
Introduction to Data Management

Jonathan Leang

Paul G. Allen School of Computer Science and Engineering

University of Washington, Seattle

JSON, AsterixDB, and SQL++

Your First Non-Relational Data Model

February 3, 2019 NoSQL and JSON 1

Recap: #NoSQL

A hashtag on Twitter for a meetup in San Francisco

to discuss systems like Google BigTable, Amazon

Dynamo, CouchDB, etc.

February 3, 2019 NoSQL and JSON 2

https://www.eventbrite.com/e/nosql-meetup-tickets-341739151

Recap: The Modern World Wide Web

▪What is Web 2.0?

• Social Web

• Everyone making content → Everyone making data

• Facebook, Amazon, Instagram, …

▪Web 2.0 problems are specific

• Almost always OLTP-like workloads

▪Web 2.0 problems are big

• Data can’t fit into a single machine

February 3, 2019 NoSQL and JSON 3

Recap: Classic RDBMS for Web 2.0

▪ 3-Tier Web Apps (in a nutshell)

• You (browsers) send requests to App+Web Servers

• App+Web Servers send queries to a DB Server

February 3, 2019 NoSQL and JSON 4

HTTPS ODBC/JDBC

Query

Result Data

Request

Response

App+Web

Servers

Database

ServerBrowser

Not trivial to

scale RDBMS

Scaling these

are easy

Recap: NoSQL on the Scale Up Problem

February 3, 2019 NoSQL and JSON 5

Recap: NoSQL on the Scale Up Problem

February 3, 2019 NoSQL and JSON 6

i give up

Recap: NoSQL on the Scale Up Problem

February 4, 2019 NoSQL and JSON 7

Recap: NoSQL on the Scale Up Problem

February 3, 2019 NoSQL and JSON 8

▪KV Store

• Hash Table (Key → Blob)

▪ Extensible Records

• "2D" Hash Table (Row → Column → Blob)

▪Document Store

• Hash Table + Parsable Documents

Trade off well-defined data for speed

Recap: NoSQL on the Scale Up Problem

February 3, 2019 NoSQL and JSON 9

▪KV Store

• Hash Table (Key → Blob)

▪ Extensible Records

• "2D" Hash Table (Row → Column → Blob)

▪Document Store

• Hash Table + Parsable Documents

Trade off well-defined data for speed

Take

Distributed

Systems

(CSE 452)

Recap: NoSQL on the Scale Up Problem

February 3, 2019 NoSQL and JSON 10

▪KV Store

• Hash Table (Key → Blob)

▪ Extensible Records

• "2D" Hash Table (Row → Column → Blob)

▪Document Store

• Hash Table + Parsable Documents

Trade off well-defined data for speed

Good

discussion

for this class

Recap: 3 Parts of a Data Model

The 3 parts of any data model

▪ Instance

• The actual data

▪ Schema

• A description of what data is being stored

▪Query Language

• How to retrieve and manipulate data

February 3, 2019 Design Theory 11

Today

Last time:

▪ Survey of NoSQL systems

Today

▪AsterixDB as a case study of Document Store

• Semi-structured data model in JSON

• Introducing AsterixDB and SQL++

February 3, 2019 NoSQL and JSON 12

Today

Last time:

▪ Survey of NoSQL systems

Today

▪AsterixDB as a case study of Document Store

• Semi-structured data model in JSON

• Introducing AsterixDB and SQL++

February 3, 2019 NoSQL and JSON 13

What is a "document" anyways?

▪ Loose terminology

▪Any "parsable" file qualifies

• Ex: MongoDB can handle CSV files

February 3, 2019 NoSQL and JSON 14

February 3, 2019 NoSQL and JSON 15

Semi-Structured Documents

▪ Some notion of

tagging to mark

down semantics

▪ Examples:

• X ML

• Protobuf

• Email

• JSON

February 3, 2019 NoSQL and JSON 16

Semi-Structured Documents

▪ Some notion of

tagging to mark

down semantics

▪ Examples:

• XML

• Protobuf

• Email

• JSON

February 3, 2019 NoSQL and JSON 17

Semi-Structured Documents

▪ Some notion of

tagging to mark

down semantics

▪ Examples:

• XML

• Protobuf

• Email

• JSON

February 3, 2019 NoSQL and JSON 18

Semi-Structured Documents

▪ Some notion of

tagging to mark

down semantics

▪ Examples:

• XML

• Protobuf

• Email

• JSON

February 3, 2019 NoSQL and JSON 19

Relational vs Semi-Structured Tradeoffs

▪ Relational Model

• Fixed schema

• Flat data

▪ Semi-Structured

• Self-described schema

• Tree-structured data

February 3, 2019 NoSQL and JSON 20

Relational vs Semi-Structured Tradeoffs

▪ Relational Model

• Fixed schema

• Flat data

▪ Semi-Structured

• Self-described schema

• Tree-structured data

Less well-defined/More flexible

February 3, 2019 NoSQL and JSON 21

Relational vs Semi-Structured Tradeoffs

▪ Relational Model

• Fixed schema

• Flat data

• Basic retrieval process:

1. Get table with all

possible data

2. Run through rows

3. Return data

▪ Semi-Structured

• Self-described schema

• Tree-structured data

• Basic retrieval process:

1. Get document with

specific data

2. Parse document tree

3. Return data

Less well-defined/More flexible

February 3, 2019 NoSQL and JSON 22

Relational vs Semi-Structured Tradeoffs

▪ Relational Model

• Fixed schema

• Flat data

• Basic retrieval process:

1. Get table with all

possible data

2. Run through rows

3. Return data

▪ Semi-Structured

• Self-described schema

• Tree-structured data

• Basic retrieval process:

1. Get document with

specific data

2. Parse document tree

3. Return data

Less well-defined/More flexible

Inefficient encoding/Easy exchange of data

On A Practical Note

February 3, 2019 NoSQL and JSON 23

▪No database paradigm is "better" than another

▪One-size does not fit all (M. Stonebraker)

▪ Everything is getting mixed up anyways

On A Practical Note

February 3, 2019 NoSQL and JSON 24

▪No database paradigm is "better" than another

▪One-size does not fit all (M. Stonebraker)

▪ Everything is getting mixed up anyways

JSON Standard – Rules of the Game

▪ JavaScript Object Notation (JSON)

• "Lightweight text-based open standard designed for

human-readable data interchange"

February 3, 2019 NoSQL and JSON 25

{
"book":[

{
"id": "01",
"language": "Java",
"author": "H. Javeson",
"year": 2015

},
{

"author": "E. Sepp",
"id": "07",
"language": "C++",
"edition": "second",
"price": 22.25

}
]

}

JSON Standard – Rules of the Game

▪ JavaScript Object Notation (JSON)

• "Lightweight text-based open standard designed for

human-readable data interchange"

February 3, 2019 NoSQL and JSON 26

{
"book":[

{
"id": "01",
"language": "Java",
"author": "H. Javeson",
"year": 2015

},
{

"author": "E. Sepp",
"id": "07",
"language": "C++",
"edition": "second",
"price": 22.25

}
]

}

Primitives include:

• String (in quotes)

• Numeric (unquoted number)

• Boolean (unquoted true/false)

• Null (literally just null)

Types

JSON Standard – Rules of the Game

▪ JavaScript Object Notation (JSON)

• "Lightweight text-based open standard designed for

human-readable data interchange"

February 3, 2019 NoSQL and JSON 27

{
"book":[

{
"id": "01",
"language": "Java",
"author": "H. Javeson",
"year": 2015

},
{

"author": "E. Sepp",
"id": "07",
"language": "C++",
"edition": "second",
"price": 22.25

}
]

}

Objects are an unordered collection

of name-value pairs:

• "name": <value>

• Values can be any type

• Enclosed by { }

Types

JSON Standard – Rules of the Game

▪ JavaScript Object Notation (JSON)

• "Lightweight text-based open standard designed for

human-readable data interchange"

February 3, 2019 NoSQL and JSON 28

{
"book":[

{
"id": "01",
"language": "Java",
"author": "H. Javeson",
"year": 2015

},
{

"author": "E. Sepp",
"id": "07",
"language": "C++",
"edition": "second",
"price": 22.25

}
]

}

Objects are an unordered collection

of name-value pairs:

• "name": <value>

• Values can be any type

• Enclosed by { }

Types

JSON Standard – Rules of the Game

▪ JavaScript Object Notation (JSON)

• "Lightweight text-based open standard designed for

human-readable data interchange"

February 3, 2019 NoSQL and JSON 29

{
"book":[

{
"id": "01",
"language": "Java",
"author": "H. Javeson",
"year": 2015

},
{

"author": "E. Sepp",
"id": "07",
"language": "C++",
"edition": "second",
"price": 22.25

}
]

}

Arrays are an ordered list of values:

• Order is preserved in interpretation

• May contain any mix of types

• Enclosed by []

Index 0

Index 1

Types

JSON Standard – Rules of the Game

▪ JSON Standard too expressive

• Implementations restrict syntax

• Ex: Duplicate fields

February 3, 2019 NoSQL and JSON 30

{
"id": "01",
"language": "Java",
"author": "H. Javeson",
"author": "D. Suciu",
"author": "A. Cheung",
"year": 2015

}

JSON Standard – Rules of the Game

▪ JSON Standard too expressive

• Implementations restrict syntax

• Ex: Duplicate fields

February 3, 2019 NoSQL and JSON 31

{
"id": "01",
"language": "Java",
"author": "H. Javeson",
"author": "D. Suciu",
"author": "A. Cheung",
"year": 2015

}

{
"id": "01",
"language": "Java",
"author": ["H. Javeson",

"D. Suciu",
"A. Cheung"]

"year": 2015
}

JSON Standard – Rules of the Game

▪ JSON Standard too expressive

• Implementations restrict syntax

• Ex: Duplicate fields

February 3, 2019 NoSQL and JSON 32

{
"id": "01",
"language": "Java",
"author": "H. Javeson",
"author": "D. Suciu",
"author": "A. Cheung",
"year": 2015

}

{
"id": "01",
"language": "Java",
"author": ["H. Javeson",

"D. Suciu",
"A. Cheung"]

"year": 2015
}

Thinking About Semi-Structured Data

What does semi-structured data structure encode?

February 3, 2019 NoSQL and JSON 33

{
"book":[

{
"id": "01",
"language": "Java",
"author": "H. Javeson",
"year": 2015

},
{

"author": "E. Sepp",
"id": "07",
"language": "C++",
"edition": "second",
"price": 22.25

}
]

}

Thinking About Semi-Structured Data

What does semi-structured data structure encode?

Tree semantics!

February 3, 2019 NoSQL and JSON 34

book

0
1

id

lang

author

year

id

lang

author

ed

price

H. Javeson

Java 2015

01

E. Sepp

C++ 22.25

07

second

From Relational to Semi-Structured

February 3, 2019 NoSQL and JSON 35

Name Phone

Dan 555-123-4567

Alvin 555-234-5678

Magda 555-345-6789

Person

person

What is a table in

semi-structured land?

From Relational to Semi-Structured

February 4, 2019 NoSQL and JSON 36

Name Phone

Dan 555-123-4567

Alvin 555-234-5678

Magda 555-345-6789

Person

person

0 1 2

Tables are just an

array of elements

(rows)

What is a table in

semi-structured land?

From Relational to Semi-Structured

February 4, 2019 NoSQL and JSON 37

Name Phone

Dan 555-123-4567

Alvin 555-234-5678

Magda 555-345-6789

Person

person

0 1 2

name phone

Alvin 555…

Tables are just an

array of elements

(rows)

Rows are just simple

objects

What is a table in

semi-structured land?

From Relational to Semi-Structured

February 4, 2019 NoSQL and JSON 38

Name Phone

Dan 555-123-4567

Alvin 555-234-5678

Magda 555-345-6789

Person

{
"person":[

{
"name": "Dan",
"phone": "555-123-4567"

},
{

"name": "Alvin",
"phone": "555-234-5678"

},
{

"name": "Magda",
"phone": "555-345-6789"

},
]

}

person

0 1 2

name phone

Alvin 555…

From Relational to Semi-Structured

February 4, 2019 NoSQL and JSON 39

Name Phone

Dan 555-123-4567

Alvin 555-234-5678

Magda 555-345-6789

Person

{
"person":[

{
"name": "Dan",
"phone": "555-123-4567"

},
{

"name": "Alvin",
"phone": "555-234-5678"

},
{

"name": "Magda",
"phone": "555-345-6789"

},
]

}

How can NULL

be represented?

From Relational to Semi-Structured

February 4, 2019 NoSQL and JSON 40

Name Phone

Dan 555-123-4567

Alvin 555-234-5678

Magda NULL

Person

{
"person":[

{
"name": "Dan",
"phone": "555-123-4567"

},
{

"name": "Alvin",
"phone": "555-234-5678"

},
{

"name": "Magda",
"phone": "555-345-6789"

},
]

}

How can NULL

be represented?

From Relational to Semi-Structured

February 4, 2019 NoSQL and JSON 41

Name Phone

Dan 555-123-4567

Alvin 555-234-5678

Magda NULL

Person

{
"person":[

{
"name": "Dan",
"phone": "555-123-4567"

},
{

"name": "Alvin",
"phone": "555-234-5678"

},
{

"name": "Magda",
"phone": null

},
]

}

How can NULL

be represented?

From Relational to Semi-Structured

February 4, 2019 NoSQL and JSON 42

Name Phone

Dan 555-123-4567

Alvin 555-234-5678

Magda NULL

Person

{
"person":[

{
"name": "Dan",
"phone": "555-123-4567"

},
{

"name": "Alvin",
"phone": "555-234-5678"

},
{

"name": "Magda"
},

]
}

How can NULL

be represented?

OK for field to

be missing!

From Relational to Semi-Structured

February 4, 2019 NoSQL and JSON 43

Name Phone

Dan 555-123-4567

Alvin 555-234-5678

Magda 555-345-6789

Person

{
"person":[

{
"name": "Dan",
"phone": "555-123-4567"

},
{

"name": "Alvin",
"phone": "555-234-5678"

},
{

"name": "Magda",
"phone": "555-345-6789"

},
]

}

Are there things that

the Relational Model

can’t represent?

From Relational to Semi-Structured

February 4, 2019 NoSQL and JSON 44

Name Phone

Dan 555-123-4567

Alvin 555-234-5678

Magda 555-345-6789

Person

{
"person":[

{
"name": "Dan",
"phone": "555-123-4567"

},
{

"name": "Alvin",
"phone": "555-234-5678"

},
{

"name": "Magda",
"phone": "555-345-6789"

},
]

}

Are there things that

the Relational Model

can’t represent?

Non-flat data!

• Array data

• Multi-part data

From Relational to Semi-Structured

February 4, 2019 NoSQL and JSON 45

Name Phone

Dan ???

Alvin 555-234-5678

Magda 555-345-6789

Person

{
"person":[

{
"name": "Dan",
"phone": [

"555-123-4567",
"555-987-6543"

]
},
{

"name": "Alvin",
"phone": "555-234-5678"

},
{

"name": "Magda",
"phone": "555-345-6789"

},
]

}

Are there things that

the Relational Model

can’t represent?

Non-flat data!

• Array data

• Multi-part data

From Relational to Semi-Structured

February 4, 2019 NoSQL and JSON 46

Name Phone

??? 555-123-4567

Alvin 555-234-5678

Magda 555-345-6789

Person

{
"person":[

{
"name": {

"fname": "Dan",
"lname": "Suciu"

}
"phone": "555-123-4567"

},
{

"name": "Alvin",
"phone": "555-234-5678"

},
{

"name": "Magda",
"phone": "555-345-6789"

},
]

}

Are there things that

the Relational Model

can’t represent?

Non-flat data!

• Array data

• Multi-part data

From Relational to Semi-Structured

February 4, 2019 NoSQL and JSON 47

Name Phone

Dan 555-123-4567

Alvin 555-234-5678

Magda 555-345-6789

Person

PName Date Product

Dan 1997 Furby

Alvin 2000 Furby

Alvin 2012 Magic8

Orders

How do we represent

foreign keys?

From Relational to Semi-Structured

February 4, 2019 NoSQL and JSON 48

Name Phone

Dan 555-123-4567

Alvin 555-234-5678

Magda 555-345-6789

Person

PName Date Product

Dan 1997 Furby

Alvin 2000 Furby

Alvin 2012 Magic8

Orders

{
"person":[

{
"name": "Dan",
"phone": "555-123-4567",
"orders": [

{
"date": 1997,
"product": "Furby",

}
]

},
{

"name": "Alvin",
"phone": "555-234-5678",
"orders": [

{
"date": 2000,
"product": "Furby",

},
{

"date": 2012,
"product": "Magic8",

}
]

},
{

"name": "Magda",
"phone": "555-345-6789",
"orders": []

},
]

}

From Relational to Semi-Structured

February 4, 2019 NoSQL and JSON 49

Name Phone

Dan 555-123-4567

Alvin 555-234-5678

Magda 555-345-6789

Person

PName Date Product

Dan 1997 Furby

Alvin 2000 Furby

Alvin 2012 Magic8

Orders

{
"person":[

{
"name": "Dan",
"phone": "555-123-4567",
"orders": [

{
"date": 1997,
"product": "Furby",

}
]

},
{

"name": "Alvin",
"phone": "555-234-5678",
"orders": [

{
"date": 2000,
"product": "Furby",

},
{

"date": 2012,
"product": "Magic8",

}
]

},
{

"name": "Magda",
"phone": "555-345-6789",
"orders": []

},
]

}

Precomputed

equijoin!

From Relational to Semi-Structured

February 4, 2019 NoSQL and JSON 50

Name Phone

Dan 555-123-4567

Alvin 555-234-5678

Magda 555-345-6789

Person

PName Date Product

Dan 1997 Furby

Alvin 2000 Furby

Alvin 2012 Magic8

Orders

ProdName Price

Furby 9.99

Magic8 15.99

Tomagachi 18.99

Product

Is this many-to-many

relationship easily

convertible to JSON?

From Relational to Semi-Structured

February 4, 2019 NoSQL and JSON 51

Name Phone

Dan 555-123-4567

Alvin 555-234-5678

Magda 555-345-6789

Person

PName Date Product

Dan 1997 Furby

Alvin 2000 Furby

Alvin 2012 Magic8

Orders

ProdName Price

Furby 9.99

Magic8 15.99

Tomagachi 18.99

Product

Is this many-to-many

relationship easily

convertible to JSON?

Nest the data?

Person → Orders → Product

From Relational to Semi-Structured

February 4, 2019 NoSQL and JSON 52

Name Phone

Dan 555-123-4567

Alvin 555-234-5678

Magda 555-345-6789

Person

PName Date Product

Dan 1997 Furby

Alvin 2000 Furby

Alvin 2012 Magic8

Orders

ProdName Price

Furby 9.99

Magic8 15.99

Tomagachi 18.99

Product

Is this many-to-many

relationship easily

convertible to JSON?

Nest the data?

Person → Orders → Product

We might miss some products!

Product data will be duplicated!

From Relational to Semi-Structured

February 4, 2019 NoSQL and JSON 53

Name Phone

Dan 555-123-4567

Alvin 555-234-5678

Magda 555-345-6789

Person

PName Date Product

Dan 1997 Furby

Alvin 2000 Furby

Alvin 2012 Magic8

Orders

ProdName Price

Furby 9.99

Magic8 15.99

Tomagachi 18.99

Product

Is this many-to-many

relationship easily

convertible to JSON?

Nest the data?

Product → Orders → Person

From Relational to Semi-Structured

February 4, 2019 NoSQL and JSON 54

Name Phone

Dan 555-123-4567

Alvin 555-234-5678

Magda 555-345-6789

Person

PName Date Product

Dan 1997 Furby

Alvin 2000 Furby

Alvin 2012 Magic8

Orders

ProdName Price

Furby 9.99

Magic8 15.99

Tomagachi 18.99

Product

Is this many-to-many

relationship easily

convertible to JSON?

Nest the data?

Product → Orders → Person

We might miss some people!

People data will be duplicated!

From Relational to Semi-Structured

February 4, 2019 NoSQL and JSON 55

Name Phone

Dan 555-123-4567

Alvin 555-234-5678

Magda 555-345-6789

Person

PName Date Product

Dan 1997 Furby

Alvin 2000 Furby

Alvin 2012 Magic8

Orders

ProdName Price

Furby 9.99

Magic8 15.99

Tomagachi 18.99

Product

Is this many-to-many

relationship easily

convertible to JSON?

Convert each table to a

separate object/document?

From Relational to Semi-Structured

February 4, 2019 NoSQL and JSON 56

Name Phone

Dan 555-123-4567

Alvin 555-234-5678

Magda 555-345-6789

Person

PName Date Product

Dan 1997 Furby

Alvin 2000 Furby

Alvin 2012 Magic8

Orders

ProdName Price

Furby 9.99

Magic8 15.99

Tomagachi 18.99

Product

Is this many-to-many

relationship easily

convertible to JSON?

Convert each table to a

separate object/document?

We wanted to avoid joining

in the first place!

From Relational to Semi-Structured

February 4, 2019 NoSQL and JSON 57

Takeaways:

▪ Semi-structured data can do cool stuff

• Collection/multi-part data

• Precompute joins

▪ Semi-structured data has some limits

• Relies on relational-like patterns in common situations

▪ In general semi-structured data is parsed

• Data model flexibility

• Potentially lots of redundancy

Today

▪AsterixDB as a case study of Document Store

• Semi-structured data model in JSON

• Introducing AsterixDB and SQL++

February 3, 2019 NoSQL and JSON 58

The 5 W’s of AsterixDB

February 4, 2019 NoSQL and JSON 59

▪Who

• M. J. Carey & co.

▪What

• "A Scalable, Open Source BDMS" (it is now also an

Apache project)

▪Where

• UC Irvine, Cloudera Inc, Google, IBM, …

▪When

• 2014

▪Why

• To develop a next-gen system for managing semi-

structured data

The 5 W’s of SQL++

February 4, 2019 NoSQL and JSON 60

▪Who

• K. W. Ong & Y. Papakonstantinou

▪What

• A query language that is applicable to JSON native

stores and SQL databases

▪Where

• UC San Diego

▪When

• 2015

▪Why

• Stand in for other semi-structured query languages

that lack formal semantics.

Why We are Choosing SQL++

February 4, 2019 NoSQL and JSON 61

▪ Strong formal semantics

• Original paper:

https://arxiv.org/pdf/1405.3631.pdf

• Nested relational algebra:

https://dl.acm.org/citation.cfm?id=588133

▪ Systems adopting or converging to SQL++

• Apache AsterixDB

• CouchBase (N1QL)

• Apache Drill

• Snowflake

https://arxiv.org/pdf/1405.3631.pdf
https://dl.acm.org/citation.cfm?id=588133

Asterix Data Model (ADM)

▪Nearly Identical to JSON Standard

• All JSON primitives

• JSON objects and arrays

▪ Some additions

• New primitive: universally unique identifier (uuid)

• Ex: 123e4567-e89b-12d3-a456-426655440000

• New derived type: multiset

• Like an array but unordered and encapsulated by {{ }}

• Missing (field not in object) is a thing

▪Queried data must be a multiset or array

February 4, 2019 NoSQL and JSON 62

Introducing the New and Improved SQL++

February 4, 2019 NoSQL and JSON 63

SQL++ Mini Demo

Demo Time!

February 4, 2019 NoSQL and JSON 64

SQL++ Mini Demo

General Installation (Details in HW5 spec)

Download from:

https://asterixdb.apache.org/download.html

Start local cluster from:

<asterix root>/opt/local/bin/start-sample-cluster

Use web browser for interaction, default:

127.0.0.19001

Don’t forget to stop cluster when you’re done:

<asterix root>/opt/local/bin/stop-sample-cluster

February 4, 2019 NoSQL and JSON 65

https://asterixdb.apache.org/download.html

SQL++ Mini Demo

General Usage:

Everything is running locally so make sure your

computer doesn’t die (advise against SELECT *)

Don’t use attu, previous quarters people

accidentally used other people’s instance

Learn something! I dare say that SQL++ is a

model for many future query languages.

February 4, 2019 NoSQL and JSON 66

SQL++ Hello World

February 4, 2019 NoSQL and JSON 67

SELECT x.phone
FROM [

{"name": "Dan", "phone": [300, 150]},
{"name": "Alvin", "phone": 420}

] AS x;

-- output, same for-loop semantics like in SQL
/*
{ "phone": [300, 150] }
{ "phone": 420 }
*/

SQL++ Hello World

February 4, 2019 NoSQL and JSON 68

SELECT x.phone
FROM {{

{"name": "Dan", "phone": [300, 150]},
{"name": "Alvin", "phone": 420}

}} AS x;

-- same output as array data

SQL++ Hello World

February 4, 2019 NoSQL and JSON 69

-- error
SELECT x.phone
FROM {"name": "Dan", "phone": [300, 150]} AS x;

-- output
/*
Type mismatch: function scan-collection expects its
1st input parameter to be type multiset or array,
but the actual input type is object
[TypeMismatchException]
*/

SQL++ Hello World

February 4, 2019 NoSQL and JSON 70

SELECT x.phone
FROM [

{"name": "Dan", "phone": [300, 150]},
{"name": "Alvin", "phone": null}

] AS x;

-- output, null works like in SQL
/*
{ "phone": [300, 150] }
{ "phone": null }
*/

SQL++ Hello World

February 4, 2019 NoSQL and JSON 71

SELECT x.phone
FROM [

{"name": "Dan", "phone": [300, 150]},
{"name": "Alvin"}

] AS x;

-- output, missing data is simply passed over (beware of typos!)
/*
{ "phone": [300, 150] }
{ }
*/

SQL++ Hello World

February 4, 2019 NoSQL and JSON 72

SELECT x.fone -- intentional typo
FROM [

{"name": "Dan", "phone": [300, 150]},
{"name": "Alvin", "phone": 420}

] AS x;

-- output, beware of typos!
/*
{ }
{ }
*/

SQL++ Hello World

February 4, 2019 NoSQL and JSON 73

SELECT x.fone -- intentional typo
FROM [

{"name": "Dan", "phone": [300, 150]},
{"name": "Alvin", "phone": 420}

] AS x;

-- output, beware of typos!
/*
{ }
{ }
*/

SQL++ Hello World

February 4, 2019 NoSQL and JSON 74

FROM [
{"name": "Dan", "phone": [300, 150]},
{"name": "Alvin", "phone": 420}

] AS x
WHERE is_array(x.phone) OR x.phone > 100
GROUP BY x.name, x.phone
HAVING x.name = "Dan" OR x.name = "Alvin"
SELECT x.phone
ORDER BY x.name DESC;

-- output, finally the keyword order matches FWGHOS!
/*
{ "phone": [300, 150] }
{ "phone": 420 }
*/

Next Time

▪ Patterns in querying

semi-structured data

▪ SQL++ behind the mask

February 3, 2019 NoSQL and JSON 75

SQL++

SQL++

SQL++

Relational

Model

