wi 102

Cost Parameters

e Cost=1/0 + CPU + Network BW

— We will focus on I/O in this class

« Parameters (a.k.a. statistics):
— B(R) = # of blocks (i.e., pages) for relation R
— T(R) = # of tuples in relation R
— V(R, a) = # of distinct values of attribute a

103

Cost Parameters

e Cost=1/0 + CPU + Network BW

— We will focus on I/O in this class

« Parameters (a.k.a. statistics):
— B(R) = # of blocks (i.e., pages) for relation R
— T(R) = # of tuples in relation R
— V(R, a) = # of distinct values of attribute a

When a is a key, V(R,a) = T(R)
When a is not a key, V(R,a) can be anything <= T(R)

104

Cost Parameters

Cost = 1/0O + CPU + Network BW

— We will focus on I/O in this class

Parameters (a.k.a. statistics):

— B(R) = # of blocks (i.e., pages) for relation R
— T(R) = # of tuples in relation R

— V(R, a) = # of distinct values of attribute a

When a is a key, V(R,a) = T(R)
When a is not a key, V(R,a) can be anything <= T(R)

DBMS collects statistics about base tables
must infer them for intermediate results

105

Size Estimation

Main principle:

« Size of the output = some fraction of the size
of the input

* The fraction is called the selectivity factor

CSE 344 - 2019wi 106

Selectivity Factors for Conditions

A=c I* 0pce(R) */
— Selectivity f=1/V(R,A)

A<c I* Oac(R)*
— Selectivity f = (c - min(R, A))/(max(R,A) - min(R,A))

c1<A<c2 [* O qepcer(R)*
— Selectivity f = (c2 — ¢1)/(max(R,A) - min(R,A))

Cond1 A Cond2 A Cond3 A ...

— Selectivity = f1*f2*{3* ...(assumes independence)

Cost of Reading Data From Disk

« Sequential scan for relation R costs B(R)

 Index-based selection

— Estimate selectivity factor f (see previous slide)
— Clustered index: f*"B(R)
— Unclustered index f*T(R)

Note: we ignore I/O cost for index pages

CSE 344 - 2019wi 108

Index Based Selection

B(R) = 2000 —
« Example: T(R) = 100,000 cost of 5, (R) =7

V(R, a) = 20

 Table scan:
 Index based selection:

CSE 344 - 2019wi 109

Index Based Selection

B(R) = 2000 —
« Example: T(R) = 100,000 cost of 5, (R) =7

V(R, a) = 20
« Table scan: B(R) = 2,000 I/Os
 |[ndex based selection:

CSE 344 - 2019wi 110

Index Based Selection

B(R) = 2000 —
« Example: T(R) = 100,000 cost of 5, (R) =7

V(R, a) = 20
« Table scan: B(R) = 2,000 I/Os

 Index based selection:

— If index is clustered:
— If index is unclustered:

CSE 344 - 2019wi 111

Index Based Selection

B(R) = 2000 —
« Example: T(R) = 100,000 cost of 5, (R) =7

V(R, a) = 20
« Table scan: B(R) = 2,000 I/Os

 Index based selection:

— If index is clustered: B(R) * 1/V(R,a) = 100 1/Os
— If index is unclustered:

CSE 344 - 2019wi 112

Index Based Selection

B(R) = 2000 —
« Example: T(R) = 100,000 cost of 5, (R) =7

V(R, a) = 20
« Table scan: B(R) = 2,000 I/Os

 Index based selection:

— If index is clustered: B(R) * 1/V(R,a) = 100 1/Os
— If index is unclustered: T(R) * 1/V(R,a) = 5,000 I/Os

CSE 344 - 2019wi 113

Index Based Selection

B(R) = 2000 —
« Example: T(R) = 100,000 cost of 5, (R) =7

V(R, a) = 20
« Table scan: B(R) = 2,000 I/Os

 Index based selection:

— If index is clustered: B(R) * 1/V(R,a) = 100 1/Os
— If index is unclustered: T(R) * 1/V(R,a) = 5,000 I/Os

Lesson: Don’t build unclustered indexes when V(R,a) is small !

CSE 344 - 2019wi 114

Cost of Executing Operators
(Focus on Joins)

CSE 344 - 2019wi 115

Outline

* Join operator algorithms

— One-pass algorithms (Sec. 15.2 and 15.3)
— Index-based algorithms (Sec 15.6)

* Note about readings:

— In class, we discuss only algorithms for joins
— Other operators are easier: read the book

CSE 344 - 2019wi 116

Join Algorithms

Nested loop join
Hash join
Sort-merge join
Index-join

CSE 344 - 2019wi

117

Join Example

Patient(pid, name, address)
Insurance(pid, provider, policy nb)
Patient < Insurance

Two tuples
per page

Patient Insurance

2 | ‘Blue’ 123
‘Prem’ | 432

—
3

‘GrpH’ | 554 118

Nested Loop Joins

* Tuple-based nested loop R @ S
R is the outer relation, S is the inner relation

for each tuple t; in R do
for each tuple t, in S do
if t, and t, join then output (t4,t,)

What is the Cost?

CSE 344 - 2019wi 119

Nested Loop Joins

Tuple-based nested loop R x S
R is the outer relation, S is the inner relation

for each tuple t; in R do
for each tuple t, in S do
if t, and t, join then output (t4,t,)

What is the Cost?

Cost: B(R) + T(R) B(S)

Multiple-pass since S is read many times

CSE 344 - 2019wi 120

Page-at-a-time Refinement

for each page of tuples rin R do
for each page of tuples s in S do

for all pairs of tuples t;inr, t,ins
if t; and t, join then output (t,,t,)

« Cost: B(R) + B(R)B(S) What is the Cost?

CSE 344 - 2019wi 121

Page-at-a-time Refinement

- Input buffer for Patient

— Disk 2 | 4 | Input buffer for Insurance
\ /

Patient Insurance E

- |2|4| 6|6 Output buffer
B (413113

BE 2]
- 819 CSE 344 - 2019wi 1292

\ /

Page-at-a-time Refinement

— Disk
\ /

Patient Insurance

B (2466
B (21311713
BE 2]s

- Input buffer for Patient
4 | 3 | Input buffer for Insurance
Output buffer
>SE 344 - 2019wi 123

B8 (s c

\ /

Page-at-a-time Refinement

- Input buffer for Patient

— Disk 2 | 8 | Input buffer for Insurance
\ //

Patient Insurance Keep going until read
all of Insurance E

- 2|14]16|6 Then repeat for next Output buffer
- 4131113 page of Patient... until end of Patient

B8 [27s]

- 3|9 Cost: B(R) + B(R)B(S) s
~— -

Block-Nested-Loop Refinement

for each group of M-1 pages rin R do

for each page of tuples s in S do
for all pairs of tuples t;inr, t,ins
if t; and t, join then output (t,,t,)

« Cost: B(R) + B(R)B(S)/(M-1) What is the Cost?

CSE 344 - 2019wi 125

Hash Join

Hash join: R S

* Scan R, build buckets in main memory
 Then scan S and join

« Cost: B(R) + B(S)

» Which relation to build the hash table on?

CSE 344 - 2019wi 126

Hash Join

Hash join: R S

* Scan R, build buckets in main memory
 Then scan S and join

Cost: B(R) + B(S)

Which relation to build the hash table on?

One-pass algorithm when B(R) <M

— M = number of memory pages available

CSE 344 - 2019wi 127

Hash Join Example ...
Patient =< Insurance enough #

Memory M = 21 pages

Showing
pid only

//

Insurance
B (2]4][6]6
B [4]3][1]3
B8 2]

This is one page

- 819 with two tuples 128
\ //

Hash Join Example

Step 1: Scan Patient and build hash table in memory
Can be done in
method open()

— Disk
\

/

Patient Insurance

(T

Memory M = 21 pages

Hash h: pid % 5

n .

>

Input buffer

2/4||6|6

413|113

2|8

319
-

129

Done during

Hash Join Example
Step 2: Scan Insurance and probe into hash table

calls to next()

— Disk
\

/

Patient Insurance

Memory M = 21 pages

Hash h: pid % 5

5

lel2]

2|4
Input buffer

2 [24](6]6
B 2]3]1]s
BlE 2]
BE s
~— -

utput buffer

Write to disk or
pass to next
operator

Done during

Hash Join Example
Step 2: Scan Insurance and probe into hash table

calls to next()

— Disk
\

/

Patient Insurance

B 2]4][6]6

B (4

BlE -

B8 s

Memory M = 21 pages

Hash h: pid % 5

n .

2(4]
Input buffer

_

Output buffer

313

38

9
/

\

131

Done during

Hash Join Example
Step 2: Scan Insurance and probe into hash table

calls to next()

— Disk
\

/

Patient Insurance

Memory M = 21 pages

Hash h: pid % 5

n .

413 .4

Input buffer Output buffer

Keep going until read all of Insurance

M2 (2]4][6]6
B [273][1]3
Be [2]s
B [s]o
~— -

Cost: B(R) + B(S)

132

Sort-Merge Join

Sort-merge join: R x S
« Scan R and sort in main memory

Scan S and sort in main memory
Merge R and S

Cost: B(R) + B(S)
One pass algorithm when B(S) + B(R) <=M
Typically, this is NOT a one pass algorithm

CSE 344 - 2019wi 133

Sort-Merge Join Example
Step 1: Scan Patient and sort in memory

— Disk
\

/

Patient Insurance

(11T

Memory M = 21 pages

2/4||6|6

413|113

2|8

319
S~

134

Sort-Merge Join Example

Step 2: Scan Insurance and sort in memory
Memory M = 21 pages

o
\

Disk

/

Patient Insurance

2

4

6|6

113

(11T

4
2
38

3
38
9

1

2

2

3

3

4

4

6

6

8

8

9

/

135

Sort-Merge Join Example

Step 3: Merge Patient and Insurance
Memory M = 21 pages

o
\

Disk

/

Patient Insurance

2

4

6|6

113

(11T

4
2
8

3
38
9

1

2

2

3

3

4

416

6

8

8

9

Ml

Output buffer

/

136

Step 3: Merge Patient and Insurance
Memory M = 21 pages

Sort-Merge Join Example

o
\

Disk

/

(11T

Patient Insurance

2

4

6

6

1

3

4
2
38

3
38
9

/

11211233446
6/8(8|9
22
Output buffer

Keep going until end of first relation

137

Index Join

RS
 Assume S has an index on the join attribute

* |terate over R, for each tuple fetch
corresponding tuple(s) from S

 Cost:

— If index on S is clustered:
B(R) + T(R) ™ (B(S) * 1/V(S,a))

— If index on S is unclustered:
B(R) + T(R) ™ (T(S) " 1/V(S,a))

CSE 344 - 2019wi 138

Cost of Query Plans
Example

CSE 344 - 2019wi 139

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 1

sname

Opno=2 A scity="Seattle’ A sstate="WA’

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

=]
sid = sid
Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M=11
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 1

sname

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
Opno=2 A scity="Seattle’ A sstate="WA’ and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T=10000

>

sid = sid

Supply Supplier

Supplier) = 1000
T(Supply) = 10000 Supplier) = 100

T(
B(
B(Supply) = 100 V(Supplier, scity) = 20 M=11
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 1

sname

SELECT sname
T <1 FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
Opno=2 A scity="Seattle’ A sstate="WA’ and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T=10000

>

sid = sid

Supply Supplier

Supplier) = 1000
T(Supply) = 10000 Supplier) = 100

T(
B(
B(Supply) = 100 V(Supplier, scity) = 20 M=11
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 2

sname

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

=]
sid = sid \\\\\\\\\\\

Gpno=2 Oscity="Seattle’ A sstate="WA

Supply Supplier
Supplier) = 1000
T(Supply) = 10000 Supplier) = 100

T(
B(
B(Supply) = 100 V(Supplier, scity) = 20 M=11
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 2

sname

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

sid = sid

T=4 =5
Gpno=2 Gscity=‘SeattIel’ A sstate="WA
Supply Supplier

Supplier) = 1000
T(Supply) = 10000 Supplier) = 100

T(
B(
B(Supply) = 100 V(Supplier, scity) = 20 M=11
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 2

sname

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

sid = sid

— T=5
T=4 Very wrong!
Why?
Gpno=2 Gscity=‘SeattIel’ A sstate="WA
Supply Supplier

Supplier) = 1000
T(Supply) = 10000 Supplier) = 100

T(
B(
B(Supply) = 100 V(Supplier, scity) = 20 M=11
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 2

sname

SELECT sname
_ FROM Supplier x, Supply y
T=4 WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

id = sid
_ Sid = Si T=5
T_i///// \\\\\\\\ Very wrong!
Why?
Gpno=2 Gscity=‘SeattIel’ A sstate="WA
Supply Supplier

Supplier) = 1000
T(Supply) = 10000 Supplier) = 100

T(
B(
B(Supply) = 100 V(Supplier, scity) = 20 M=11
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 2

sname
Different
T=4 FROM Supplier x, Supply y
B WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
[] and x.sstate = ‘WA’
sid = sid _
T=4 =5
Very wrong!
Why?
Gpno=2 Gscity=‘SeattIel’ A sstate="WA
Supply Supplier

Supplier) = 1000
T(Supply) = 10000 Supplier) = 100

T(
B(
B(Supply) = 100 V(Supplier, scity) = 20 M=11
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 1

Trsname

T <1

Opno=2 A scity="Seattle’ A sstate="WA’

T =10000
Total cost:
=]
sid = sid
Block nested loop joi
Scan g | .
upply Scan Supplier

Supplier) = 1000
T(Supply) = 10000 Supplier) = 100

T(

B(
B(Supply) = 100 V(Supplier, scity) = 20
V(Supply, pno) = 2500 V(Supplier, state) = 10

11

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 1

Trsname

T <1

Opno=2 A scity="Seattle’ A sstate="WA’

T=10000

Total cost: 100+100*100/10 = 1100

>

sid = sid

Block nested loop joi

Scan

Supply Scan Supplier

Supplier) = 1000
T(Supply) = 10000 Supplier) = 100

T(
B(
B(Supply) = 100 V(Supplier, scity) = 20 M=11
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 2

Msname
Cost of Supply(pno) =
T=4 Cost of Supplier(scity) =
Total cost:
] T=5
sid = sid \
T=4
Main memory join Osstate="WA
| _
Unclustered Opno=2 T=350
index lookup ‘ Oscity="Seattle’ Unclustered
Supply(pno) | index lookup
Supply Supp”er Supplier(scity)

T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M=11
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 2

Msname
Cost of Supply(pno) = 4
T=4 Cost of Supplier(scity) =
Total cost:
] T=5
sid = sid \
T=4
Main memory join Osstate="WA
| _
Unclustered Opno=2 T=350
index lookup ‘ Oscity="Seattle’ Unclustered
Supply(pno) | index lookup
Supply Supp”er Supplier(scity)

T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M=11
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 2

Trsname

Cost of Supply(pno) = 4
T=4 Cost of Supplier(scity) = 50
Total cost: 54

=] T=5
sid = sid \
T=4
Main memory join Osstate="\WA
| _
Unclustered c5pno=2 T=350
index lookup ‘ Oscity="Seattle’ Unclustered
Supply(pno) | index lookup
Supply Supp”er Supplier(scity)

T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M=11
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 3

Msname
T=4
Oscity="Seattle’ A sstate="WA' Cost of Supply(pno) =
Cost of Index join =
Total cost:
=]
sid = sid
T=4
/ Clustered
Index join
Unclustered c5pno=2
index lookup ‘
Supply(pno)
Supply Supplier

T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M=11
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 3

Msname
T=4
Oscity="Seattle’ A sstate="WA’ Cost of Supply(pno) = 4
Cost of Index join =
Total cost:
=
sid = sid
T=4
/ Clustered
Index join
Unclustered c5pno=2
index lookup ‘
Supply(pno)
Supply Supplier

T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M=11
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 3

Trsname

T=4

Oscity="Seattle’ A sstate="WA' Cost of Supply(pno) = 4

Cost of Index join = 4
>
sid = sid
T=4
/ Clustered

Total cost: 8
Index join

Unclustered c5pno=2
index lookup ‘

Supply(pno)

Supply Supplier

T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M=11
V(Supply, pno) = 2500 V(Supplier, state) = 10

Query Optimizer Summary

Input: A logical query plan
Output: A good physical query plan

Basic query optimization algorithm

— Enumerate alternative plans (logical and physical)
— Compute estimated cost of each plan

— Choose plan with lowest cost

This is called cost-based optimization

CSE 344 - 2019wi 156

