Introduction to Data Management
Parallel Processing

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle
Course Context

- **Phase 1: Core RDBMS (midterm topics)**
 - SQL and RA
 - Logical and Physical Database Design
 - Transactions

- **Interlude: Misc. RDBMS Topics**
 - Distributed Relational Databases
 - Spark query language
 - Datalog query language

- **Phase 2: NoSQL and Streams**
Humans have a tendency to tackle problems that are too big to compute
- Breaking the enigma code (WWII)
 - Using automation (the bombe)
- Computing rocket trajectories (Space Race)
 - Using programming languages (FORTRAN)
- Now: Data driven applications
 - Protein folding
 - Internet of things
 - Financial forecasting
 - Weather prediction
 - Social media platforms
 - ...
The rates at which we generate and use information have outpaced the capabilities of a single computer

Problems:
• Need more speed
• Need more scale
Parallel Computation

Solution: Add more computing nodes
 • Multiple nodes \rightarrow Parallel data management

Most all computers have **multiple cores**

Distributed architecture is easily available on **cloud services**
Speed up:
same data, more nodes \rightarrow higher speed
Scale up:
more data, more nodes \rightarrow same speed

![Graph showing query speed vs. number of computing nodes with an ideal-linear scaleup line.](image-url)
Sublinear Expected Performance

- Parallel computing is not a magic bullet
- Common reasons for sublinear performance:
 - **Overhead cost**
 - Starting and coordinating operations on many nodes
 - **Interference/Contention**
 - Shared resources are not perfectly split
 - **Skew**
 - Process is only as fast as the slowest node
Implementations for Database Parallelism

- **Architecture Parallelism**
 - Shared Memory
 - Shared Disk
 - Shared Nothing*

- **Query Parallelism**
 - Inter-Query Parallelism
 - Intra-Query Parallelism
 - Inter-Operator Parallelism
 - Intra-Operator Parallelism*
Implementations for Database Parallelism

- **Architecture Parallelism**
 - Shared Memory
 - Shared Disk
 - Shared Nothing*

- **Query Parallelism**
 - Inter-Query Parallelism
 - Intra-Query Parallelism
 - Inter-Operator Parallelism
 - Intra-Operator Parallelism*
Shared-Memory Architecture

- Shared main memory and disks
- Your laptop or desktop uses this architecture
- Expensive to scale
- Easiest to implement on

Interconnection Network (Motherboard)

Global Memory

P P P

D D D
Shared-Disk Architecture

- Only shared disks
- No contention for memory and high availability
- Typically 1-10 machines

Interconnection Network (SAN + SCSI)
Shared-Nothing Architecture*

- Uses cheap, commodity hardware
- No contention for memory and high availability
- Theoretically can scale infinitely
- Hardest to implement on

Interconnection Network (TCP)

P
M
D

August 5, 2019
Parallel
Architecture Tradeoffs

Main tradeoff is administration difficulty vs ability to scale

Shared-Memory Architecture

Shared-Disk Architecture

Shared-Nothing Architecture*

Easy to work on

Easy to scale

If you can’t scale, your product dies, and everyone loses their job
Implementations for Database Parallelism

- Architecture Parallelism
 - Shared Memory
 - Shared Disk
 - Shared Nothing*

- Query Parallelism
 - Inter-Query Parallelism
 - Intra-Query Parallelism
 - Inter-Operator Parallelism
 - Intra-Operator Parallelism*
Inter-Query Parallelism

- Each transaction is processed on a separate node
- Scales very well for lots of simple transactions
Inter-Operator Parallelism

- Each operator is processed on a separate node
- Scales very well for complex analytical queries
Intra-Operator Parallelism*

- Each operator is processed by multiple nodes
- Scales well in general
From here, we will assume a system that consists of multiple commodity machines on a common network where nodes may carry out specified relational operations.

New problem: *Where does the data go?*
Unpartitioned Table

- Simplest choice if data can fit on a single node
- Might result in being a bottleneck
Block Partitioning

Tuples are horizontally partitioned by raw size

\[B(R) = K \]

\[B(R_1) = \frac{K}{N} \]

\[B(R_2) = \frac{K}{N} \]

\[B(R_N) = \frac{K}{N} \]
Hash Partitioning

Node contains tuples with chosen attribute hashes

\[R_1, 1 = h(A) \mod N \]
\[R_2, 2 = h(A) \mod N \]
\[R_N, 0 = h(A) \mod N \]
Range Partitioning

Node contains tuples in chosen attribute ranges

\[
\begin{align*}
A & \quad A \\
R_1, \ -\infty < A & \leq v_1 \\
R_2, \ v_1 < A & \leq v_2 \\
R_N, \ v_N < A & < \infty
\end{align*}
\]
The Justin Bieber Effect

- Hashing data to nodes is very good when the attribute chosen better approximates a uniform distribution.
- Keep in mind: Certain nodes will become bottlenecks if a poorly chosen attribute is hashed.
Partitioned Aggregation

1. Hash shuffle tuples
2. Local aggregation

Assume:
R is block partitioned

```sql
SELECT * 
FROM R 
GROUP BY R.A
```
Partitioned Aggregation

1. Hash shuffle tuples
2. Local aggregation

Assume:
R is block partitioned

```
SELECT * 
FROM R 
GROUP BY R.A
```
Partitioned Aggregation

1. Hash shuffle tuples
2. Local aggregation

Assume:
R is block partitioned

```
SELECT * 
FROM R 
GROUP BY R.A
```
Partitioned Aggregation

1. Hash shuffle tuples
2. Local aggregation

Assume:
- R is block partitioned
- \(\gamma \) (R.A)
- SELECT * FROM R GROUP BY R.A
Partitioned Aggregation

1. Hash shuffle tuples
2. Local aggregation

Assume:
R is block partitioned

SELECT *
FROM R
GROUP BY R.A
Partitioned Aggregation

1. Hash shuffle tuples
2. Local aggregation

Would I need to shuffle if R was hash or range partitioned?
Parallel query plans implicitly union at the end
Partitioned Hash Equijoin Algorithm

1. Hash shuffle tuples on join attributes

2. Local join

Assume:
R and S are block partitioned

```
SELECT * 
FROM R, S 
WHERE R.A = S.A
```
Partitioned Hash Equijoin Algorithm

1. Hash shuffle tuples on join attributes
2. Local join

Assume:
- R and S are block partitioned

SELECT * FROM R, S WHERE R.A = S.A
Partitioned Hash Equijoin Algorithm

1. Hash shuffle tuples on join attributes
2. Local join

If S was hash partitioned on A (on the same hash function) would I need to shuffle S? R?
Partitioned Hash Equijoin Algorithm

1. Hash shuffle tuples on join attributes
2. Local join

If S was range partitioned on A would I need to shuffle S? R?
Broadcast Join

1. Broadcast unpartitioned table
2. Local join

Assume:
S is unpartitioned

```
SELECT *
FROM R, S
WHERE R.A = S.A
```
Broadcast Join

1. Broadcast unpartitioned table
2. Local join

Assume:
S is unpartitioned

```
SELECT *  
FROM R, S  
WHERE R.A = S.A
```

Doesn’t matter how R is partitioned!

Broadcast all of S
All queries can be parallelized!

```
SELECT R.A
FROM R, S
WHERE R.A = S.A AND R.A > 10
GROUP BY R.A
HAVING MAX(S.B) < 10
```
Assume:

- \(R \) is block partitioned
- \(S \) is hash partitioned on \(A \)

\[
\begin{align*}
\pi_{R.A} & \sigma_{\text{maxSB}<10} \\
\gamma_{R.A,\text{max(S.B)}\rightarrow\text{maxSB}} & \bowtie_{R.A=S.A} \\
\sigma_{R.A>10} & R \\
& S
\end{align*}
\]
Parallel Query Plan Example

Assume:
R is block partitioned
S is hash partitioned on A

\pi_{R.A} \rightarrow \sigma_{\max S.B < 10} \rightarrow \gamma_{R.A, \max(S.B)\rightarrow \max S.B} \rightarrow \bowtie_{R.A = S.A} \rightarrow \sigma_{R.A > 10} \rightarrow \sigma_{R.A > 10} \rightarrow \sigma_{R.A > 10}
Parallel Query Plan Example

Assume:
R is block partitioned
S is hash partitioned on A

\[\sigma_{R.A > 10} \]
\[\gamma_{R.A, \text{max}(S.B) \rightarrow \text{max}SB} \]
\[\Join_{R.A = S.A} \]
\[\pi_{R.A} \]
\[\sigma_{\text{max}SB < 10} \]
Assume:
R is block partitioned
S is hash partitioned on A
Next Time

- Programming with the Java Spark API