
CSE 344
MARCH 5TH – TRANSACTIONS



ADMINISTRIVIA
• OQ6 Out

• 6 questions
• Due next Wednesday, 11:00pm

• HW7 Shortened
• Parts 1 and 2 -- other material candidates 

for short answer, go over in section
• Course evaluations

• https://uw.iasystem.org/survey/188771
• As of before class -- 13%



ADMINISTRIVIA
• HW8

• Due Friday
• Up to 3 late days on the submission
• No benefit for keeping late days



CLASS OVERVIEW
Unit 1: Intro
Unit 2: Relational Data Models and Query 
Languages
Unit 3: Non-relational data
Unit 4: RDMBS internals and query optimization
Unit 5: Parallel query processing
Unit 6: DBMS usability, conceptual design
Unit 7: Transactions

• Locking and schedules
• Writing DB applications



TRANSACTIONS
We use database transactions everyday

• Bank $$$ transfers
• Online shopping
• Signing up for classes

For this class, a transaction is a series of DB queries
• Read / Write / Update / Delete / Insert
• Unit of work issued by a user that is independent from others



CHALLENGES
Want to execute many apps concurrently

• All these apps read and write data to the same DB

Simple solution: only serve one app at a time
• What’s the problem?

Want: multiple operations to be executed atomically over the 
same DBMS



WHAT CAN GO WRONG?
Manager: balance budgets among projects

• Remove $10k from project A
• Add $7k to project B
• Add $3k to project C

CEO: check company’s total balance
• SELECT SUM(money) FROM budget;

This is called a dirty / inconsistent read 
aka a WRITE-READ conflict



WHAT CAN GO WRONG?
App 1: 
SELECT inventory FROM products WHERE pid = 1

App 2: 
UPDATE products SET inventory = 0 WHERE pid = 1

App 1:
SELECT inventory * price FROM products 
WHERE pid = 1

This is known as an unrepeatable read 
aka READ-WRITE conflict



WHAT CAN GO WRONG?
Account 1 = $100
Account 2 = $100

Total = $200
• App 1:

– Set Account 1 = $200
– Set Account 2 = $0

• App 2:
– Set Account 2 = $200
– Set Account 1 = $0

• At the end:
– Total = $200

• App 1: Set Account 1 = $200

• App 2: Set Account 2 = $200

• App 1: Set Account 2 = $0

• App 2: Set Account 1 = $0

• At the end: 
– Total = $0

This is called the lost update aka WRITE-WRITE conflict



WHAT CAN GO WRONG?
Paying for Tuition (Underwater Basket Weaving)

• Fill up form with your mailing address
• Put in debit card number (because you don’t trust the gov’t)
• Click submit
• Screen shows money deducted from your account
• [Your browser crashes]

Lesson:
Changes to the database
should be ALL or NOTHING



TRANSACTIONS
Collection of statements that are executed atomically (logically 
speaking)

11

BEGIN TRANSACTION 
[SQL statements]

COMMIT or     ROLLBACK (=ABORT)

[single SQL statement]

If BEGIN… missing,
then TXN consists

of a single instruction



KNOW YOUR  
TRANSACTIONS: ACID
Atomic

• State shows either all the effects of txn, or none of them
Consistent

• Txn moves from a DBMS state where integrity holds, to 
another where integrity holds 

• remember integrity constraints?
Isolated

• Effect of txns is the same as txns running one after another 
(i.e., looks like batch mode)

Durable
• Once a txn has committed, its effects remain in the database



ATOMIC
Definition: A transaction is ATOMIC if all its updates must 
happen or not at all.
Example: move $100 from A to B

• UPDATE accounts SET bal = bal – 100 
WHERE acct = A;

• UPDATE accounts SET bal = bal + 100 
WHERE acct = B;

• BEGIN TRANSACTION; 
UPDATE accounts SET bal = bal – 100 WHERE acct 
= A;
UPDATE accounts SET bal = bal + 100 WHERE acct 
= B;
COMMIT;



ISOLATED
• Definition: 

• An execution ensures that transactions are isolated, if the 
effect of each transaction is as if it were the only 
transaction running on the system.



CONSISTENT
Recall: integrity constraints govern how values in tables are 
related to each other

• Can be enforced by the DBMS, or ensured by the app

How consistency is achieved by the app:
• App programmer ensures that txns only takes a consistent DB state 

to another consistent state
• DB makes sure that txns are executed atomically

Can defer checking the validity of constraints until the end of a 
transaction



DURABLE
A transaction is durable if its effects continue to exist after 
the transaction and even after the program has terminated

How? 
• By writing to disk!
• More in 444



ROLLBACK 
TRANSACTIONS
If the app gets to a state where it cannot complete the 
transaction successfully, execute ROLLBACK

The DB returns to the state prior to the transaction

What are examples of such program states?



ACID
Atomic
Consistent
Isolated
Durable

Again: by default each statement is its own txn
• Unless auto-commit is off then each statement starts a 

new txn



A schedule is a sequence 
of interleaved actions 
from all transactions

SCHEDULES



SERIAL SCHEDULE

A serial schedule is one in which transactions are executed one after 
the other, in some sequential order

Fact: nothing can go wrong if the system executes transactions 
serially 

• (up to what we have learned so far)
• But DBMS don’t do that because we want better overall system 

performance



EXAMPLE

T1 T2
READ(A, t) READ(A, s)
t := t+100 s := s*2
WRITE(A, t) WRITE(A,s)
READ(B, t) READ(B,s)
t := t+100 s := s*2
WRITE(B,t) WRITE(B,s)

A and B are elements
in the database

t and s are variables 
in txn source code



EXAMPLE OF A 
(SERIAL) SCHEDULE

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

Ti
m

e



ANOTHER SERIAL 
SCHEDULE

T1 T2
READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

Ti
m

e



REVIEW: SERIALIZABLE 
SCHEDULE

CSE 344 - 2017au 24

A schedule is serializable if it is 
equivalent to a serial schedule



A SERIALIZABLE
SCHEDULE

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

This is a serializable schedule.
This is NOT a serial schedule



A NON-SERIALIZABLE 
SCHEDULE

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)



HOW DO WE KNOW IF A 
SCHEDULE IS 
SERIALIZABLE?

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

Notation:

Key Idea: Focus on conflicting operations



CONFLICTS

Write-Read – WR
Read-Write – RW
Write-Write – WW
Read-Read?



CONFLICT 
SERIALIZABILITY

Conflicts: (i.e., swapping will change program behavior)

ri(X); wi(Y)Two actions by same transaction Ti:

wi(X); wj(X)Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)



CONFLICT 
SERIALIZABILITY

A schedule is conflict serializable if it can be transformed into a serial 
schedule by a series of swappings of adjacent non-conflicting 
actions

Every conflict-serializable schedule is serializable
The converse is not true (why?)



CONFLICT 
SERIALIZABILITY

Example:
r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)



CONFLICT 
SERIALIZABILITY

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)



CONFLICT 
SERIALIZABILITY

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)



CONFLICT 
SERIALIZABILITY

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)



CONFLICT 
SERIALIZABILITY

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B)

….



TESTING FOR CONFLICT-
SERIALIZABILITY

Precedence graph:
• A node for each transaction Ti, 
• An edge from Ti to Tj whenever an action in Ti

conflicts with, and comes before an action in 
Tj

The schedule is conflict-serializable iff the 
precedence graph is acyclic



EXAMPLE 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3



EXAMPLE 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B) 

1 2 3

This schedule is conflict-serializable

AB



EXAMPLE 2

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3



EXAMPLE 2

1 2 3

This schedule is NOT conflict-serializable

A

B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)



SCHEDULER

Scheduler = the module that schedules the transaction’s actions, 
ensuring serializability

Also called Concurrency Control Manager

We discuss next how a scheduler may be implemented



IMPLEMENTING A 
SCHEDULER

Major differences between database vendors
Locking Scheduler

• Aka “pessimistic concurrency control”
• SQLite, SQL Server, DB2

Multiversion Concurrency Control (MVCC)
• Aka “optimistic concurrency control”
• Postgres, Oracle: Snapshot Isolation (SI)

We discuss only locking schedulers in this class



LOCKING SCHEDULER
Simple idea:
Each element has a unique lock
Each transaction must first acquire the lock before 
reading/writing that element
If the lock is taken by another transaction, then wait
The transaction must release the lock(s)

By using locks scheduler ensures conflict-serializability



WHAT DATA ELEMENTS ARE 
LOCKED?

Major differences between vendors:

Lock on the entire database
• SQLite

Lock on individual records
• SQL Server, DB2, etc



CASE STUDY: SQLITE

SQLite is very simple
More info: http://www.sqlite.org/atomiccommit.html

Lock types
• READ LOCK  (to read)
• RESERVED LOCK (to write)
• PENDING LOCK (wants to commit)
• EXCLUSIVE LOCK (to commit)



SQLITE
Step 1: when a transaction begins

Acquire a READ LOCK (aka "SHARED" lock)
All these transactions may read happily
They all read data from the database file
If the transaction commits without writing anything, then it 
simply releases the lock



SQLITE

Step 2: when one transaction wants to write
Acquire a RESERVED LOCK
May coexists with many READ LOCKs
Writer TXN may write; these updates are only in main memory; 
others don't see the updates
Reader TXN continue to read from the file
New readers accepted
No other TXN is allowed a RESERVED LOCK



SQLITE

Step 3: when writer transaction wants to commit,
it needs exclusive lock,  which can’t coexists with read locks

Acquire a PENDING LOCK
May coexists with old READ LOCKs
No new READ LOCKS are accepted
Wait for all read locks to be released

Why not write
to disk right now?



SQLITE

Step 4: when all read locks have been released
Acquire the EXCLUSIVE LOCK
Nobody can touch the database now
All updates are written permanently to the database file

Release the lock and COMMIT



SQLITE

None READ
LOCK

RESERVED
LOCK

PENDING
LOCK

EXCLUSIVE
LOCK

commit executed

begin transaction first write no more read lockscommit requested

commit



SCHEDULE 
ANOMALIES
What could go wrong if we didn’t have concurrency control:

• Dirty reads (including inconsistent reads)
• Unrepeatable reads
• Lost updates

Many other things can go wrong too



DIRTY READS

T1:  WRITE(A) 

T1:  ABORT

T2:  READ(A)

Write-Read Conflict



INCONSISTENT READ

T1:  A := 20;  B := 20;
T1:  WRITE(A) 

T1:  WRITE(B) 

T2:  READ(A);
T2:  READ(B); 

Write-Read Conflict



UNREPEATABLE READ

T1:  WRITE(A) 
T2:  READ(A);

T2:  READ(A); 

Read-Write Conflict



LOST UPDATE

T1: READ(A) 

T1: A := A+5

T1: WRITE(A) 

T2: READ(A);

T2: A := A*1.3

T2: WRITE(A);

Write-Write Conflict



MORE NOTATIONS

Li(A) = transaction Ti acquires lock for element A

Ui(A) = transaction Ti releases lock for element A



A NON-SERIALIZABLE
SCHEDULE

T1 T2
READ(A)
A := A+100
WRITE(A)

READ(A)
A := A*2
WRITE(A)
READ(B)
B := B*2
WRITE(B)

READ(B)
B := B+100
WRITE(B)



EXAMPLE
T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A); L1(B)

L2(A); READ(A)
A := A*2
WRITE(A); U2(A); 
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B); 

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(B); 

Scheduler has ensured a conflict-serializable schedule



BUT…
T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A);

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); READ(B)
B := B*2
WRITE(B); U2(B);

L1(B); READ(B)
B := B+100
WRITE(B); U1(B); 

Locks did not enforce conflict-serializability !!! What’s wrong ?



TWO PHASE LOCKING 
(2PL)

In every transaction, all lock requests 
must precede all unlock requests

The 2PL rule:



EXAMPLE: 2PL 
TRANSACTIONS
T1 T2
L1(A); L1(B); READ(A)
A := A+100
WRITE(A); U1(A) 

L2(A); READ(A)
A := A*2
WRITE(A); 
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B); Now it is conflict-serializable



TWO PHASE LOCKING 
(2PL)

Theorem: 2PL ensures conflict serializability



TWO PHASE LOCKING 
(2PL)

Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C



TWO PHASE LOCKING 
(2PL)

Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:



TWO PHASE LOCKING 
(2PL)

65

Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)    why?

U1(A) happened
strictly before L2(A)



TWO PHASE LOCKING 
(2PL)

Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)    why?



TWO PHASE LOCKING 
(2PL)

Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A) 
L2(A)àU2(B)      why?

L2(A) happened
strictly before U1(A) 



TWO PHASE LOCKING 
(2PL)

Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A) 
L2(A)àU2(B)      why?



TWO PHASE LOCKING 
(2PL)

69

Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B) why?



TWO PHASE LOCKING 
(2PL)

Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)

......etc.....



TWO PHASE LOCKING 
(2PL)

71

Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)
L3(B)àU3(C)
U3(C)àL1(C)
L1(C)àU1(A)

Cycle in time:
Contradiction



A NEW PROBLEM: 
NON-RECOVERABLE SCHEDULE

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A) 

L2(A); READ(A)
A := A*2
WRITE(A); 
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B); 

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B); 
Commit

Rollback



A NEW PROBLEM: 
NON-RECOVERABLE SCHEDULE

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A) 

L2(A); READ(A)
A := A*2
WRITE(A); 
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B); 

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B); 
Commit

Rollback
Elements A, B written
by T1 are restored
to their original value.



A NEW PROBLEM: 
NON-RECOVERABLE SCHEDULE

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A) 

L2(A); READ(A)
A := A*2
WRITE(A); 
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B); 

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B); 
Commit

Rollback
Elements A, B written
by T1 are restored
to their original value.

Dirty reads of
A, B lead to
incorrect writes.



A NEW PROBLEM: 
NON-RECOVERABLE SCHEDULE

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A) 

L2(A); READ(A)
A := A*2
WRITE(A); 
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B); 

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B); 
Commit

Rollback
Elements A, B written
by T1 are restored
to their original value. Can no longer undo!

Dirty reads of
A, B lead to
incorrect writes.



STRICT 2PL

All locks are held until commit/abort:
All unlocks are done together with commit/abort.

The Strict 2PL rule:

With strict 2PL, we will get schedules that
are both conflict-serializable and recoverable



STRICT 2PL
T1 T2
L1(A); READ(A)
A :=A+100
WRITE(A); 

L2(A); BLOCKED…
L1(B); READ(B)
B :=B+100
WRITE(B); 
Rollback & U1(A);U1(B); 

…GRANTED; READ(A)
A := A*2
WRITE(A); 
L2(B); READ(B)
B := B*2
WRITE(B); 

Commit & U2(A); U2(B); 



STRICT 2PL
Lock-based systems always use strict 2PL
Easy to implement:

• Before a transaction reads or writes an element A, insert an 
L(A)

• When the transaction commits/aborts, then release all locks
Ensures both conflict serializability and recoverability



ANOTHER PROBLEM: 
DEADLOCKS
T1:  R(A), W(B)
T2:  R(B), W(A)

T1 holds the lock on A, waits for B
T2 holds the lock on B, waits for A

This is a deadlock!



ANOTHER PROBLEM: 
DEADLOCKS
To detect a deadlocks, search for a cycle in the 
waits-for graph:
T1 waits for a lock held by T2;
T2 waits for a lock held by T3;
. . .
Tn waits for a lock held by T1

Relatively expensive: check periodically, if deadlock is found, 
then abort one TXN;
re-check for deadlock more often (why?)


