Section 3 Worksheet
Part 1. Movies and Directors

CREATE TABLE Movie (

movie name VARCHAR (75),

movie id INT,

director_id INT,

year released INT,

budget INT,

PRIMARY KEY (movie id),

FOREIGN KEY (director id) REFERENCES Director(director_id)
) ;

CREATE TABLE Director (
director id INT,
director name VARCHAR(75),
director_ country VARCHAR(75),
PRIMARY KEY(director_ id)

) ;

1. Find the id and name of all directors who have directed more than 20 movies.

* First, notice what the problem is asking of you. With SQL queries, the idea of how they are
written is so that they read like a sentence. From the question, we know that we will [SELECT
director_id and director_name].

*  We also see that we want the property of the count of movies associated with that director being
> 20. Associating movies to a director lends itself naturally to categorization over director_id so
a GROUP BY is probably needed. Also, the property we want to extract is over groups of
movies associated with a director, so a HAVING clause is also needed.

SELECT D.director_id, D.director_ name
FROM Director AS D, Movie AS M
WHERE D.director_id = M.director_id
GROUP BY D.director name, D.director id
HAVING COUNT (*) > 20;



2. For each director, find the corresponding movie that has the highest budget.

* The trigger word here is "corresponding" which indicates a query that performs witnessing (i.e.
a subquery of some sort will likely help).

*  We can split this problem into sub-problems. First is to find the highest budget per director.
Second is to find a movie that corresponds to that max. The first sub-problem is done in the
virtual table MovieMaxBudget below. The second sub-problem should utilize what we have
established. We should ask "how can I find a movie that matches the max budget (from the
virtual table)?" We can just compare budgets of movies directed by director X with the max
budget of director X.

-- This is a partial solution
WITH MovieMaxBudget AS
(SELECT M.director_id AS director_id,
max (M.budget) AS max budget
FROM Movie M
GROUP BY M.director id)
SELECT D.director_name, M.movie name
FROM Movie AS M, Director AS D, MovieMaxBudget AS MMB
WHERE M.director id = D.director_id AND
D.director_id MMB.director id AND
MMB.max_budget = M.budget;

» This question was phrased a bit poorly. A better question would be: "For each director, find [a]
corresponding movie that has the highest budget."

* In this case, we do not care for which movie is picked. We can make a modification to the query
above to generate 1 movie per director. We can do this by grouping on the director and
arbitrarily picking a movie via an aggregate (e.g. max).

WITH MovieMaxBudget AS
(SELECT M.director_id AS director_id,
max (M.budget) AS max budget
FROM Movie M
GROUP BY M.director id)
SELECT D.director_name, max(M.movie name)
FROM Movie AS M, Director AS D, MovieMaxBudget AS MMB
WHERE M.director_id = D.director_id AND
D.director_id = MMB.director_id AND
MMB.max_budget = M.budget;
GROUP BY D.director_ name;



Part 2: Classes and Instructors

CREATE TABLE Class (

dept VARCHAR(6),

number INTEGER,

title VARCHAR(75),

PRIMARY KEY (dept, number)
) ;

CREATE TABLE Instructor (
username VARCHAR(8),
fname VARCHAR(50),
lname VARCHAR(50),
started _on CHAR(10),
PRIMARY KEY (username)

) ;

CREATE TABLE Teaches (

username VARCHAR(8),

dept VARCHAR(6),

number INTEGER,

PRIMARY KEY (username, dept, number),

FOREIGN KEY (username) REFERENCES Instructor (username),

FOREIGN KEY (dept, number) REFERENCES Class (dept, number)
) ;

1. How many classes are being taught by at least one instructor?

* By the nature of our data, we know that any class that appears in Teaches must be taught by at
least 1 teacher. Thus, if we categorize the tuples in Teaches by dept and number (the primary
key of Class), we can get our answer by counting the number of groups.

* The sticking point of this query is how to count the number of groups. One solution is to
SELECT a constant (1) to correspond with a class group. Doing that, we can count the number
of groups in a parent query.

SELECT count(*) AS class count
FROM (SELECT 1
FROM Teaches
GROUP BY dept, number ) X;



2. Which instructors teach more than 1 class? Give the username, first name, and last name of
these instructors.
* There are few way of thinking about this query. One is that for each teacher we can see how
many classes they teach. If you follow this thinking you can check the number of courses taught
in the Teaches table in a subquery.

SELECT I.username, I.fname, I.lname
FROM Instructor AS I
WHERE 1 < (SELECT COUNT (*)
FROM Teaches AS T
WHERE T.username = I.username) ;

* As with most subquery unnesting problems, you should automatically think about if you can
resolve the issue with a GROUP BY and HAVING clause. You’ll notice in the above query that
we are correlating the subquery on username. This lends itself nicely to a GROUP BY on
username because we don’t need to deal with information of tuples not with the specific
instructor that we correlate on or group by.

SELECT I.username, I.fname, I.lname
FROM Instructor AS I, Teaches AS T
WHERE I.username = T.username
GROUP BY I.username, I.fname, I.lname
HAVING COUNT (*) > 1;



3. Which CSE courses do neither Dr. Levy (‘levy’) nor Dr. Wetherall (‘djw’) teach? Give the
department, number, and title of these courses.
* The framing of this question is a negated existential. This hints that a simple SELECT-FROM-
WHERE query (monotonic) will not work.
* As aside note this problem can be formally translated into relational calculus/first-order logic
(think CSE 311):
° T(c,t) :=t teaches c
—Jc.(T(e,’levy’) V T'(e,’djw’))
° Ve.(=T (e, levy’) A =T (e, djw’))
* A gutreaction, if you think of filtering out tuples with levy or djw, might lead to the query
below.

-- This query is wrong
SELECT C.dept, C.number, C.title
FROM Class AS C, Teaches AS T

WHERE C.dept = 'CSE' AND
C.dept = T.dept AND
C.number = T.number AND
(T.username != 'levy' OR
T.username != 'djw');

* The trick to this problem is that more than one instructor may teach a single course. For
example, Dr. Levy might teach CSE 344 (so it shouldn’t be in the output), but another instructor
may teach the course as well (e.g. Dan Suciu). With this example, the above query would
incorrectly return CSE 344 because that specific tuple (Dan Suciu, ..., CSE 344, ...) passes.

* The negated existential can be translated to SQL via the NOT IN keywords.

-- Correct solution
SELECT *
FROM Class AS C
WHERE C.dept = 'CSE' AND
C.number NOT IN (SELECT C.number
FROM Class AS C, Teaches AS T
WHERE C.dept = T.dept AND

C.number = T.number AND
(T.username = 'levy' OR
T.username = 'djw'));



