
CSE 344
JANUARY 17TH – SUBQUERIES

GROUPING AND
AGGREGATION
Purchase(product, price, quantity)

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

How is this query processed?

Find total quantities for all sales over $1, by product.

GROUPING AND
AGGREGATION
Purchase(product, price, quantity)

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Find total quantities for all sales over $1, by product.

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
GROUP BY product

Do these queries return the same number of rows? Why?

GROUPING AND
AGGREGATION
Purchase(product, price, quantity)

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Find total quantities for all sales over $1, by product.

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
GROUP BY product

Do these queries return the same number of rows? Why?

Empty groups are removed, hence
first query may return fewer groups

GROUPING AND
AGGREGATION

CSE 344 - 2017au 5

1. Compute the FROM and WHERE clauses.

2. Group by the attributes in the GROUPBY

3. Compute the SELECT clause:
grouped attributes and aggregates.

FWGS
TM

1,2: FROM, WHERE

6

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

FWGS

WHERE	price	>	1

3,4. GROUPING, SELECT

7

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product TotalSales
Bagel 40

Banana 20

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

FWGS

ORDERING RESULTS

CSE 344 - 2017au 8

SELECT product, sum(price*quantity) as rev
FROM Purchase
GROUP BY product
ORDER BY rev desc

FWGOS

Purchase(pid, product, price, quantity, month)

Note: some SQL engines
want you to say ORDER BY sum(price*quantity) desc

TM

HAVING CLAUSE

CSE 344 - 2017au 9

SELECT product, sum(price*quantity)
FROM Purchase
WHERE price > 1
GROUP BY product
HAVING sum(quantity) > 30

Same query as before, except that we consider only products
that had at least 30 sales.

HAVING clause contains conditions on aggregates.

Purchase(pid, product, price, quantity, month)

GENERAL FORM OF
GROUPING
AND AGGREGATION

S = may contain attributes a1,…,ak and/or any
aggregates but NO OTHER ATTRIBUTES

C1 = is any condition on the attributes in R1,…,Rn

C2 = is any condition on aggregate expressions
and on attributes a1,…,ak

CSE 344 - 2017au 10

Why ?

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

SEMANTICS OF SQL
WITH GROUP-BY

CSE 344 - 2017au 11

Evaluation steps:
1. Evaluate FROM-WHERE using Nested Loop Semantics
2. Group by the attributes a1,…,ak

3. Apply condition C2 to each group (may have aggregates)
4. Compute aggregates in S and return the result

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

FWGHOS

EXERCISE

CSE 344 - 2017au 12

Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

Purchase(pid, product, price, quantity, month)

EXERCISE

CSE 344 - 2017au 13

FROM Purchase

Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

Purchase(pid, product, price, quantity, month)

EXERCISE

CSE 344 - 2017au 14

Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

FROM Purchase
GROUP BY month

Purchase(pid, product, price, quantity, month)

EXERCISE

CSE 344 - 2017au 15

Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

FROM Purchase
GROUP BY month
HAVING sum(quantity) < 10

Purchase(pid, product, price, quantity, month)

EXERCISE

CSE 344 - 2017au 16

Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

SELECT month, sum(price*quantity),
sum(quantity) as TotalSold

FROM Purchase
GROUP BY month
HAVING sum(quantity) < 10

Purchase(pid, product, price, quantity, month)

EXERCISE

CSE 344 - 2017au 17

Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

SELECT month, sum(price*quantity),
sum(quantity) as TotalSold

FROM Purchase
GROUP BY month
HAVING sum(quantity) < 10
ORDER BY sum(quantity)

Purchase(pid, product, price, quantity, month)

WHERE VS HAVING

WHERE condition is applied to individual rows
• The rows may or may not contribute to the aggregate
• No aggregates allowed here
• Occasionally, some groups become empty and are

removed

HAVING condition is applied to the entire group
• Entire group is returned, or removed
• May use aggregate functions on the group

CSE 344 - 2017au 18

MYSTERY QUERY

19

SELECT month, sum(quantity), max(price)
FROM Purchase
GROUP BY month

What do they compute?

SELECT month, sum(quantity)
FROM Purchase
GROUP BY month

SELECT month
FROM Purchase
GROUP BY month

Purchase(pid, product, price, quantity, month)

MYSTERY QUERY

20

SELECT month, sum(quantity), max(price)
FROM Purchase
GROUP BY month

What do they compute?

SELECT month, sum(quantity)
FROM Purchase
GROUP BY month

SELECT month
FROM Purchase
GROUP BY month

Lesson:
DISTINCT is
a special case
of GROUP BY

Purchase(pid, product, price, quantity, month)

AGGREGATE + JOIN

Product(pid,pname,manufacturer)
Purchase(id,product_id,price,month)

For each manufacturer, compute how many products
with price > $100 they sold

AGGREGATE + JOIN

Product(pid,pname,manufacturer)
Purchase(id,product_id,price,month)

For each manufacturer, compute how many products
with price > $100 they sold

Problem: manufacturer is in Purchase, price is in Product...

AGGREGATE + JOIN

Product(pid,pname,manufacturer)
Purchase(id,product_id,price,month)

For each manufacturer, compute how many products
with price > $100 they sold

Problem: manufacturer is in Purchase, price is in Product...

-- step 1: think about their join
SELECT ...
FROM Product x, Purchase y
WHERE x.pid = y.product_id
and y.price > 100

manu
facturer ... price ...

Hitachi 150

Canon 300

Hitachi 180

AGGREGATE + JOIN

-- step 2: do the group-by on the join
SELECT x.manufacturer, count(*)
FROM Product x, Purchase y
WHERE x.pid = y.product_id
and y.price > 100

GROUP BY x.manufacturer

Product(pid,pname,manufacturer)
Purchase(id,product_id,price,month)

manu
facturer count(*)

Hitachi 2

Canon 1

...

For each manufacturer, compute how many products
with price > $100 they sold

Problem: manufacturer is in Purchase, price is in Product...

-- step 1: think about their join
SELECT ...
FROM Product x, Purchase y
WHERE x.pid = y.product_id
and y.price > 100

manu
facturer ... price ...

Hitachi 150

Canon 300

Hitachi 180

AGGREGATE + JOIN

SELECT x.manufacturer, y.month, count(*)
FROM Product x, Purchase y
WHERE x.pid = y.product_id
and y.price > 100

GROUP BY x.manufacturer, y.month

Product(pid,pname,manufacturer)
Purchase(id,product_id,price,month)

manu
facturer month count(*)

Hitachi Jan 2

Hitachi Feb 1

Canon Jan 3

...

Variant:
For each manufacturer, compute how many products
with price > $100 they sold in each month

INCLUDING EMPTY
GROUPS
In the result of a group by query, there is one row per group
in the result

CSE 344 - 2017au 26

SELECT x.manufacturer, count(*)
FROM Product x, Purchase y
WHERE x.pname = y.product
GROUP BY x.manufacturer

Count(*) is
never 0

FWGHOS

INCLUDING EMPTY
GROUPS

CSE 344 - 2017au 27

SELECT x.manufacturer, count(y.pid)
FROM Product x LEFT OUTER JOIN Purchase y
ON x.pname = y.product
GROUP BY x.manufacturer

Count(pid) is 0
when all pid’s in

the group are
NULL

SUBQUERIES

A subquery is a SQL query nested inside a larger
query
Such inner-outer queries are called nested queries
A subquery may occur in:

• A SELECT clause
• A FROM clause
• A WHERE clause

Rule of thumb: avoid nested queries when possible
• But sometimes it’s impossible, as we will see

CSE 344 - 2017au 28

SUBQUERIES…
Can return a single value to be included in a
SELECT clause
Can return a relation to be included in the FROM
clause, aliased using a tuple variable
Can return a single value to be compared with
another value in a WHERE clause
Can return a relation to be used in the WHERE or
HAVING clause under an existential quantifier

CSE 344 - 2017au 29

1. SUBQUERIES IN
SELECT

CSE 344 - 2017au 30

Product (pname, price, cid)
Company (cid, cname, city)

For each product return the city where it is manufactured

SELECT X.pname, (SELECT Y.city
FROM Company Y
WHERE Y.cid=X.cid) as City

FROM Product X

What happens if the subquery returns more than one city?

We get a runtime error
(and SQLite simply ignores the extra values…)

“correlated
subquery”

1. SUBQUERIES IN
SELECT

CSE 344 - 2017au 31

Whenever possible, don’t use a nested queries:

SELECT X.pname, Y.city
FROM Product X, Company Y
WHERE X.cid=Y.cid

=

SELECT X.pname, (SELECT Y.city
FROM Company Y
WHERE Y.cid=X.cid) as City

FROM Product X

Product (pname, price, cid)
Company (cid, cname, city)

We have
“unnested”
the query

1. SUBQUERIES IN
SELECT

CSE 344 - 2017au 32

Compute the number of products made by each company

SELECT DISTINCT C.cname, (SELECT count(*)
FROM Product P
WHERE P.cid=C.cid)

FROM Company C

Product (pname, price, cid)
Company (cid, cname, city)

1. SUBQUERIES IN
SELECT

CSE 344 - 2017au 33

Compute the number of products made by each company

SELECT DISTINCT C.cname, (SELECT count(*)
FROM Product P
WHERE P.cid=C.cid)

FROM Company C

Better: we can
unnest using a GROUP
BY

SELECT C.cname, count(*)
FROM Company C, Product P
WHERE C.cid=P.cid
GROUP BY C.cname

Product (pname, price, cid)
Company (cid, cname, city)

1. SUBQUERIES IN
SELECT

CSE 344 - 2017au 34

But are these really equivalent?

SELECT DISTINCT C.cname, (SELECT count(*)
FROM Product P
WHERE P.cid=C.cid)

FROM Company C

SELECT C.cname, count(*)
FROM Company C, Product P
WHERE C.cid=P.cid
GROUP BY C.cname

Product (pname, price, cid)
Company (cid, cname, city)

1. SUBQUERIES IN
SELECT

CSE 344 - 2017au 35

But are these really equivalent?

SELECT DISTINCT C.cname, (SELECT count(*)
FROM Product P
WHERE P.cid=C.cid)

FROM Company C

No! Different results if a company
has no products

SELECT C.cname, count(*)
FROM Company C, Product P
WHERE C.cid=P.cid
GROUP BY C.cname

SELECT C.cname, count(pname)
FROM Company C LEFT OUTER JOIN Product P
ON C.cid=P.cid
GROUP BY C.cname

Product (pname, price, cid)
Company (cid, cname, city)

2. SUBQUERIES IN
FROM

CSE 344 - 2017au 36

Find all products whose prices is > 20 and < 500

SELECT X.pname
FROM (SELECT *

FROM Product AS Y
WHERE price > 20) as X

WHERE X.price < 500

Product (pname, price, cid)
Company (cid, cname, city)

2. SUBQUERIES IN
FROM

CSE 344 - 2017au 37

Find all products whose prices is > 20 and < 500

SELECT X.pname
FROM (SELECT *

FROM Product AS Y
WHERE price > 20) as X

WHERE X.price < 500

Try unnest this query !

Product (pname, price, cid)
Company (cid, cname, city)

2. SUBQUERIES IN
FROM

CSE 344 - 2017au 38

Find all products whose prices is > 20 and < 500

SELECT X.pname
FROM (SELECT *

FROM Product AS Y
WHERE price > 20) as X

WHERE X.price < 500

Try unnest this query !

Product (pname, price, cid)
Company (cid, cname, city)

Side note: This is not a correlated
subquery. (why?)

2. SUBQUERIES IN
FROM

Sometimes we need to compute an intermediate table only to
use it later in a SELECT-FROM-WHERE
Option 1: use a subquery in the FROM clause
Option 2: use the WITH clause

CSE 344 - 2017au 39

2. SUBQUERIES IN
FROM

CSE 344 - 2017au 40

SELECT X.pname
FROM (SELECT *

FROM Product AS Y
WHERE price > 20) as X

WHERE X.price < 500

Product (pname, price, cid)
Company (cid, cname, city)

=
WITH myTable AS (SELECT * FROM Product AS Y WHERE price > 20)
SELECT X.pname
FROM myTable as X
WHERE X.price < 500

A subquery whose
result we called myTable

3. SUBQUERIES IN
WHERE

CSE 344 - 2017au 41

Find all companies that make some products with price < 200

Product (pname, price, cid)
Company (cid, cname, city)

3. SUBQUERIES IN
WHERE

CSE 344 - 2017au 42

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

3. SUBQUERIES IN
WHERE

CSE 344 - 2017au 43

Find all companies that make some products with price < 200

SELECT DISTINCT C.cname
FROM Company C
WHERE EXISTS (SELECT *

FROM Product P
WHERE C.cid = P.cid and P.price < 200)

Existential quantifiers

Using EXISTS:

Product (pname, price, cid)
Company (cid, cname, city)

3. SUBQUERIES IN
WHERE

CSE 344 - 2017au 44

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price < 200)

Using IN

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

3. SUBQUERIES IN
WHERE

CSE 344 - 2017au 45

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 > ANY (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Using ANY:

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

3. SUBQUERIES IN
WHERE

CSE 344 - 2017au 46

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 > ANY (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Using ANY:

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Not supported
in sqlite

3. SUBQUERIES IN
WHERE

CSE 344 - 2017au 47

SELECT DISTINCT C.cname
FROM Company C, Product P
WHERE C.cid = P.cid and P.price < 200

Now let’s unnest it:

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

3. SUBQUERIES IN
WHERE

CSE 344 - 2017au 48

SELECT DISTINCT C.cname
FROM Company C, Product P
WHERE C.cid = P.cid and P.price < 200

Existential quantifiers are easy! J

Now let’s unnest it:

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

3. SUBQUERIES IN
WHERE

CSE 344 - 2017au 49

same as:

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies that make only products with price < 200

Find all companies s.t. all their products have price < 200

3. SUBQUERIES IN
WHERE

CSE 344 - 2017au 50

same as:

Universal quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies that make only products with price < 200

Find all companies s.t. all their products have price < 200

3. SUBQUERIES IN
WHERE

CSE 344 - 2017au 51

Universal quantifiers are hard! L

same as:

Universal quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies that make only products with price < 200

Find all companies s.t. all their products have price < 200

3. SUBQUERIES IN
WHERE

CSE 344 - 2017au 52

1. Find the other companies that make some product ≥ 200

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

3. SUBQUERIES IN
WHERE

CSE 344 - 2017au 53

2. Find all companies s.t. all their products have price < 200

1. Find the other companies that make some product ≥ 200

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid NOT IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

3. SUBQUERIES IN
WHERE

CSE 344 - 2017au 54

SELECT DISTINCT C.cname
FROM Company C
WHERE NOT EXISTS (SELECT *

FROM Product P
WHERE P.cid = C.cid and P.price >= 200)

Using EXISTS:

Universal quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

3. SUBQUERIES IN
WHERE

CSE 344 - 2017au 55

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 >= ALL (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Using ALL:

Universal quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

3. SUBQUERIES IN
WHERE

CSE 344 - 2017au 56

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 >= ALL (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Using ALL:

Universal quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

Not supported
in sqlite

QUESTION FOR
DATABASE THEORY FANS
AND THEIR FRIENDS

Can we unnest the universal quantifier
query?

We need to first discuss the concept of
monotonicity

CSE 344 - 2017au 57

MONOTONE QUERIES
Definition A query Q is monotone if:

• Whenever we add tuples to one or more input tables, the
answer to the query will not lose any of the tuples

CSE 344 - 2017au 58

Product (pname, price, cid)
Company (cid, cname, city)

MONOTONE QUERIES
Definition A query Q is monotone if:

• Whenever we add tuples to one or more input tables, the
answer to the query will not lose any of the tuples

CSE 344 - 2017au 59

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c004

Camera 149.99 c003

Product (pname, price, cid)
Company (cid, cname, city)

cid cname city

c002 Sunworks Bonn

c001 DB Inc. Lyon

c003 Builder Lodtz

Product Company

Q pname city

Gizmo Lyon

Camera Lodtz

MONOTONE QUERIES
Definition A query Q is monotone if:

• Whenever we add tuples to one or more input tables, the
answer to the query will not lose any of the tuples

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c004

Camera 149.99 c003

Product (pname, price, cid)
Company (cid, cname, city)

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c004

Camera 149.99 c003

iPad 499.99 c001

cid cname city

c002 Sunworks Bonn

c001 DB Inc. Lyon

c003 Builder Lodtz

Product Company
pname city

Gizmo Lyon

Camera Lodtz

pname city

Gizmo Lyon

Camera Lodtz

iPad Lyon

Product Company

Q

Qcid cname city

c002 Sunworks Bonn

c001 DB Inc. Lyon

c003 Builder Lodtz

So far it looks monotone...

MONOTONE QUERIES
Definition A query Q is monotone if:

• Whenever we add tuples to one or more input tables, the
answer to the query will not lose any of the tuples

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c004

Camera 149.99 c003

Product (pname, price, cid)
Company (cid, cname, city)

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c004

Camera 149.99 c003

iPad 499.99 c001

cid cname city

c002 Sunworks Bonn

c001 DB Inc. Lyon

c003 Builder Lodtz

Product Company
pname city

Gizmo Lyon

Camera Lodtz

pname city

Gizmo Lodtz

Camera Lodtz

iPad Lyon

Product Company

Q

Qcid cname city

c002 Sunworks Bonn

c001 DB Inc. Lyon

c003 Builder Lodtz

c004 Crafter Lodtz

Q is not monotone!

MONOTONE QUERIES
Theorem: If Q is a SELECT-FROM-WHERE query
that does not have subqueries, and no aggregates,
then it is monotone.

CSE 344 - 2017au 62

MONOTONE QUERIES
Theorem: If Q is a SELECT-FROM-WHERE query
that does not have subqueries, and no aggregates,
then it is monotone.

Proof. We use the nested loop semantics: if we
insert a tuple in a relation Ri, this will not remove
any tuples from the answer

CSE 344 - 2017au 63

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

for x1 in R1 do
for x2 in R2 do

…
for xn in Rn do
if Conditions
output (a1,…,ak)

MONOTONE QUERIES
The query:

is not monotone

64

Find all companies s.t. all their products have price < 200

Product (pname, price, cid)
Company (cid, cname, city)

MONOTONE QUERIES
The query:

is not monotone

65

Find all companies s.t. all their products have price < 200

pname price cid

Gizmo 19.99 c001

cid cname city

c001 Sunworks Bonn

cname

Sunworks

Product (pname, price, cid)
Company (cid, cname, city)

MONOTONE QUERIES
The query:

is not monotone

Consequence: If a query is not monotonic, then we cannot write it
as a SELECT-FROM-WHERE query without nested subqueries

66

Find all companies s.t. all their products have price < 200

pname price cid

Gizmo 19.99 c001

cid cname city

c001 Sunworks Bonn

cname

Sunworks

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c001

cid cname city

c001 Sunworks Bonn

cname

Product (pname, price, cid)
Company (cid, cname, city)

QUERIES THAT MUST
BE NESTED
Queries with universal quantifiers or with
negation

CSE 344 - 2017au 67

QUERIES THAT MUST
BE NESTED
Queries with universal quantifiers or with
negation

Queries that use aggregates in certain
ways

• sum(..) and count(*) are NOT monotone,
because they do not satisfy set containment

• select count(*) from R is not monotone!

CSE 344 - 2017au 68

INTRODUCTI
ON TO DATA
MANAGEMEN
T
CSE 344

LECTURE 7-8: SQL WRAP-UP

RELATIONAL ALGEBRA

CSE 344 - 2017au 69

ANNOUNCEMENTS
You received invitation email to @cs
You will be prompted to choose passwd

• Problems with existing account?
• In the worst case we will ask you to create a new @outlook

account just for this class
If OK, create the database server

• Choose cheapest pricing tier!
Remember: WQ2 due on Friday

70

GROUP BY V.S.
NESTED QUERIES

CSE 344 - 2017au 71

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

SELECT DISTINCT x.product, (SELECT Sum(y.quantity)
FROM Purchase y
WHERE x.product = y.product
AND y.price > 1)

AS TotalSales
FROM Purchase x
WHERE x.price > 1

Why twice ?

Purchase(pid, product, quantity, price)

MORE UNNESTING

CSE 344 - 2017au 72

Author(login,name)
Wrote(login,url)

Find authors who wrote ≥ 10 documents:

MORE UNNESTING

CSE 344 - 2017au 73

SELECT DISTINCT Author.name
FROM Author
WHERE (SELECT count(Wrote.url)

FROM Wrote
WHERE Author.login=Wrote.login)

>= 10

This is
SQL by
a novice

Attempt 1: with nested queries

Author(login,name)
Wrote(login,url)

Find authors who wrote ≥ 10 documents:

MORE UNNESTING

CSE 344 - 2017au 74

Attempt 1: with nested queries

Author(login,name)
Wrote(login,url)

Find authors who wrote ≥ 10 documents:

SELECT Author.name
FROM Author, Wrote
WHERE Author.login=Wrote.login
GROUP BY Author.name
HAVING count(wrote.url) >= 10

This is
SQL by

an expert

Attempt 2: using GROUP BY and HAVING

FINDING WITNESSES

CSE 344 - 2017au 75

Product (pname, price, cid)
Company (cid, cname, city)

For each city, find the most expensive product made in that city

FINDING WITNESSES

CSE 344 - 2017au 76

SELECT x.city, max(y.price)
FROM Company x, Product y
WHERE x.cid = y.cid
GROUP BY x.city;

Finding the maximum price is easy…

But we need the witnesses, i.e., the products with max price

For each city, find the most expensive product made in that city

Product (pname, price, cid)
Company (cid, cname, city)

FINDING WITNESSES

CSE 344 - 2017au 77

To find the witnesses, compute the maximum price
in a subquery (in FROM or in WITH)

Product (pname, price, cid)
Company (cid, cname, city)

WITH CityMax AS
(SELECT x.city, max(y.price) as maxprice
FROM Company x, Product y
WHERE x.cid = y.cid
GROUP BY x.city)

SELECT DISTINCT u.city, v.pname, v.price
FROM Company u, Product v, CityMax w
WHERE u.cid = v.cid

and u.city = w.city
and v.price = w.maxprice;

FINDING WITNESSES

CSE 344 - 2017au 78

To find the witnesses, compute the maximum price
in a subquery (in FROM or in WITH)

SELECT DISTINCT u.city, v.pname, v.price
FROM Company u, Product v,

(SELECT x.city, max(y.price) as maxprice
FROM Company x, Product y
WHERE x.cid = y.cid
GROUP BY x.city) w

WHERE u.cid = v.cid
and u.city = w.city
and v.price = w.maxprice;

Product (pname, price, cid)
Company (cid, cname, city)

FINDING WITNESSES

CSE 344 - 2017au 79

Or we can use a subquery in where clause

SELECT u.city, v.pname, v.price
FROM Company u, Product v
WHERE u.cid = v.cid
and v.price >= ALL (SELECT y.price

FROM Company x, Product y
WHERE u.city=x.city
and x.cid=y.cid);

Product (pname, price, cid)
Company (cid, cname, city)

FINDING WITNESSES

CSE 344 - 2017au 80

There is a more concise solution here:

SELECT u.city, v.pname, v.price
FROM Company u, Product v, Company x, Product y
WHERE u.cid = v.cid and u.city = x.city
and x.cid = y.cid
GROUP BY u.city, v.pname, v.price
HAVING v.price = max(y.price)

Product (pname, price, cid)
Company (cid, cname, city)

