
CSE 344
MARCH 9TH – TRANSACTIONS

ADMINISTRIVIA
• HW8 Due Monday

• Max Two Late days
• Exam Review

• Sunday: 5pm EEB 045

CASE STUDY: SQLITE

SQLite is very simple
More info: http://www.sqlite.org/atomiccommit.html

Lock types
• READ LOCK (to read)
• RESERVED LOCK (to write)
• PENDING LOCK (wants to commit)
• EXCLUSIVE LOCK (to commit)

SQLITE
Step 1: when a transaction begins

Acquire a READ LOCK (aka "SHARED" lock)
All these transactions may read happily
They all read data from the database file
If the transaction commits without writing anything, then it
simply releases the lock

SQLITE

Step 2: when one transaction wants to write
Acquire a RESERVED LOCK
May coexists with many READ LOCKs
Writer TXN may write; these updates are only in main memory;
others don't see the updates
Reader TXN continue to read from the file
New readers accepted
No other TXN is allowed a RESERVED LOCK

SQLITE

Step 3: when writer transaction wants to commit,
it needs exclusive lock, which can’t coexists with read locks

Acquire a PENDING LOCK
May coexists with old READ LOCKs
No new READ LOCKS are accepted
Wait for all read locks to be released

Why not write
to disk right now?

SQLITE

Step 4: when all read locks have been released
Acquire the EXCLUSIVE LOCK
Nobody can touch the database now
All updates are written permanently to the database file

Release the lock and COMMIT

SQLITE

None READ
LOCK

RESERVED
LOCK

PENDING
LOCK

EXCLUSIVE
LOCK

commit executed

begin transaction first write no more read lockscommit requested

commit

SCHEDULE
ANOMALIES
What could go wrong if we didn’t have concurrency control:

• Dirty reads (including inconsistent reads)
• Unrepeatable reads
• Lost updates

Many other things can go wrong too

DIRTY READS

T1: WRITE(A)

T1: ABORT

T2: READ(A)

Write-Read Conflict

INCONSISTENT READ

T1: A := 20; B := 20;
T1: WRITE(A)

T1: WRITE(B)

T2: READ(A);
T2: READ(B);

Write-Read Conflict

UNREPEATABLE READ

T1: WRITE(A)
T2: READ(A);

T2: READ(A);

Read-Write Conflict

LOST UPDATE

T1: READ(A)

T1: A := A+5

T1: WRITE(A)

T2: READ(A);

T2: A := A*1.3

T2: WRITE(A);

Write-Write Conflict

MORE NOTATIONS

Li(A) = transaction Ti acquires lock for element A

Ui(A) = transaction Ti releases lock for element A

A NON-SERIALIZABLE
SCHEDULE

T1 T2
READ(A)
A := A+100
WRITE(A)

READ(A)
A := A*2
WRITE(A)
READ(B)
B := B*2
WRITE(B)

READ(B)
B := B+100
WRITE(B)

EXAMPLE
T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A); L1(B)

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(B);

Scheduler has ensured a conflict-serializable schedule

BUT…
T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A);

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); READ(B)
B := B*2
WRITE(B); U2(B);

L1(B); READ(B)
B := B+100
WRITE(B); U1(B);

Locks did not enforce conflict-serializability !!! What’s wrong ?

TWO PHASE LOCKING
(2PL)

In every transaction, all lock requests
must precede all unlock requests

The 2PL rule:

EXAMPLE: 2PL
TRANSACTIONS
T1 T2
L1(A); L1(B); READ(A)
A := A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B); Now it is conflict-serializable

A NEW PROBLEM:
NON-RECOVERABLE SCHEDULE

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback

A NEW PROBLEM:
NON-RECOVERABLE SCHEDULE

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback
Elements A, B written
by T1 are restored
to their original value.

A NEW PROBLEM:
NON-RECOVERABLE SCHEDULE

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback
Elements A, B written
by T1 are restored
to their original value.

Dirty reads of
A, B lead to
incorrect writes.

A NEW PROBLEM:
NON-RECOVERABLE SCHEDULE

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback
Elements A, B written
by T1 are restored
to their original value. Can no longer undo!

Dirty reads of
A, B lead to
incorrect writes.

STRICT 2PL

All locks are held until commit/abort:
All unlocks are done together with commit/abort.

The Strict 2PL rule:

With strict 2PL, we will get schedules that
are both conflict-serializable and recoverable

STRICT 2PL
T1 T2
L1(A); READ(A)
A :=A+100
WRITE(A);

L2(A); BLOCKED…
L1(B); READ(B)
B :=B+100
WRITE(B);
Rollback & U1(A);U1(B);

…GRANTED; READ(A)
A := A*2
WRITE(A);
L2(B); READ(B)
B := B*2
WRITE(B);

Commit & U2(A); U2(B);

STRICT 2PL
Lock-based systems always use strict 2PL
Easy to implement:

• Before a transaction reads or writes an element A, insert an
L(A)

• When the transaction commits/aborts, then release all locks
Ensures both conflict serializability and recoverability

ANOTHER PROBLEM:
DEADLOCKS
T1: R(A), W(B)
T2: R(B), W(A)

T1 holds the lock on A, waits for B
T2 holds the lock on B, waits for A

This is a deadlock!

ANOTHER PROBLEM:
DEADLOCKS
To detect a deadlocks, search for a cycle in the
waits-for graph:
T1 waits for a lock held by T2;
T2 waits for a lock held by T3;
. . .
Tn waits for a lock held by T1

Relatively expensive: check periodically, if deadlock is found,
then abort one TXN;
re-check for deadlock more often (why?)

LOCK MODES

S = shared lock (for READ)
X = exclusive lock (for WRITE)

None S X
None

S
X

Lock compatibility matrix:

LOCK MODES

S = shared lock (for READ)
X = exclusive lock (for WRITE)

None S X
None ✔ ✔ ✔

S ✔ ✔ ✖

X ✔ ✖ ✖

Lock compatibility matrix:

LOCK GRANULARITY

Fine granularity locking (e.g., tuples)
• High concurrency
• High overhead in managing locks
• E.g., SQL Server

Coarse grain locking (e.g., tables, entire database)
• Many false conflicts
• Less overhead in managing locks
• E.g., SQL Lite

Solution: lock escalation changes granularity as needed

LOCK PERFORMANCE
Th

ro
ug

hp
ut

 (T
PS

)

Active Transactions

thrashing

Why ?

TPS =
Transactions
per second

To avoid, use
admission control

PHANTOM PROBLEM
So far we have assumed the database to be a static collection of
elements (=tuples)

If tuples are inserted/deleted then the phantom problem appears

PHANTOM PROBLEM

Is this schedule serializable ?

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

PHANTOM PROBLEM

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

W2(A3);R1(A1);R1(A2);R1(A1);R1(A2);R1(A3)

PHANTOM PROBLEM

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

PHANTOM PROBLEM
A “phantom” is a tuple that is
invisible during part of a transaction execution
but not invisible during the entire execution

In our example:
• T1: reads list of products
• T2: inserts a new product
• T1: re-reads: a new product appears !

DEALING WITH
PHANTOMS
Lock the entire table
Lock the index entry for ‘blue’

• If index is available
Or use predicate locks

• A lock on an arbitrary predicate

Dealing with phantoms is expensive !

SUMMARY OF
SERIALIZABILITY
Serializable schedule = equivalent to a serial schedule
(strict) 2PL guarantees conflict serializability

• What is the difference?
Static database:

• Conflict serializability implies serializability
Dynamic database:

• This no longer holds

ISOLATION LEVELS IN
SQL

1. “Dirty reads”
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2. “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3. “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4. Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

ACID

1. ISOLATION LEVEL:
DIRTY READS
“Long duration” WRITE locks

• Strict 2PL
No READ locks

• Read-only transactions are never delayed

Possible problems: dirty and inconsistent reads

2. ISOLATION LEVEL:
READ COMMITTED
“Long duration” WRITE locks

• Strict 2PL
“Short duration” READ locks

• Only acquire lock while reading (not 2PL)

Unrepeatable reads:
When reading same element twice,
may get two different values

3. ISOLATION LEVEL:
REPEATABLE READ
“Long duration” WRITE locks

• Strict 2PL
“Long duration” READ locks

• Strict 2PL

This is not serializable yet !!!

Why ?

4. ISOLATION LEVEL
SERIALIZABLE
“Long duration” WRITE locks

• Strict 2PL
“Long duration” READ locks

• Strict 2PL
Predicate locking

• To deal with phantoms

BEWARE!
In commercial DBMSs:
Default level is often NOT serializable
Default level differs between DBMSs
Some engines support subset of levels!
Serializable may not be exactly ACID

• Locking ensures isolation, not atomicity
Also, some DBMSs do NOT use locking and
different isolation levels can lead to different pbs
Bottom line: Read the doc for your DBMS!

