
ADMINISTRIVIA

• OQ5 Due Tonight (11:00)

• HW6 Due next Wednesday (Feb 28)

• HW4 Grades Out

• Cost-estimation problems

• Fair game for final exam
• Look at previous midterms early
• Also in last quarter’s final

WHAT IS HAPPENING?

What we have been doing

• How to interface with data (SQL, Datalog, SQL++)
• Query execution on a single node (RA, cost estimation)

Next few lectures

• Parallel query execution across multiple nodes

Why do we care about how the query executes?

• Identify where to speed up (indexes)
• Identify where to eliminate bottlenecks

CSE 344
FEBRUARY 23RD – INTRO TO PARALLELISM

TODAY

Parallel architectures and querying options available

• Shared memory, shared disk, or shared nothing
• Inter-query, inter-operator, intra-operator

Execution on a shared-nothing, intra-operator model

• Data partitioning in distributed systems
• Grouping execution
• Join execution

WHY COMPUTE IN PARALLEL?

Access to multiple cores

• Most processors have multiple cores
• This trend will likely increase in the future

“Big Data” size issue

• Too large to fit in main memory
• Too large to fit on a single disk
• Distributed query processing on 100x-1000x servers
• Accessible via cloud services (Azure, AWS, ...)

PERFORMANCE METRICS
FOR PARALLEL DBMS
Nodes = processors, computers

Speedup:

• More nodes, same data → higher speed

Scaleup:

• More nodes, more data → same speed

LINEAR V.S. NON-LINEAR SPEEDUP

nodes

Speedup

×1 ×5 ×10 ×15

Ideal

LINEAR V.S. NON-LINEAR SCALEUP
Scaleup

×1 ×5 ×10 ×15

Ideal

nodes AND data size

WHY SUB-LINEAR
SPEEDUP AND SCALEUP?

Overhead → Startup cost

• Cost of starting an operation on many nodes

Interference

• Contention for resources between nodes
• Waiting for other nodes to finish

Data distribution → Skew

• Slowest node becomes the bottleneck

ARCHITECTURES FOR
PARALLEL DATABASES
Solutions:

 Shared memory

 Shared disk

 Shared nothing

SHARED MEMORY

Nodes share both RAM and disk

Dozens to hundreds of processors

Example: Azure SQL Server

Check out HW3 query plans
(SSMS/Datagrip)

Easy to use and program

Expensive to scale

Interconnection Network

D D D

P P P

Global Shared
Memory

SHARED DISK

All nodes access the same disks

Found in the largest "single-box"
(non-cluster) multiprocessors

Example: Oracle

No need to worry about shared
memory

Still hard to scale

Existing deployments typically have
fewer than 10 machines

D D D

M M M

Interconnection Network

P P P

Cluster of commodity machines on
high-speed network

Each machine has its own memory
and disk: lowest contention.

Examples: Amazon EC2, Google
Compute Engine

Easy to maintain and scale

Most difficult to administer and tune.D D D

M M M

P P P

Interconnection Network

SHARED NOTHING

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

APPROACHES TO
PARALLEL QUERY EVALUATION

Inter-query parallelism

• Transaction per node
• Good for transactional workloads

Inter-operator parallelism

• Operator per node
• Good for analytical workloads

Intra-operator parallelism

• Operator on multiple nodes
• Good for both?

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

DISTRIBUTED QUERY PROCESSING

Data is horizontally partitioned on many servers

Operators may require data reshuffling

First let’s discuss how to distribute data across multiple
nodes / servers

HORIZONTAL DATA
PARTITIONING

1 2 P . . .

Data: Servers:

K A B

… … …

HORIZONTAL DATA
PARTITIONING

K A B

… … …

1 2 P . . .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Which tuples
go to what server?

HORIZONTAL DATA
PARTITIONING

Block Partition:

• Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP)

Hash partitioned on attribute A:

• Tuple t goes to chunk i, where i = h(t.A) mod P + 1
• Recall: calling hash fn is free in this class

Range partitioned on attribute A:

• Partition the range of A into -∞ = v0 < v1 < … < vP = ∞

• Tuple t goes to chunk i, if vi-1 < t.A < vi

UNIFORM DATA V.S.
SKEWED DATA

Let R(K,A,B,C); which of the following partition methods may
result in skewed partitions?

Block partition

Hash-partition

• On the key K
• On the attribute A

Uniform

Uniform

May be skewed

Assuming good
hash function

E.g. when all records
have the same value
of the attribute A, then
all records end up in the
same partition

Keep this in mind in the next few slides

PARALLEL EXECUTION OF RA OPERATORS:
GROUPING

Data: R(K,A,B,C)

Query: γA,sum(C)(R)

How to compute group by if:

R is hash-partitioned on A ?

R is block-partitioned ?

R is hash-partitioned on K ?

PARALLEL EXECUTION OF RA OPERATORS:
GROUPING

Data: R(K,A,B,C)

Query: γA,sum(C)(R)

R is block-partitioned or hash-partitioned on K

R1 R2 RP
. . .

R1’ R2’ RP’
. . .

Reshuffle R
on attribute A

Run grouping
on reshuffled

partitions

SPEEDUP AND SCALEUP

Consider:

• Query: γA,sum(C)(R)

• Runtime: only consider I/O costs

If we double the number of nodes P, what is the new running
time?

• Half (each server holds ½ as many chunks)

If we double both P and the size of R, what is the new
running time?

• Same (each server holds the same # of chunks)

But only if the data is without skew!

SKEWED DATA

R(K,A,B,C)

Informally: we say that the data is skewed if one server holds
much more data than the average

E.g. we hash-partition on A, and some value of A occurs very
many times (“Justin Bieber”)

Then the server holding that value will be skewed

PARALLEL EXECUTION OF RA OPERATORS:
PARTITIONED HASH-JOIN

Data: R(K1, A, B), S(K2, B, C)

Query: R(K1, A, B) S(⋈ K2, B, C)

• Initially, both R and S are partitioned on K1 and K2

R1, S1 R2, S2 RP, SP . . .

R’1, S’1 R’2, S’2 R’P, S’P . . .

Reshuffle R on R.B
and S on S.B

Each server computes
the join locally

PARALLEL JOIN ILLUSTRATION

Data: R(K1,A, B), S(K2, B, C)

Query: R(K1,A,B) S(⋈ K2,B,C)

K1 B

1 20

2 50

K2 B

101 50

102 50

K1 B

3 20

4 20

K2 B

201 20

202 50

R1 S1 R2 S2

K1 B

1 20

3 20

4 20

K2 B

201 20

K1 B

2 50

K2 B

101 50

102 50

202 50

R1’ S1’ R2’ S2’

M1 M2

M1 M2

Shuffle on B

⋈ ⋈

Partition

Local
Join

BROADCAST JOIN

Data: R(A, B), S(C, D)
Query: R(A,B) ⋈B=C S(C,D)

R1 R2 RP. . .

R’1, S R’2, S R’P, S . . .

Reshuffle R on R.B
Broadcast S

S

Why would you want to do this?

EXAMPLE PARALLEL QUERY PLAN

SELECT *
 FROM Order AS O, Item AS i
 WHERE O.item = i.item
 AND O.date = today()

SELECT *
 FROM Order AS O, Item AS i
 WHERE O.item = i.item
 AND O.date = today()

join

select

scan scan

O.date = today()

O.item = i.item

Order
O

Item
i

Find all orders from today, along with the items ordered

Order(oid, item, date), Item(item, …)

PARALLEL QUERY PLAN

Node 1 Node 2 Node 3

select
O.date=today()

select
O.date=today()

select
O.date=today()

scan
Order O

scan
Order O

scan
Order O

hash
h(O.item)

hash
h(O.item)

hash
h(O.item)

Node 1 Node 2 Node 3

join

select

scan

date = today()

o.item = i.item

Order o

Order(oid, item, date), Line(item, …)

PARALLEL QUERY PLAN

Node 1 Node 2 Node 3

scan
Item i

Node 1 Node 2 Node 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

scan
date = today()

o.item = i.item

Order o
Item i

Order(oid, item, date), Line(item, …)

PARALLEL QUERY PLAN

Node 1 Node 2 Node 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all lines where
hash(item) mod 3 + 1= 1

contains all orders and all lines where
hash(item) mod 3 +1 = 2

contains all orders and all lines where
hash(item) mod 3 +1 = 3

Order(oid, item, date), Line(item, …)

A CHALLENGE
Have P number of servers (e.g. P=1000)

How do we compute this Datalog query in one step?

Q(x,y,z) :- R(x,y), S(y,z), T(z,x)

HYPERCUBE JOIN
Have P number of servers (e.g. P=1000)

How do we compute this Datalog query in one step?
Q(x,y,z) = R(x,y),S(y,z),T(z,x)

Organize the P servers into a cube with side P⅓

• Thus, each server is uniquely identified by (i,j,k), i,j,k≤P⅓

Step 1:
• Each server sends R(x,y) to all servers (h(x),h(y),*)
• Each server sends S(y,z) to all servers (*,h(y),h(z))
• Each server sends T(x,z) to all servers (h(x),*,h(z))

Final output:
• Each server (i,j,k) computes the query R(x,y),S(y,z),T(z,x) locally

Analysis: each tuple R(x,y) is replicated at most P⅓ times

i

j

	Administrivia
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Why compute in parallel?
	Performance Metrics for Parallel DBMSs
	Linear v.s. Non-linear Speedup
	Linear v.s. Non-linear Scaleup
	Why Sub-linear Speedup and Scaleup?
	Architectures for Parallel Databases
	Shared Memory
	Shared Disk
	Shared Nothing
	Approaches to Parallel Query Evaluation
	Distributed Query Processing
	Horizontal Data Partitioning
	Horizontal Data Partitioning
	Horizontal Data Partitioning
	Uniform Data v.s. Skewed Data
	Parallel Execution of RA Operators: Grouping
	Parallel Execution of RA Operators: Grouping
	Speedup and Scaleup
	Skewed Data
	Parallel Execution of RA Operators: Partitioned Hash-Join
	Parallel Join Illustration
	Broadcast Join
	Example Parallel Query Plan
	Parallel Query Plan
	Parallel Query Plan
	Example Parallel Query Plan
	A Challenge
	HyperCube Join

