Worksheet 8

Part 1: Physical Plan Analysis

Compute the cost of each physical plan below. For each select, choose the operation that would
minimize the cost the most. You have the following data:

Places(location)
Symptoms(symptom)
SampleDNA(sid, symptom, sequence, located)
-- located is a foreign key to Places
-- symptom is a foreign key to Symptoms
ExposedPlace(toxin, symptom, located)
-- located is a foreign key to Places
-- symptom is a foreign key to Symptoms

M =100
Unclustered index (located) for SampleDNA

Unclustered index (toxin) for ExposedPlace
Unclustered index (symptom) for ExposedPlace

B(SampleDNA) = 10A5
T(SampleDNA) = 1016

B(ExposedPlace) = 10/4
T(ExposedPlace) = 10A5

B(Places) = 1013
T(Places) = 1016
B(Symptoms) = 10/ 1
T(Symptoms) = 104

N E.symptom = S.symptom
(Hash Join)

Index scan on S
Cost =1+ B(E)

‘ S.location = “Seattle WA"

ExposedPlace SampleDNA
(E) (S)

N E.symptom = S.symptom
(Page-at-a-time Loop Join)

Sequential Scan on E
Cost = B(E) + B(S)

‘ E.location = "Seattle WA"

SampleDNA ExposedPlace
(S) (B)

N E.symptom = S.symptom
(Index Nested Loop Join)

Index scan on S
Cost=1+1

‘ S.location = "Seattle WA"

ExposedPlace SampleDNA
(E) (S)

Part 2: Distributed Computing Problem Solving
Assume for these problems that you have a relation SampleDNA(sid, symptomatic, sequence, located)
Sequences are of, at most, length 2000. All sequences only contain the nucleotides A, T, G, and C.

SampleDNA

sid symptomatic | sequence located
49396937 |T ATTTCGATGCGCGTAAA. .. Seattle WA
68478053 |F ATTCCGATGCGCGAAAA. .. Boston MA

For each of the problems write MapReduce pseudo-code and a Spark function to compute the result.
For MapReduce, assume you are given sid as a key and the remaining attributes as a tuple value.
For Spark, assume you are given an RDD r. Compute the information (don’t worry about outputting).

1. Count number of symptomatic samples that were found in each location. Get the max count (you
don’t need the associated location).

Map (sid, values):
if values.symptomatic then:
emitIntermediate (values.located, sid)
could also be emitIntermediate(values.located, 1)

Reduce (location, list):
emit (list.length)

JavaRDD<> x = r.filter(t -> t.get (SYMPTOMATIC))
.mapToPair (t -> new Tuple2<>(t.get (LOCATED), 1))
.reduceByKey ((vl, v2) -> vl + v2)
.max (new Dummy ())

static class Dummy implements Serializable, Comparator<Row> {
@Override
public int compare(Row ol, Row 02) {
return Integer.compare(ol.get(1l), o2.get(l));

2. For symptomatic samples find the distribution of the nucleotides (i.e. count the number of times
nucleotide X appears in index n), for each nucleotide. Using that information determine which indexes
have an occurrence of nucleotide T greater than 95%. (HW is not nearly this complicated)

Map (sid, wvalues):
if values.symptomatic then:
for k from 0 to values.sequence.length:
emitIntermediate (values.sequence k], k)

Reduce (nucleotide, index list):
distribution = [0] * 2000
for each k in index_list:
distribution [k] ++
emit (nucleotide, distribution)

Map (nucleotide, distribution) :
for k from 0 to 2000:
emitIntermediate (k, (nucleotide, distributionl[k]))

Reduce (index, labeled count list):
total = sum(labeled count list)
if (labeled count_list[“T”] > 0.95 * total):
emit (index)

// This Java is not syntactically correct "\ (V) /
JavaPairRDD<> dist = r.filter(t -> t.get (1))
.flatMapToPair (t -> generateCount (t))
.groupByKey ()
.mapToPair (pair -> generateDist (pair));
JavaRDD<Row> idx = x.flatMapToPair (pair -> generateIndexCount (pair))
.groupByKey ()
.filter(pair -> majorityCheck (pair))
.map (pair -> RowFactory.create(pair._1));

// t should be original rows
private <T> Iterator<Tuple2<>> generateCount (T t) {
List<Tuple2<>> out = new List<Tuple2<>>();
for (int k = 0; k < t.get (SEQUENCE) .length(); k++) {
out.add (new Tuple2<>(t.get (SEQUENCE) .charAt (k), k));
}

return out;

// pair should be (nucleotide, Iterable<index>)
private <T> Iterator<Tuple2<>> generateDist (T pair) {
int[] out = new int[2000];
for (int k : pair._2) {
out [k] ++;
}

return Tuple2<>(pair._1, out);

// pair should be (nucleotide, distribution)
private <T> Iterator<Tuple2<>> generateIndexCount (T pair) {
List<Tuple2<>> out = new List<Tuple2<>>();
for (int k = 0; k < 2000; k++) {
out.add (new Tuple2<>(k, new Tuple2<>(pair._1, pair._2I[k])));
}

return out;

// pair should be (index, Iterable<(nucleotide, count)>)
private <T> boolean majorityCheck (T pair) {
int total = 0;
int tCount = 0;
for (Tuple2<> wval : pair._2) f{
total += val._2;
if (val._1 == ‘T’') tCount = val._2;
}

return tCount > 0.95 * total;

