(@) Traditional parallel query plan

| S
e e

A
v

|
]

g ube shuffle-based parallel

Introduction to Data Management

JSON, AsterixDB, and SQL+ +
Your First Non-Relational Data Model

Jonathan Leang

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

February 3, 2019 NoSQL and JSON

Recap: #NoSQL

A hashtag on Twitter for a meetup in San Francisco
to discuss systems like Google BigTable, Amazon
Dynamo, CouchDB, efc.

Event Details

Introduction -
This meetup is about "open source, distributed, non relational databases”.

Have you run inte limitations with traditional relational databases? Don't mind trading a query

language for scalability? Or perhaps you just like shiny new things to try out? Either way this —
meetup is for you. (9] 11 o
Join us in figuring out why these newfangled Dynamo clones and BigTables have become so

popular lately. We have gathered presenters from the most interesting projects around to give

us all an introduction to the field. @ Todd Lipcon @tlipcon - 23 May 2009 v

thrudb @thrudb - 23 May 2009 ~
sucks i'm not on the west coast and will not be able to attend #nosql

Preliminary schedule working on slides far the #nosgl mestup in June. trying to cover all of dist

09.45: Doors open _ systems in 40 minutes is not as easy as it sounds.
10.00: Intro session (Todd Lipcon, Cloudera)

10.40: Voldemort (Jay Kreps, Linkedin) -
11.20: Short break Q e’ h
11.30: Cassandra (Avinash Lakshman, Facebook)
12.10: Free lunch (sponsored by Last.fm)

i F Chris Anderson @jchris - 15 May 2009 £
13.10: Dynomite (Cliff Moon, Powerset)
13.50: HBase (Ryan Rawson, Stumbleupon) Replying to @bengrue
14.30: Short break . . _ . .
14.40: Hypertable (Doug Judd, Zvents) I'll be talking CouchDE at #nosqgl in June, @benmcgraw
15.20: CouchDEB (Chris Anderson, couch.ia) »
16.00: Short break O 11 Y,

16.10: Lightning talks

16.40: Panel discussion . B

17.00: Relocate to Kate O'Brien’s, 579 Howard St. @ 2nd. First round sponsored by Digg Tedd Lipcon @tlipcon - 15 May 2009 e
Registration @__lucas @seliopou @srobbin planning on chatting with CouchDB dude a lot at
The eve‘nt is free but space is limited, please register if you wish to attend. #nosql meetup next month though (nosgl.net)

Location
Magma room, CBS interactive O 1 ",
235 Second Street

San Francisco, CA 94105

NoSQL and JSON

https://www.eventbrite.com/e/nosql-meetup-tickets-341739151

Recap: The Modern World Wide Web

* What is Web 2.0¢
« Social Web
« Everyone making content 2> Everyone making data
* Facebook, Amazon, Instagram, ...

= Web 2.0 problems are specific
* Almost always OLTP-like workloads

= Web 2.0 problems are big

* Data can’t fit into a single machine

February 3, 2019 NoSQL and JSON

Recap: Classic RDBMS for Web 2.0

= 3-Tier Web Apps (in a nutshell)

* You (browsers) send requests to App+Web Servers
* App+Web Servers send queries to a DB Server

App+Web Database
Browser Request Servers Query Server

Response Result Data

Scaling these Not trivial to
are eas scale RDBMS

February 3, 2019 NoSQL and JSON

Recap: NoSQL on the Scale Up Problem

Modern problems require modern solutions

February 3, 2019 NoSQL and JSON

Recap: NoSQL on the Scale Up Problem

| give up

February 3, 2019 NoSQL and JSON

Recap: NoSQL on the Scale Up Problem

\ A
S GANTBE BAD AT JOINS
N "

3IF YOU DON'T DO THEM

mgflip.com

February 4, 2019 NoSQL and JSON

Recap: NoSQL on the Scale Up Problem

= KV Store
* Hash Table (Key - Blob)

» Extensible Records
« "2D" Hash Table (Row - Column - Blob)

* Document Store
* Hash Table + Parsable Documents

Trade off well-defined data for speed

February 3, 2019 NoSQL and JSON

Recap: NoSQL on the Scale Up Problem

= KV Store & Tak
* Hash Table (Key - BIOb) Do;s:fibu’red
. . Systems
Extensible Records (CSE 452)

« "2D" Hash Table (Row = Column - Blob)

* Document Store
* Hash Table + Parsable Documents

Trade off well-defined data for speed

February 3, 2019 NoSQL and JSON

Recap: NoSQL on the Scale Up Problem

= KV Store
* Hash Table (Key - Blob)

» Extensible Records
« "2D" Hash Table (Row - Column - Blob)

= Document Store F Good

discussion
 Hash Table + Parsable Documents for this class

Trade off well-defined data for speed

February 3, 2019 NoSQL and JSON

Recap: 3 Parts ot a Data Model

The 3 parts of any data model

" Instance

* The actual data
» Schema

« A description of what data is being stored
= Query Language

* How to retrieve and manipulate data

February 3, 2019 Design Theory

Last time:
= Survey of NoSQL systems

Today

= AsterixDB as a case study of Document Store
« Semi-structured data model in JSON
* Introducing AsterixDB and SQL+ +

Asterixcs

February 3, 2019 NoSQL and JSON

Last time:
= Survey of NoSQL systems

Today

= AsterixDB as a case study of Document Store

« Semi-structured data model in JSON
* Introducing AsterixDB and SQL+ +

Asterixcs

February 3, 2019 NoSQL and JSON

What is a "document" anyways?

* Loose terminology

= Any "parsable" file qualifies
* Ex: MongoDB can handle CSV files

February 3, 2019 NoSQL and JSON

Semi-Structured Documents

» Some notion of
tagging to mark
down semantics

= Examples:
« XML
* Protobuf
* Email

« JSON

February 3, 2019

<?2xml version="1.0" encoding="UTF-8"2>
<customers>
<customer>
<customer_id>1</customer_id>
<first name>John</first name>
<last_name>Doe</last_name>
<email>john.doefexample.com</email>
</customer>
<customer>
<customer_id>2</customer_id>
<first name>Sam</first name>
<last_name>Smith</last_ name>
<email>sam.smith@example.com</email>
</customer>
<customer>
<customer_id>3</customer_id>
<first_name>Jane</first_name>
<last_name>Doe</last_name>
<email>jane.doelfexample.com</email>
</customer>
</customers>

NoSQL and JSON

Semi-Structured Documents

» Some notion of
tagging to mark
down semantics

Protocol Buffers

= Examples:

fieldtag =1 type 2 (string) enght M @ F £t 1 n
¢ XML TIXEEY Ba 86 4d 61 72 74 €9 6e 1337
geelelealililesl
fieldtag =2 type O (warint)
° PrOfObUf eeelopoes 10 b3 @a eii11001] pleveioie
fieldtag=3 type 2 (string) enghtt d @ ¥y d r e a m 1 n g
[)
LEERRIEER: la @b &4 61 79 64 72 65 61 6d 69 Ge 67
 Email _ _
fieldtag=3 type 2 (string) engh7 h @ ¢ k 1 n g
LEEEEILER: la @7 68 61 63 6b 69 6e &7
 JSON

February 3, 2019

NoSQL and JSON

total: 33 bytes

Semi-Structured Documents

» Some notion of
tagging to mark
down semantics

= Examples:
« XML
* Protobuf
* Email
« JSON

February 3, 2019 NoSQL and JSON

Subject: ...
From: ...
Content-Type: Boundary= <boundary=

<boundary> Meta data
<boundary> Body

Content-Type: < content type =;
Content-Transfer-Encoding: <encoding>
<. ENcoded attachment

<hboundary> Attachment

Semi-Structured Documents

» Some notion of
tagging to mark
down semantics {

Torder=": [

i

[| Exa m p I es : "orderno™: "T48T45375",

"date™: "June 30, 2088 1:54:23 AM™,

"trackingno™: "THOO3S9291™,
L4 XML "custid": "11045",
"customer™: [
{
* Pro.I.ObUf "custid™: "11045",
. "fname™: "Sue",
[] Emall "lname": "Hatfield",
Taddre=ss": "1409 S5ilver Street™,
Teity™: "hAshland™,
¢ JSON "ztate™: "HE",

Tzip™: "e3003"

February 3, 2019 NoSQL and JSON

Relational vs Semi-Structured Tradeotfs

» Relational Model » Semi-Structured
* Fixed schema e Self-described schema
* Flat data * Tree-structured data

February 3, 2019 NoSQL and JSON

Relational vs Semi-Structured Tradeotfs

» Relational Model » Semi-Structured
* Fixed schema e Self-described schema
* Flat data * Tree-structured data

~—_ =

Less well-defined/More flexible

February 3, 2019 NoSQL and JSON

Relational vs Semi-Structured Tradeotfs

» Relational Model » Semi-Structured
* Fixed schema e Self-described schema
* Flat data * Tree-structured data

~—_ =

Less well-defined/More flexible

* Basic retrieval process: * Basic retrieval process:
1. Get table with all 1. Get document with
possible data specific data
2. Run through rows 2. Parse document tree
3. Return data 3. Return data

February 3, 2019 NoSQL and JSON

Relational vs Semi-Structured Tradeotfs

» Relational Model » Semi-Structured
* Fixed schema e Self-described schema
* Flat data * Tree-structured data

~—_ =

Less well-defined/More flexible

* Basic retrieval process: * Basic retrieval process:
1. Get table with all 1. Get document with
possible data specific data
2. Run through rows 2. Parse document tree
3. Return data 3. Return data

—_ =

Inefficient encoding/Easy exchange of data

February 3, 2019 NoSQL and JSON

On A Practical Note R

* No database paradigm is "better" than another
* One-size does not fit all (M. Stonebraker)
» Everything is getting mixed up anyways

NoSQL and JSON

On A Practical Note R

* No database paradigm is "better" than another
* One-size does not fit all (M. Stonebraker)
» Everything is getting mixed up anyways

February 3, 2019 NoSQL and JSON

JSON Standard — Rules of the Game

= JavaScript Object Notation (JSON)

* "Lightweight text-based open standard designed for
human-readable data interchange"

{

}

"book" : [

{

}
]

"id": "e1",

"language": "Java",
"author": "H. Javeson",
"year": 2015

"author": "E. Sepp",
"id": "e7",
"language": "C++",
"edition": "second",
"price": 22.25

February 3, 2019

NoSQL and JSON

JSON Standard — Rules of the Game

= JavaScript Object Notation (JSON)

* "Lightweight text-based open standard designed for

human-readable data interchange"

{

}

"book" : [
{
"id": "e1",
"language": "Java",
"author": "H. Javeson",
"year": 2015
}s
{
"author": "E. Sepp",
"id": "e7",
"language": "C++",
"edition": "second",
"price": 22.25
}
]

February 3, 2019

Types

Primitives include:
» String (in quotes)

* Numeric (unquoted number)
* Boolean (unquoted true/false)

Null (literally just null)

NoSQL and JSON

JSON Standard — Rules of the Game

= JavaScript Object Notation (JSON)

* "Lightweight text-based open standard designed for

human-readable data interchange"

{

}

"book" : [

]

Types
"id": "e1", of name-value pairs:
,language®: “Java’, * "name": <value>
"author"”: "H. Javeson",
ryear": 2015 * Values can be any type
* Enclosed by { }
"author": "E. Sepp",
"id": "o7",
"language": "C++",
"edition": "second",
"price": 22.25

February 3, 2019 NoSQL and JSON

Objects are an unordered collection

JSON Standard — Rules of the Game

= JavaScript Object Notation (JSON)

* "Lightweight text-based open standard designed for
human-readable data interchange"

Types

Objects are an unordered collection
of name-value pairs:
* "name": <value>

* Values can be any type
* Enclosed by { }

February 3, 2019 NoSQL and JSON

JSON Standard — Rules of the Game

= JavaScript Object Notation (JSON)

* "Lightweight text-based open standard designed for
human-readable data interchange"

{

"book" :

"id":
"language": "Java",
"author": "H. Javeson",
"year": 2015

llelll,

"author": "E. Sepp",

{
Indox 0
}s
{
Indox 1
}
1
}

Ilidll: lle7ll,
language": "C++",
"edition": "second",

"price": 22.25

February 3, 2019

Types

Arrays are an ordered list of values:

» Order is preserved in interpretation
* May contain any mix of types

* Enclosed by []

NoSQL and JSON

JSON Standard — Rules of the Game

= JSON Standard too expressive

* Implementations restrict syntax

« Ex: Duplicate fields

"id": "e1",

"language": "Java",
"author": "H. Javeson",
"author": "D. Suciu",
"author": "A. Cheung",
"year": 2015

}

February 3, 2019

NoSQL and JSON

JSON Standard — Rules of the Game

= JSON Standard too expressive
* Implementations restrict syntax
« Ex: Duplicate fields

{ {
"id": "e1", "id": "e1",
"language": "Java", "language": "Java",
"author": "H. Javeson", "author": ["H. Javeson",
"author": "D. Suciu", "D. Suciu",
"author": "A. Cheung", "A. Cheung"]
"year": 2015 "year": 2015

} }

February 3, 2019 NoSQL and JSON

JSON Standard — Rules of the Game

= JSON Standard too expressive
* Implementations restrict syntax
« Ex: Duplicate fields

|

{ {
"id": "e1", "id": "e1",
"language": "Java", "language": "Java",
"author": "H. Javeson", "author": ["H. Javeson",
"author": "D. Suciu", "D. Suciu",
"author": "A. Cheung", "A. Cheung"]
"year": 2015 "year": 2015

} }

February 3, 2019 NoSQL and JSON

Thinking About Semi-Structured Data

What does semi-structured data structure encode?

{

}

"book" : [

{
"id": "e1",
"language": "Java",
"author": "H. Javeson",
"year": 2015

}s

{
"author": "E. Sepp",
"id": "e7",
"language": "C++",
"edition": "second",

"price": 22.25

}
]

February 3, 2019

NoSQL and JSON

Thinking About Semi-Structured Data

What does semi-structured data structure encode?
Tree semantics!

book

id ed

lang . r lang price
author / author

second

H. Javeson

February 3, 2019 NoSQL and JSON

From Relational to Semi-Structured

Person

Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

What is a table in
semi-structured land?

February 3, 2019 NoSQL and JSON

From Relational to Semi-Structured

Person

Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

What is a table in
semi-structured land?
person Tables are iUS'l' an

array of elements
0 1 (rows)

February 4, 2019 NoSQL and JSON

From Relational to Semi-Structured

Person

Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

What is a table in
semi-structured land?
person Tables are iUS'l' an
array of elements
(rows)

Rows are just simple
objects

February 4, 2019 NoSQL and JSON

From Relational to Semi-Structured

Person
Name |Phone {
Dan 555-123-4567 "pef{'5°"" dl
Alvin 555-234-5678 "name": "Dan",
"phone": "555-123-4567"
Magda 555-345-6789 1,
{
"name": "Alvin",
"phone": "555-234-5678"
}s
{
"name": "Magda",
person "phone": "555-345-6789"
}s
]
, ¥
J

February 4, 2019 NoSQL and JSON

From Relational to Semi-Structured

Person
Name |Phone {
Dan 555-123-4567 "Pef{‘“"" dl
Alvin 555-234-5678 "name": "Dan",
"phone": "555-123- "
Magda 555-345-6789 ,, prone ey
{
"name": "Alvin",
"phone": "555-234-5678"
How can NULL },
be represented? {
"name": "Magda",
"phone": "555-345-6789"
}s
]
}

February 4, 2019 NoSQL and JSON

From Relational to Semi-Structured

Person
Name |Phone {
Dan 555-123-4567 "Pezson" [
Alvin 555-234-5678 "name": "Dan",
Maada NULL "phone": "555-123-4567"
agda Y,
{
"name": "Alvin",
"phone": "555-234-5678"
How can NULL },
be represented? t
name": "Magda",
"phone": "555-345-6789"
}s
]
}

February 4, 2019 NoSQL and JSON

From Relational to Semi-Structured

Person
Name |Phone {
Dan 555-123-4567 "Pef{‘5°"" dl
Alvin 555-234-5678 "name": "Dan",
"phone": "555-123-4567"
Magda NULL Y, prone
{
"name": "Alvin",
"phone": "555-234-5678"
How can NULL },
be represented? {
"name": "Magda",
"phone"”: null
}s
]
}

February 4, 2019 NoSQL and JSON

From Relational to Semi-Structured

Person

Dan 555-123-4567
Alvin 555-234-5678
Magda NULL

How can NULL
be represented?

February 4, 2019

{

"person”: [
{
"name": "Dan",
"phone": "555-123-4567"
}s
{
"name": "Alvin",
"phone": "555-234-5678"
}s
{
"name": "Magda"
}s

OK for field to
be missing!

NoSQL and JSON

From Relational to Semi-Structured

Person
Name |Phone {
Dan 555-123-4567 "PeES°"" 3
Alvin 555-234-5678 "name": "Dan",
"phone": "555-123-4567"
Magda 555-345-6789 y, e
{
"name": "Alvin",
"phone": "555-234-5678"
Are there things that }s
the Relational Model { ‘name”: “Magda”
can’t represent? “phone™: "555-345-6789"
}s
]
}

February 4, 2019 NoSQL and JSON

From Relational to Semi-Structured

Person
Name |Phone {
Dan 555-123-4567 "Pef{‘5°"" 3
Alvin 555-234-5678 "name": "Dan",
"phone": "555-123-4567"
Magda 555-345-6789 y, o
{
"name": "Alvin",
"phone": "555-234-5678"
Are there things that }s
the Relational Model { ‘name”: “Magda”
can’t represent? “phone™: "555-345-6789"
}s
Non-flat datal]
* Array data }

* Multi-part data

February 4, 2019 NoSQL and JSON

From Relational to Semi-Structured

Person
Name |Phone {
Dan 2ece "person”:|[
{
Alvin 555-234-5678 "name": "Dan",
"phone":
Magda 555-345-6789 i SN
"555-987-6543"
]
}s
Are there things that { .
the Relational Model “name”: “Alvin®,)
can't represent? } phone": "555-234-5678
{)
Non-flat datal "name”: “Magda",)
o Arra.y data N phone": "555-345-6789
« Multi-part data]
}

February 4, 2019 NoSQL and JSON

From Relational to Semi-Structured

Person

Name [Phone {

222 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Are there things that
the Relational Model
can’t represent?

Non-flat datal
« Array data
* Multi-part data

"person”: [
{
"name": {
"fname": "Dan",
"lname": "Suciu"
}

}s

"phone": "555-123-4567"

"name": "Alvin",
"phone": "555-234-5678"

"name": "Magda",
"phone": "555-345-6789"

February 4, 2019 NoSQL and JSON

From Relational to Semi-Structured

Person

Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

How do we represent

Orders foreign keys?

Date | Product

Dan 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8

February 4, 2019 NoSQL and JSON

From Relational to Semi-Structured

{

Person

Dan
Alvin
Magda

Orders

Dan
Alvin
Alvin

February 4, 2019

555-123-4567
555-234-5678
555-345-6789

Date | Product

1997 Furby
2000 Furby
2012 Magic8

}
NoSQL and JSON

"person":[
{
"name": "Dan",
"phone": "555-123-4567",
"orders": [
{
"date": 1997,
"product”: "Furby",
}
]
¥
{
"name": "Alvin",
"phone": "555-234-5678",
"orders": [
{
"date": 2000,
"product”: "Furby",
¥
{
"date": 2012,
"product”: "Magic8",
}
]
¥
{
"name": "Magda",
"phone": "555-345-6789",
"orders": []
¥
]

From Relational to Semi-Structured

{
Person
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789
Orders

Date | Product
Dan 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8
Precomputed
equijoin!
¥

February 4, 2019

NoSQL and JSON

"person":[
{
"name": "Dan",
"phone": "555-123-4567",
"orders": [
{
"date": 1997,
"product”: "Furby",
}
]
¥
{
"name": "Alvin",
"phone": "555-234-5678",
"orders": [
{
"date": 2000,
"product”: "Furby",
¥
{
"date": 2012,
"product”: "Magic8",
}
]
¥
{
"name": "Magda",

]

"phone": "555-345-6789",
"orders": []

From Relational to Semi-Structured

Person

Name |Phone

Dan 555-123-4567

Is this many-to-many

Alvin 555-234-5678 relationship easily
Magda 555-345-6789 convertible to JSONZ?¢
Orders

mm

an 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8

Product
ProdName | Price
Furby 9.99
Magic8 15.99
Tomagachi 18.99

February 4, 2019 NoSQL and JSON

From Relational to Semi-Structured

Person
Nomo | Phone
Dan 555-123-4567 Is this many-to-many
Alvin 555-234-5678 relationship easily
Magda 555-345-6789 convertible to JSON?

Orders
mm
an 1997 Furby

Alvin 2000 Furby

Alvin 2012 Magic8 Nest the data?
Person 2 Orders 2 Product

Product
ProdName | Price
Furby 9.99
Magic8 15.99
Tomagachi 18.99

February 4, 2019 NoSQL and JSON

From Relational to Semi-Structured

Person

Orders

mm

an 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8

Product

ProdName | Price _

Furby
Magic8

Tomagachi

February 4, 2019

Name |Phone

Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

9.99
15.99
18.99

Is this many-to-many

relationship easily
convertible to JSON?

Nest the data?
Person = Orders 2 Product

We might miss some products!

Product data will be duplicated!

NoSQL and JSON

From Relational to Semi-Structured

Person
Nomo | Phone
Dan 555-123-4567 Is this many-to-many
Alvin 555-234-5678 relationship easily
Magda 555-345-6789 convertible to JSON?

Orders
mm
an 1997 Furby

Alvin 2000 Furby

Alvin 2012 Magic8 Nest the data?
Product = Orders > Person

Product
ProdName | Price
Furby 9.99
Magic8 15.99
Tomagachi 18.99

February 4, 2019 NoSQL and JSON

From Relational to Semi-Structured

Person

Orders

mm

an 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8

Product

ProdName | Price _

Furby
Magic8

Tomagachi

February 4, 2019

Name |Phone

Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

9.99
15.99
18.99

Is this many-to-many

relationship easily
convertible to JSON?

Nest the data?
Product & Orders = Person

We might miss some people!

People data will be duplicated!

NoSQL and JSON

From Relational to Semi-Structured

Person
Nomo | Phone
Dan 555-123-4567 Is this many-to-many
Alvin 555-234-5678 relationship easily
Magda 555-345-6789 convertible to JSON?

Orders

mm

an 1997 Furby
Alvin 2000 Furby

Alvin 2012 Magic8 Convert each table to a
Product separate object/document?
ProdName | Price |

Furby 9.99

Magic8 15.99

Tomagachi 18.99

February 4, 2019 NoSQL and JSON

From Relational to Semi-Structured

Person

Orders

mm

an 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8

Product

ProdName | Price _

Furby
Magic8

Tomagachi

February 4, 2019

Name |Phone

Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

9.99
15.99
18.99

Is this many-to-many

relationship easily
convertible to JSON?

Convert each table to a
separate object/document?

We wanted to avoid joining
in the first placel

NoSQL and JSON

From Relational to Semi-Structured

Takeaways:

» Semi-structured data can do cool stuft
 Collection/multi-part data
* Precompute joins

= Semi-structured data has some limits
* Relies on relational-like patterns in common situations
" [n general semi-structured data is parsed

* Data model flexibility
* Potentially lots of redundancy

February 4, 2019 NoSQL and JSON

= AsterixDB as a case study of Document Store
« Semi-structured data model in JSON
* Introducing AsterixDB and SQL++

Asterixcs

February 3, 2019 NoSQL and JSON

The 5 W'’s of AsterixDB

= Who
* M. J. Carey & co.

* What

 "A Scalable, Open Source BDMS" (it is now also an
Apache project)

* Where
« UC Irvine, Cloudera Inc, Google, IBM, ...

* When
« 2014
= Why

 To develop a next-gen system for managing semi-
structured data

February 4, 2019 NoSQL and JSON

The 5 W’'s of SQL+ +

= Who
* K. W. Ong & Y. Papakonstantinou

* What

* A query language that is applicable to JSON native
stores and SQL databases

* Where
« UC San Diego

* When
« 2015
* Why

 Stand in for other semi-structured query languages
that lack formal semantics.

February 4, 2019 NoSQL and JSON

Why We are Choosing SQL+ +

= Strong formal semantics
 Original paper:
https://arxiv.org/pdf/1405.3631.pdf

* Nested relational algebra:
https://dl.acm.orqg/citation.cfm2id=588133

= Systems adopting or converging to SQL+ +
* Apache AsterixDB
* CouchBase (N1QL)
 Apache Drill
« Snowflake

February 4, 2019 NoSQL and JSON

https://arxiv.org/pdf/1405.3631.pdf
https://dl.acm.org/citation.cfm?id=588133

Asterix Data Model (ADM)

= Nearly Identical to JSON Standard
« All JSON primitives
« JSON objects and arrays

= Some additions
* New primitive: universally unique identifier (uuid)
* Ex: 123e4567-e89b-12d3-a456-426655440000

* New derived type: multiset
* Like an array but unordered and encapsulated by {{ }}

* Missing (field not in object) is a thing

* Queried data must be a multiset or array

February 4, 2019 NoSQL and JSON

Introducing the New and Improved SQL+ +

February 4, 2019 NoSQL and JSON 63

SQL+ + Mini Demo

Demo Timel

February 4, 2019 NoSQL and JSON

SQL+ + Mini Demo

General Installation (Details in HW5 spec)

Download from:
https://asterixdb.apache.org/download.himl

Start local cluster from:
<asterix root>/opt/local/bin/start-sample-cluster

Use web browser for interaction, default:
127.0.0.19001

Don't forget to stop cluster when you’re done:
<asterix root>/opt/local/bin/stop-sample-cluster

February 4, 2019 NoSQL and JSON

https://asterixdb.apache.org/download.html

SQL+ + Mini Demo

General Usage:

Everything is running locally so make sure your
computer doesn’t die (advise against SELECT *)

Don’t use attu, previous quarters people
accidentally used other people’s instance

Learn something! | dare say that SQL++ is a
model for many future query languages.

February 4, 2019 NoSQL and JSON

SQL+ + Hello World

SELECT x.phone

FROM [
"name": "Dan", "phone": [300, 150]},
"name": "Alvin", "phone": 420}
] AS x;

-- output, same for-loop semantics like in SQL
/*

{ "phone": [300, 150] }

{ "phone": 420 }

*/

February 4, 2019 NoSQL and JSON

SQL+ + Hello World

SELECT x.phone

FROM {{
"name": "Dan", "phone": [300, 150]},
"name": "Alvin", "phone": 420}
1} AS x;

-- same output as array data

February 4, 2019 NoSQL and JSON

SQL+ + Hello World

-- error
SELECT x.phone
FROM {"name": "Dan", "phone": [300, 150]} AS x;

-- output

/*

Type mismatch: function scan-collection expects its
1st input parameter to be type multiset or array,
but the actual input type is object

[TypeMismatchException]

*/

February 4, 2019 NoSQL and JSON

SQL+ + Hello World

SELECT x.phone

FROM [
"name": "Dan", "phone": [300, 150]},
"name": "Alvin", "phone": null}
] AS x;

-- output, null works like in SQL
/*

{ "phone": [300, 150] }

{ "phone": null }

*/

February 4, 2019 NoSQL and JSON

SQL+ + Hello World

SELECT x.phone

FROM [
"name": "Dan", "phone": [300, 150]},
"name": "Alvin"}
] AS x;

-- output, missing data is simply passed over (beware of typos!)
/*

{ "phone": [300, 150] }

1

*/

February 4, 2019 NoSQL and JSON

SQL+ + Hello World

SELECT x.fone -- intentional typo

FROM [
"name": "Dan", "phone": [300, 150]},
"name": "Alvin", "phone": 420}
] AS x;

-- output, beware of typos!
/*
1}

1}
*/

February 4, 2019 NoSQL and JSON

SQL+ + Hello World

SELECT x.fone -- intentional typo

FROM [
"name": "Dan", "phone": [300, 150]},
"name": "Alvin", "phone": 420}
] AS x;

-- output, beware of typos!
/*
1}

1}
*/

February 4, 2019 NoSQL and JSON

SQL+ + Hello World

FROM [
"name": "Dan", "phone": [300, 150]},
"name": "Alvin", "phone": 420}
] AS X
WHERE is array(x.phone) OR x.phone > 100
GROUP BY x.name, x.phone
HAVING x.name = "Dan" OR x.name = "Alvin"
SELECT x.phone
ORDER BY x.name DESC;

-- output, finally the keyword order matches FWGHOS!
/*

{ "phone": [300, 150] }

{ "phone": 420 }

*/

February 4, 2019 NoSQL and JSON

HEY SQL+ + WHY

= Patterns in querying e
semi-structured data L) ¥}

» SQL+ + behind the mask

February 3, 2019 NoSQL and JSON

