Introduction to Data Management

MapReduce and Spark

Alyssa Pittman
Based on slides by Jonathan Leang, Dan Suciu, et al
Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle
Announcements

▪ HW6 due tomorrow
Recap: Shared-Nothing Architecture

- Uses cheap, commodity hardware
- No contention for memory and high availability
- Theoretically can scale infinitely
- Hardest to implement on
Recap: Partitioned Hash Equijoin

1. Hash shuffle tuples on join attributes
2. Local join

Assume: R and S are block partitioned

```
SELECT * 
FROM R, S 
WHERE R.A = S.A 
```
Broadcast Join

1. Broadcast unpartitioned table
 Assume: S is unpartitioned and small.
   ```sql
   SELECT * 
   FROM R, S 
   WHERE R.A = S.A
   ```

2. Local join

 ![Diagram showing Node 1, Node 2, Node 3, and S with R.A = S.A relationships]
1. Broadcast unpartitioned table
2. Local join

Assume:
- S is unpartitioned and small.

```
SELECT *
FROM R, S
WHERE R.A = S.A
```
Parallel Query Plan Example

All queries can be parallelized!

\[
\begin{align*}
\text{SELECT} & \quad R.A \\
\text{FROM} & \quad R, S \\
\text{WHERE} & \quad R.A = S.A \text{ AND } R.A > 10 \\
\text{GROUP BY} & \quad R.A \\
\text{HAVING} & \quad \text{MAX}(S.B) < 10
\end{align*}
\]
Parallel Query Plan Example

Assume:
R is block partitioned
S is hash partitioned on A
Parallel Query Plan Example

Assume:
R is block partitioned
S is hash partitioned on A

\[\pi_{R.A} \]
\[\sigma_{\text{maxSB}<10} \]
\[\gamma_{R.A, \text{max}(S.B) \rightarrow \text{maxSB}} \]
\[\bowtie_{R.A=S.A} \]
\[\sigma_{R.A>10} \]

\[R \]
\[S \]

\[\sigma_{R.A>10} \]

Node 1

Node 2

Node 3
Parallel Query Plan Example

Assume:
R is block partitioned
S is hash partitioned on A
Parallel Query Plan Example

Assume:
- R is block partitioned
- S is hash partitioned on A

\[\pi_{R.A} \]
\[\sigma_{\max SB < 10} \]
\[\gamma_{R.A, \max(S.B) \rightarrow \max SB} \]
\[\bowtie_{R.A = S.A} \]
\[\sigma_{R.A > 10} \]

Node 1
- hash R.A
- \(\sigma_{R.A > 10} \)

Node 2
- hash R.A
- \(\sigma_{R.A > 10} \)

Node 3
- hash R.A
- \(\sigma_{R.A > 10} \)
What if..

....we don’t want to send the full data everywhere?
...we don’t want to express everything as SQL queries?
Apache Hadoop

- Two-part distributed system of data **storage** and **processing**
 - Storage: **Hadoop Distributed File System (HDFS)**
 - Originated from Google File System published 2003
 - Processing: **Hadoop MapReduce**
 - Algorithm originally published from Google circa 2004
Distributed File System (DFS)

- Purpose is to **store and manage access to large files** (tables) that are terabytes or petabytes large

- 10000-foot view of structure:
 - Files are partitioned into **chunks** (~64MB)
 - Each chunk is **replicated 3+ times** to provide **fault tolerance**

- Lots of different implementations:
 - HDFS
 - Google Cloud Storage (GCS)
 - Amazon S3
 - ...
MapReduce provided a fundamental and easy to use distributed **programming paradigm**

Program pattern for MapReduce:

- **Map:**
 - Read data from disks
 - Extract info from each tuple
 - Transform it into a useful key-value format
- **Shuffle** key-value pairs into groups based on keys
- **Reduce:**
 - Perform analysis on groups
 - Write results to disks

Complex jobs need multiple map-then-reduce phases
MapReduce architecture

Master node keeps track of progress, assigns map and reduce tasks to workers, re-assigns work from failed workers.

Workers read from DFS.

Storage
Storage
Storage
MapReduce Data Model

- A file is a bag of (key, value) pairs
- A MapReduce program
 - Input: a bag of (input key, value) pairs
 - Output: a bag of (output key, value) pairs
- A map step
 - Input: a bag of (input key, value) pairs
 - Output: a bag of (intermediate key, value) pairs
- A (optional) combine step
 - Input: a bag of (intermediate key, value) pairs
 - Output: a bag of (intermediate key, value) pairs
- A reduce step
 - Input: a bag of (intermediate key, value) pairs
 - Output: a bag of (output key, value) pairs
Count the number of times each word appears in a collection of text documents.

Map (Document d):

for each word w in d:
 emitIntermediate(w, 1)

Reduce (String w, Seq<Int> i):

count = 0
for each int n in i:
 count++
emit(w, count)
MapReduce Counting Example

Count the number of times each word appears in a collection of text documents.

\[
\text{Map}(\text{Document } d):
\text{for each word } w \text{ in } d:
\quad \text{emitIntermediate}(w, 1)
\]

\[
\text{Reduce}(\text{String } w, \text{Seq<Int> } i):
\quad \text{count} = 0
\quad \text{for each int } n \text{ in } i:
\quad \quad \text{count}++
\quad \text{emit}(w, \text{count})
\]

```
“apple banana orange”
“orange grapefruit orange”
“apple apple apple”
```

\[
(\text{apple, } 1)
(\text{banana, } 1)
(\text{orange, } 1)
(\text{orange, } 1)
\]

\[
(\text{apple, } 1)
(\text{banana, } 1)
(\text{orange, } 1)
(\text{grapefruit, } 1)
\]

shuffle/group
Let’s say I wanted to implement Partitioned Hash Equijoin from last lecture...

```
SELECT *  
FROM R, S  
WHERE R.A = S.A
```
MapReduce RA Example

Map (Tuple t):
if t is from R:
 emitIntermediate(t.A, (“R”, t))
if t is from S:
 emitIntermediate(t.A, (“S”, t))

Reduce (String s, Seq<(String, Tuple)> ts):
List<Tuple> rs
List<Tuple> ss
for each pair p in ts:
 if p.label = “R”: add p.t to rs
 if p.label = “S”: add p.t to ss
for each tuple tr in rs, ts in ss:
 emit(tr, rs)
Fault Tolerance

- Distributed Systems 101: Something is gonna fail
 - A multi-petabyte job might run on ~10000 servers
 - Say a server fails once per year (~9000) hours
 - We expect a server to fail within an hour

- MapReduce implements fault tolerance via writing results to disk
 - Jobs are slooooonooooonnnnn because of write IOs
 - Can we do something faster?
Apache Spark

- Open source system from UC Berkeley
- **Fast distributed processing on top of HDFS**
 - Spark is not a DBMS
- Used frequently in:
 - ETL pipelines and data streams
 - Machine learning
 - Building other distributed systems (like databases)
Spark Fault Tolerance

- MapReduce is slow if there are intermediate results that must be written to disk
- Spark’s solution: Don’t use disk

Disk read/write cost = 0?!?
Spark Fault Tolerance

- Spark’s solution: **Compute everything in memory but keep track of how it is computed**
- RAM is expensive but getting cheaper
- **Resilient Distributed Dataset (RDD)**
 - A distributed, immutable *relation* and a *lineage*
 - A lineage is essentially an RA plan
- Recovery is easy, fast, and efficient:
 - Failed worker will lose its data
 - Master node detects failure
 - Master node has new worker recompute exactly what was lost by looking at the lineage
Spark vs Hadoop MapReduce

- High memory usage
- High disk usage
Using Spark

- Latest version of Spark: 2.4.4 (Sept 9, 2019)
- Spark APIs for Java, Scala, and Python
- Spark has a SQL interface called SparkSQL
We will stick to tuple and key-value processing in this class.

Java objects we’ll look at:
- SparkSession
- Row
- Dataset<Row>
- JavaRDD<T>
Setting Up Spark

- Local execution configurations:
 1. Install Spark
 2. Profit.
Setting Up Spark

▪ Cluster execution configurations:
 • More involved but still managed by Spark
 1. Install Spark on all nodes
 2. Have all nodes know about each other (via hosts file)
 3. Make sure the master node can SSH into slave nodes
 4. Use provided Spark scripts to spin up the cluster
 • All automatic on cloud services!
 • Amazon Elastic MapReduce (EMR)
 • Google Dataproc
 • Azure Databricks
Cloud Computing

- Up to this point we have only used software-as-a-service (SaaS)
 - Azure Database (SQL Server)
 - Google Dataprep (Trifacta)
- HW7 will use AWS EMR which is classified as platform-as-a-service (PaaS)
Typical categories of products you might see on cloud platforms:

- **SaaS** – Managed end-use software
 - Databases, Google Drive, Slack, Pre-trained AI
- **PaaS** – Managed application development platform
 - Autoscaled application hosting, managed clusters
- **IaaS/HaaS** – Managed hardware
 - Infrastructure-as-a-Service/Hardware-as-a-Service
 - Servers, FPGAs, quantum computers
Creating a Spark Java Application

- Step 1 is to go from building a Java program to building a Spark program.
- The **SparkSession** object is an interface that lets us issue commands in Spark.

```java
SparkSession sparkCluster = SparkSession.builder()  
  .appName("MyApp")  
  .getOrCreate();

SparkSession sparkLocal = SparkSession.builder()  
  .appName("MyApp")  
  .config("spark.master","local")  
  .getOrCreate();
```
Creating a Spark Java Application

- Step 1 is to go from building a Java program to building a Spark program
- The **SparkSession** object is an interface that lets us issue commands in Spark.

```java
SparkSession sparkCluster = SparkSession.builder()
    .appName("MyApp")
    .getOrCreate();

SparkSession sparkLocal = SparkSession.builder()
    .appName("MyApp")
    .config("spark.master", "local")
    .getOrCreate();
```
Creating a Spark Java Application

- Step 1 is to go from building a Java program to building a Spark program.
- The **SparkSession** object is an interface that lets us issue commands in Spark.

```java
SparkSession sparkCluster = SparkSession.builder()
    .appName("MyApp")
    .getOrCreate();

SparkSession sparkLocal = SparkSession.builder()
    .appName("MyApp")
    .config("spark.master", "local")
    .getOrCreate();
```

Give the SparkSession a name
Creating a Spark Java Application

- Step 1 is to go from building a Java program to building a Spark program.
- The **SparkSession** object is an interface that lets us issue commands in Spark.

```java
SparkSession sparkCluster = SparkSession.builder()
    .appName("MyApp")
    .getOrCreate();

SparkSession sparkLocal = SparkSession.builder()
    .appName("MyApp")
    .config("spark.master", "local")
    .getOrCreate();
```

Create the new SparkSession
Creating a Spark Java Application

- Step 1 is to go from building a Java program to building a Spark program.
- The **SparkSession** object is an interface that lets us issue commands in Spark.

```java
SparkSession sparkCluster = SparkSession.builder()
    .appName("MyApp")
    .getOrCreate();

SparkSession sparkLocal = SparkSession.builder()
    .appName("MyApp")
    .config("spark.master", "local")
    .getOrCreate();
```

If we don’t need cluster management, we just say so.
Reading Parquet Data

- Apache Parquet is a data storage format for Hadoop-based systems
- Interpreting Parquet data is prebuilt into Spark

```scala
Dataset<Row> d = sparkCluster.read().parquet("some/file.path");
```
We can label Datasets as tables and then query using SQL directly through Spark.

```java
Dataset<Row> d = sparkCluster.read().parquet("some/file.path");
d.createOrReplaceTempView("myTable");
Dataset<Row> r = sparkCluster.sql("SELECT * FROM myTable WHERE attr = \\
"');
```

- Won’t be checked at compile time
- Will be optimized at runtime
Spark Functional APIs

- JavaRDD<Row> = Collection of data
- Functional API is essentially RA and some extra operators:
 - `agg(...)`
 - `groupBy(...)`
 - `join(...)`
 - `orderBy(...)`
 - `select(...)`
 - `map(...)`
 - `reduce(...)`
 - ...

Transformations and Actions

- Spark functional API:
 - Transformations (map, reduceByKey, join, filter, …)
 - Lazy evaluation
 - JavaRDD → JavaRDD
 - Actions (count, reduce, save, foreach, …)
 - Eager evaluation
 - JavaRDD → Non-Spark format
Lazy versus Eager Evaluation

- **Eager operators** are executed immediately
- **Lazy operators** wait for an eager operator to trigger execution
 - Chained lazy operators will make an operator tree
 - Operator tree is the “lineage” we talked about earlier
 - Spark will optimize the operator tree before execution

```scala
d = sparkCluster.read().parquet("some file path");

// lazy
.d.join(…)
 .crossJoin(…)
 .filter(…)
 .groupBy(…)
 .filter(…)
 .foreach(…); // eager!
```

Optimize like RA
JavaRDD

<table>
<thead>
<tr>
<th>Transformations:</th>
</tr>
</thead>
<tbody>
<tr>
<td>map(f : T -> U): RDD<T> -> RDD<U></td>
</tr>
<tr>
<td>mapToPair(f : T -> K, V): RDD<T> -> RDD<K, V></td>
</tr>
<tr>
<td>flatMap(f: T -> Seq(U)): RDD<T> -> RDD<U></td>
</tr>
<tr>
<td>filter(f:T->Bool): RDD<T> -> RDD<T></td>
</tr>
<tr>
<td>groupByKey(): RDD<(K,V)> -> RDD<(K,Seq[V])></td>
</tr>
<tr>
<td>reduceByKey(F:(V,V)-> V): RDD<(K,V)> -> RDD<(K,V)></td>
</tr>
<tr>
<td>union(): (RDD<T>,RDD<T>) -> RDD<T></td>
</tr>
<tr>
<td>join(): (RDD<(K,V)>,RDD<(K,W)>) -> RDD<(K,(V,W))></td>
</tr>
<tr>
<td>cogroup(): (RDD<(K,V)>,RDD<(K,W)>) ->RDD<(K,(Seq<V>,Seq<W>))></td>
</tr>
<tr>
<td>crossProduct(): (RDD<T>,RDD<U>) -> RDD<(T,U)></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>count(): RDD<T> -> Long</td>
</tr>
<tr>
<td>collect(): RDD<T> -> Seq<T></td>
</tr>
<tr>
<td>reduce(f:(T,T)->T): RDD<T> -> T</td>
</tr>
<tr>
<td>save(path:String): Outputs RDD to a storage system e.g., HDFS</td>
</tr>
</tbody>
</table>
JavaRDDs are built like collections so lambdas are used in transformations rather than strongly-typed Dataset objects

```java
Dataset<Row> d = sparkCluster.read().parquet("some/file.path");
JavaRDD<Row> r = d.javaRDD();
JavaRDD<Row> f = r.filter(row -> row.getString(4).equals("hello there"));
```
Recall: Java 8 introduced anonymous functions (lambda expressions).

```java
errors = lines.filter(l -> l.startsWith("ERROR"));
```

is the same as:

```java
class FilterFn implements Function<Row, Boolean> {
    Boolean call(Row l) {
        return l.startsWith("ERROR");
    }
}
errors = lines.filter(new FilterFn());
```
// Get all lines of a HDFS log file that start with "ERROR"
// and contain "sqlite"

// Create an interface to Spark
SparkSession sparkCluster = SparkSession.builder()
 .appName("MyApp")
 ... // any other configs
 .getOrCreate();

// Acquire data (textFile will delimit by newline)
JavaRDD<String> textFile = sparkCluster.textFile("hdfs://...");

// Form and execute query
List<String> f = r.filter(line -> line.startsWith("ERROR"))
 .filter(line -> line.contains("sqlite"))
 .collect();
Spark 2.0: Dataframes

- Dataframe are implemented on top of RDDs
 - Dataframe = Table
 - JavaRDD = Collection
- Elements are Rows
- Pretty much the same functional API as RDDs
- Add a schema with named columns
 - compile-time query checking!
- Queries are optimized
Spark 2.0: Datasets

- `Dataset<T>` is similar to `Dataframe`
 - `Dataframe = Dataset<Row>`
- `Elements are types you define`
 - `compile-time type checking!`
- Also optimizes queries
// Creates a DataFrame having a single column named "line"
JavaRDD<String> textFile = sc.textFile("hdfs://...");
JavaRDD<Row> rowRDD = textFile.map(RowFactory::create);
List<StructField> fields = Arrays.asList(
 DataTypes.createStructField("severity", DataTypes.StringType, true)
 DataTypes.createStructField("line", DataTypes.StringType, true));
StructType schema = DataTypes.createStructType(fields);
DataFrame df = sqlContext.createDataFrame(rowRDD, schema);

DataFrame errors = df.filter(col("severity").equalTo("ERROR"));
// Fetches the MySQL errors as an array of strings
errors.filter(col("line").like("%MySQL%")).collect();