
CSE 344
JANUARY 10TH –JOINS

ADMINISTRATIVE MINUTIAE
• HW1 out

• Piazza post for getting the correct upstream
assignments

• Online Quiz posted
• 6 questions (SQL)

• Both due WED Jan 17
• OH locations posted
• Posting lectures before

ADMINISTRATIVE MINUTIAE
• Office hours

• Jayanth: Mon 11-12, CSE 220
• Colin: Wed 2-3, 5th floor breakout
• Allison: Mon 1-2, CSE 025
• Cindy: Tue 2-3, CSE 023
• James: Tue 10-11, CSE 220
• Jonathan: Tue 4-5, CSE 023
• Joshua : Tue 1-2, CSE 023

RELATIONAL MODEL
Data is a collection of relations / tables:

mathematically, relation is a set of tuples
• each tuple (or entry) must have a value for each attribute
• order of the rows is unspecified

What is the schema for this table?
Company(cname, country, no_employees, for_profit)

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

columns /
attributes /
fields

rows /
tuples /
records

KEYS
Key = one (or multiple) attributes that uniquely identify a
record

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Key Not a key Is this a key?
No: future updates to the
database may create duplicate
no_employees

MULTI-ATTRIBUTE
KEY

fName lName Income Department
Alice Smith 20000 Testing
Alice Thompson 50000 Testing
Bob Thompson 30000 SW
Carol Smith 50000 Testing

Key = fName,lName
(what does this mean?)

MULTIPLE KEYS

SSN fName lName Income Department
111-22-3333 Alice Smith 20000 Testing
222-33-4444 Alice Thompson 50000 Testing
333-44-5555 Bob Thompson 30000 SW
444-55-6666 Carol Smith 50000 Testing

Key Another key

We can choose one key and designate it as primary key
E.g.: primary key = SSN

FOREIGN KEY

cname country no_employees for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y

name population
USA 320M
Japan 127M

Company(cname, country, no_employees, for_profit)
Country(name, population)

Foreign key to
Country.nameCompany

Country

KEYS: SUMMARY
Key = columns that uniquely identify tuple

• Usually we underline
• A relation can have many keys, but only one can be chosen as

primary key
Foreign key:

• Attribute(s) whose value is a key of a record in some other relation
• Foreign keys are sometimes called semantic pointer

DEMO 1
• Common Syntax

• CREATE TABLE [tablename]
([att1] [type1],
[att2] [type2]…);

• INSERT INTO [tablename] VALUES ([val1],[val2]…);
• SELECT [att1],[att2],… FROM [tablename]

WHERE [condition]
• DELETE FROM [tablename]

WHERE [condition]

DEMO 2
• Two other operations we want to support

• ALTER TABLE: Adds a new attribute to the table
• UPDATE: Change the attribute for a particular tuple in the

table.
• Common Syntax

• ALTER TABLE [tablename] ADD [attname] [atttype]
• UPDATE [tablename] SET [attname]=[value]

WHERE [condition]

DISCUSSION
Tables are NOT ordered

• they are sets or multisets (bags)
Tables are FLAT

• No nested attributes
Tables DO NOT prescribe how they are implemented / stored on
disk

• This is called physical data independence

DISCUSSION
• Tables may not be ordered, but data can be returned in an

order with the ORDER BY modifier
• ORDER BY [attname] [DESC/ASC]
• Supports sorting by multiple variables

DISCUSSION
• Tables may not be ordered, but data can be returned in an

order with the ORDER BY modifier
• Whew, today’s been a lot of coding... I know what you’re

thinking…

THEORY BREAK

THEORY BREAK
• We can think of accessing information through queries as

some combination of functions

THEORY BREAK
• We can think of accessing information through queries as

some combination of functions
• Consider a table of UW students (with all relevant info):

THEORY BREAK
• We can think of accessing information through queries as

some combination of functions
• Consider a table of UW students (with all relevant info):

• How would we need to get the birth year of all UWBW
students from California?

THEORY BREAK
• We can think of accessing information through queries as

some combination of functions
• Consider a table of UW students (with all relevant info):

• How would we need to get the birth year of all UWBW
students from California?

• Think of the file as a set of tuples

THEORY BREAK
• We can think of accessing information through queries as

some combination of functions
• Consider a table of UW students (with all relevant info):

• How would we need to get the birth year of all UWBW
students from California?

• Think of the file as a set of tuples
• Find the set of UWBW students and the set of students from

California; Find the intersection of these sets, return just the
year from the birthday values of this set

THEORY BREAK
• We can think of accessing information through queries as

some combination of functions
• Consider a table of UW students (with all relevant info):

• How would we need to get the birth year of all UWBW
students from California?

• Think of the file as a set of tuples
• Find the set of UWBW students and the set of students from

California; Find the intersection of these sets, return just the
year from the birthday values of this set

• What does this return?

THEORY BREAK
• We can think of accessing information through queries as

some combination of functions
• Consider a table of UW students (with all relevant info):

• How would we need to get the birth year of all UWBW
students from California?

• Think of the file as a set of tuples
• Find the set of UWBW students and the set of students from

California; Find the intersection of these sets, return just the
year from the birthday values of this set

• What does this return?
• Years, but with many duplicates. Even though sets don’t allow

duplicates, the objects are unique.

THEORY BREAK
• If we only want to return unique elements, we can use the

DISTINCT modifier
• Even if we hide some attributes from the output, the data is all

still there.
• When we select a subset of the attributes, this function is

called a projection

THEORY BREAK
• This was all for a single table.
• Data models specify how our data are stored

and how the data are related
• Need to utilize these relations, or the database

was pointless
• This involves a JOIN

JOIN: INTRO
• The JOIN is the way we indicate in a query how

multiple tables are related.
• Example, if we want all of the products and their

relevant company information, we need to join
those two tables.

• The result of the join is all of the relevant
information from both tables

• Join occurs based on the join condition.
• This allows us to access information that comes

from multiple tables

JOINS IN SQL

Retrieve all Japanese products that cost < $150

Product(pname, price, category, manufacturer)
Company(cname, country)

pname price category manufacturer
MultiTouch 199.99 gadget Canon
SingleTouch 49.99 photography Canon
Gizom 50 gadget GizmoWorks
SuperGizmo 250.00 gadget GizmoWorks

cname country
GizmoWorks USA
Canon Japan
Hitachi Japan

JOINS IN SQL

Retrieve all Japanese products that cost < $150

Product(pname, price, category, manufacturer)
Company(cname, country)

SELECT pname, price
FROM Product, Company
WHERE ...

pname price category manufacturer
MultiTouch 199.99 gadget Canon
SingleTouch 49.99 photography Canon
Gizom 50 gadget GizmoWorks
SuperGizmo 250.00 gadget GizmoWorks

cname country
GizmoWorks USA
Canon Japan
Hitachi Japan

JOINS IN SQL

Retrieve all Japanese products that cost < $150

Product(pname, price, category, manufacturer)
Company(cname, country)

SELECT pname, price
FROM Product, Company
WHERE manufacturer=cname AND

country='Japan' AND price < 150

pname price category manufacturer
MultiTouch 199.99 gadget Canon
SingleTouch 49.99 photography Canon
Gizom 50 gadget GizmoWorks
SuperGizmo 250.00 gadget GizmoWorks

cname country
GizmoWorks USA
Canon Japan
Hitachi Japan

JOINS IN SQL

Product(pname, price, category, manufacturer)
Company(cname, country)

Retrieve all USA companies
that manufacture “gadget” products

pname price category manufacturer
MultiTouch 199.99 gadget Canon
SingleTouch 49.99 photography Canon
Gizom 50 gadget GizmoWorks
SuperGizmo 250.00 gadget GizmoWorks

cname country
GizmoWorks USA
Canon Japan
Hitachi Japan

JOINS IN SQL

Product(pname, price, category, manufacturer)
Company(cname, country)

pname price category manufacturer
MultiTouch 199.99 gadget Canon
SingleTouch 49.99 photography Canon
Gizom 50 gadget GizmoWorks
SuperGizmo 250.00 gadget GizmoWorks

cname country
GizmoWorks USA
Canon Japan
Hitachi Japan

Retrieve all USA companies
that manufacture “gadget” products

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

Why
DISTINCT?

JOINS IN SQL
The standard join in SQL is sometimes called an inner join

• Each row in the result must come from both tables in the
join

Sometimes we want to include rows from only one of the two
table: outer join

INNER JOIN
Employee
id name
1 Joe
2 Jack
3 Jill

Sales
employeeID productID
1 344
1 355
2 544

Retrieve employees and their sales

Employee(id, name)
Sales(employeeID, productID)

INNER JOIN
Employee
id name
1 Joe
2 Jack
3 Jill

Sales
employeeID productID
1 344
1 355
2 544

Retrieve employees and their sales

SELECT *
FROM Employee E, Sales S
WHERE E.id = S.employeeID

Employee(id, name)
Sales(employeeID, productID)

INNER JOIN
Employee
id name
1 Joe
2 Jack
3 Jill

Sales
employeeID productID
1 344
1 355
2 544

Retrieve employees and their sales

SELECT *
FROM Employee E, Sales S
WHERE E.id = S.employeeID

Employee(id, name)
Sales(employeeID, productID)

id name empolyeeID productID
1 Joe 1 344
1 Joe 1 355
2 Jack 2 544

INNER JOIN
Employee
id name
1 Joe
2 Jack
3 Jill

Sales
employeeID productID
1 344
1 355
2 544

Retrieve employees and their sales

SELECT *
FROM Employee E, Sales S
WHERE E.id = S.employeeID

Employee(id, name)
Sales(employeeID, productID)

id name empolyeeID productID
1 Joe 1 344
1 Joe 1 355
2 Jack 2 544

Jill is
missing

INNER JOIN
Employee
id name
1 Joe
2 Jack
3 Jill

Sales
employeeID productID
1 344
1 355
2 544

Retrieve employees and their sales

SELECT *
FROM Employee E

INNER JOIN
Sales S

ON E.id = S.employeeID

Employee(id, name)
Sales(employeeID, productID)

id name empolyeeID productID
1 Joe 1 344
1 Joe 1 355
2 Jack 2 544

Jill is
missing

Alternative
syntax

OUTER JOIN
Employee
id name
1 Joe
2 Jack
3 Jill

Sales
employeeID productID
1 344
1 355
2 544

Retrieve employees and their sales

SELECT *
FROM Employee E

LEFT OUTER JOIN
Sales S

ON E.id = S.employeeID

Employee(id, name)
Sales(employeeID, productID)

id name empolyeeID productID
1 Joe 1 344
1 Joe 1 355
2 Jack 2 544
3 Jill NULL NULL

Jill is
present

(INNER) JOINS

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

Product(pname, price, category, manufacturer)
Company(cname, country)
-- manufacturer is foreign key to Company

(INNER) JOINS
SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

Product Company

(INNER) JOINS

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

Product Company

(INNER) JOINS

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

Product Company

(INNER) JOINS

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

pname category manufacturer cname country

Gizmo gadget GizmoWorks GizmoWorks USA

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

Product Company

(INNER) JOINS

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

Product Company

(INNER) JOINS

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

Product Company

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

(INNER) JOINS
SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

SELECT DISTINCT cname
FROM Product JOIN Company ON

country = 'USA' AND category = 'gadget'
AND manufacturer = cname

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

