
CSE 344
MARCH 2ND – E/R DIAGRAMS

ADMINISTRIVIA
• All HWs Out

• For HW8, if you need additional Azure
credit, send me an email

• Transactions, starting today
• Only one tag for HW8!

DATABASE DESIGN
• What it is:

• Starting from scratch, design the database
schema: relation, attributes, keys, foreign keys,
constraints etc

• Why it’s hard
• The database will be in operation for a very long

time (years). Updating the schema while in
production is very expensive (why?)

3. DESIGN PRINCIPLES

PurchaseProduct Person

What’s wrong?

President PersonCountry

Moral: Be faithful to the specifications of the application!

DESIGN PRINCIPLES:
WHAT’S WRONG?

Purchase

Product

Store

date

personNamepersonAddr

Moral: pick the right
kind of entities.

DESIGN PRINCIPLES:
WHAT’S WRONG?

Purchase

Product

Person

Store

dateDates

Moral: don’t
complicate life more
than it already is.

ENTITY SET TO RELATION

Product

prod-ID category

price

Product(prod-ID, category, price)

prod-ID category price
Gizmo55 Camera 99.99
Pokemn19 Toy 29.99

N-N RELATIONSHIPS TO
RELATIONS

Orders

prod-ID cust-ID

date

Shipment Shipping-Co

address

name
date

Represent this in relations

prod-ID cust-ID name date

Gizmo55 Joe12 UPS 4/10/2011

Gizmo55 Joe12 FEDEX 4/9/2011

N-N RELATIONSHIPS TO
RELATIONS

Orders

prod-ID cust-ID

date

Shipment Shipping-Co

address

name

Orders(prod-ID,cust-ID, date)
Shipment(prod-ID,cust-ID, name, date)
Shipping-Co(name, address)

date

N-1 RELATIONSHIPS
TO RELATIONS

Orders

prod-ID cust-ID

date

Shipment Shipping-Co

address

name
date

Represent this in relations

N-1 RELATIONSHIPS
TO RELATIONS

Orders

prod-ID cust-ID

date

Shipment Shipping-Co

address

name

Orders(prod-ID,cust-ID, date1, name, date2)
Shipping-Co(name, address)

date

Remember: no separate relations for many-one relationship

MULTI-WAY RELATIONSHIPS TO
RELATIONS

Purchase

Product

Person

Storeprod-ID price

ssn name

name address

Purchase(prod-ID, ssn, name)

Try this at home!

MODELING
SUBCLASSES

Some objects in a class may be special
• define a new class
• better: define a subclass

Products

Software
products

Educational
products

So --- we define subclasses in E/R

Product

name category

price

isa isa

Educational ProductSoftware Product

Age Groupplatforms

MODELING
SUBCLASSES

Product

name category

price

isa isa

Educational ProductSoftware Product

Age Groupplatforms

Name Price Category

Gizmo 99 gadget

Camera 49 photo

Toy 39 gadget

Name platforms

Gizmo unix

Product

Sw.Product

Ed.Product

Other ways to convert are possible

Name Age
Group

Gizmo toddler

Toy retired

MODELING
SUBCLASSES

MODELING UNION TYPES
WITH SUBCLASSES

FurniturePiece

Person
Company

Say: each piece of furniture is owned
either by a person or by a company

MODELING UNION TYPES
WITH SUBCLASSES

Say: each piece of furniture is owned either by a person or by a
company
Solution 1. Acceptable but imperfect (What’s wrong ?)

FurniturePiecePerson Company

ownedByPerson ownedByComp.

MODELING UNION TYPES
WITH SUBCLASSES
Solution 2: better, more laborious

isa

FurniturePiece

Person Company
ownedBy

Owner

isa

WEAK ENTITY SETS
Entity sets are weak when their key comes from other
classes to which they are related.

UniversityTeam affiliation

numbersport name

Team(sport, number, universityName)
University(name)

WHAT ARE THE KEYS OF R ?

R

A

B

S

T

V

Q

UW

V

Z

C

D
E G

K

H

F
L

INTEGRITY
CONSTRAINTS
MOTIVATION

ICs help prevent entry of incorrect information
How? DBMS enforces integrity constraints

• Allows only legal database instances (i.e., those that satisfy all
constraints) to exist

• Ensures that all necessary checks are always performed and
avoids duplicating the verification logic in each application

An integrity constraint is a condition specified on a database schema
that restricts the data that can be stored in an instance of the
database.

CONSTRAINTS IN E/R DIAGRAMS
Finding constraints is part of the modeling process.
Commonly used constraints:

Keys: social security number uniquely identifies a person.

Single-value constraints: a person can have only one father.

Referential integrity constraints: if you work for a company, it
must exist in the database.

Other constraints: peoples’ ages are between 0 and 150.

KEYS IN E/R DIAGRAMS

address name ssn

Person

Product

name category

price

No formal way
to specify multiple
keys in E/R diagrams

Underline:

SINGLE VALUE
CONSTRAINTS

makes

makes

vs.

REFERENTIAL
INTEGRITY
CONSTRAINTS

CompanyProduct makes

CompanyProduct makes

Each product made by at most one company.
Some products made by no company

Each product made by exactly one company.

OTHER CONSTRAINTS

CompanyProduct makes
<100

Q: What does this mean ?
A: A Company entity cannot be connected
by relationship to more than 99 Product entities

CONSTRAINTS IN SQL
Constraints in SQL:
Keys, foreign keys
Attribute-level constraints
Tuple-level constraints
Global constraints: assertions

The more complex the constraint, the harder it is to
check and to enforce

simplest

Most
complex

KEY CONSTRAINTS

OR:

CREATE TABLE Product (
name CHAR(30) PRIMARY KEY,
category VARCHAR(20))

CREATE TABLE Product (
name CHAR(30),
category VARCHAR(20),

PRIMARY KEY (name))

Product(name, category)

KEYS WITH MULTIPLE
ATTRIBUTES

CREATE TABLE Product (
name CHAR(30),
category VARCHAR(20),
price INT,

PRIMARY KEY (name, category))

Name Category Price

Gizmo Gadget 10

Camera Photo 20

Gizmo Photo 30

Gizmo Gadget 40

Product(name, category, price)

OTHER KEYS
CREATE TABLE Product (

productID CHAR(10),
name CHAR(30),
category VARCHAR(20),
price INT,
PRIMARY KEY (productID),
UNIQUE (name, category))

There is at most one PRIMARY KEY;
there can be many UNIQUE

FOREIGN KEY CONSTRAINTS

CREATE TABLE Purchase (
prodName CHAR(30)
REFERENCES Product(name),
date DATETIME)

prodName is a foreign key to Product(name)
name must be a key in Product

Referential
integrity

constraints

May write
just Product

if name is PK

FOREIGN KEY
CONSTRAINTS

Example with multi-attribute primary key

(name, category) must be a KEY in Product

CREATE TABLE Purchase (
prodName CHAR(30),
category VARCHAR(20),
date DATETIME,
FOREIGN KEY (prodName, category)

REFERENCES Product(name, category)

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

WHAT HAPPENS WHEN
DATA CHANGES?

Types of updates:
In Purchase: insert/update
In Product: delete/update

SQL has three policies for maintaining referential integrity:
NO ACTION reject violating modifications (default)
CASCADE after delete/update do delete/update
SET NULL set foreign-key field to NULL
SET DEFAULT set foreign-key field to default value

• need to be declared with column, e.g.,
CREATE TABLE Product (pid INT DEFAULT 42)

WHAT HAPPENS WHEN DATA
CHANGES?

MAINTAINING REFERENTIAL
INTEGRITY

CREATE TABLE Purchase (
prodName CHAR(30),
category VARCHAR(20),
date DATETIME,
FOREIGN KEY (prodName, category)

REFERENCES Product(name, category)
ON UPDATE CASCADE
ON DELETE SET NULL)

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Category

Gizmo Gizmo

Snap Camera

EasyShoot Camera

Product Purchase

CONSTRAINTS ON
ATTRIBUTES AND
TUPLES

Constraints on attributes:
NOT NULL -- obvious meaning...
CHECK condition -- any condition !

Constraints on tuples
CHECK condition

CONSTRAINTS ON
ATTRIBUTES AND
TUPLES

CREATE TABLE R (
A int NOT NULL,
B int CHECK (B > 50 and B < 100),
C varchar(20),

D int,
CHECK (C >= 'd' or D > 0))

CONSTRAINTS ON
ATTRIBUTES AND
TUPLES

CREATE TABLE Product (
productID CHAR(10),
name CHAR(30),
category VARCHAR(20),
price INT CHECK (price > 0),
PRIMARY KEY (productID),
UNIQUE (name, category))

CREATE TABLE Purchase (
prodName CHAR(30)

CHECK (prodName IN
(SELECT Product.name
FROM Product),

date DATETIME NOT NULL)

Constraints on
Attributes and Tuples

What
is the difference from

Foreign-Key ?

What does this constraint do?

GENERAL
ASSERTIONS

CREATE ASSERTION myAssert CHECK
(NOT EXISTS(

SELECT Product.name
FROM Product, Purchase
WHERE Product.name = Purchase.prodName
GROUP BY Product.name
HAVING count(*) > 200))

But most DBMSs do not implement assertions
Because it is hard to support them efficiently
Instead, they provide triggers

CLASS OVERVIEW
Unit 1: Intro
Unit 2: Relational Data Models and Query
Languages
Unit 3: Non-relational data
Unit 4: RDMBS internals and query optimization
Unit 5: Parallel query processing
Unit 6: DBMS usability, conceptual design
Unit 7: Transactions

• Locking and schedules
• Writing DB applications

TRANSACTIONS
We use database transactions everyday

• Bank $$$ transfers
• Online shopping
• Signing up for classes

For this class, a transaction is a series of DB queries
• Read / Write / Update / Delete / Insert
• Unit of work issued by a user that is independent from others

CHALLENGES
Want to execute many apps concurrently

• All these apps read and write data to the same DB

Simple solution: only serve one app at a time
• What’s the problem?

Want: multiple operations to be executed atomically over the
same DBMS

WHAT CAN GO WRONG?
Manager: balance budgets among projects

• Remove $10k from project A
• Add $7k to project B
• Add $3k to project C

CEO: check company’s total balance
• SELECT SUM(money) FROM budget;

This is called a dirty / inconsistent read
aka a WRITE-READ conflict

WHAT CAN GO WRONG?
App 1:
SELECT inventory FROM products WHERE pid = 1

App 2:
UPDATE products SET inventory = 0 WHERE pid = 1

App 1:
SELECT inventory * price FROM products
WHERE pid = 1

This is known as an unrepeatable read
aka READ-WRITE conflict

WHAT CAN GO WRONG?
Account 1 = $100
Account 2 = $100

Total = $200
• App 1:

– Set Account 1 = $200
– Set Account 2 = $0

• App 2:
– Set Account 2 = $200
– Set Account 1 = $0

• At the end:
– Total = $200

• App 1: Set Account 1 = $200

• App 2: Set Account 2 = $200

• App 1: Set Account 2 = $0

• App 2: Set Account 1 = $0

• At the end:
– Total = $0

This is called the lost update aka WRITE-WRITE conflict

WHAT CAN GO WRONG?
Paying for Tuition (Underwater Basket Weaving)

• Fill up form with your mailing address
• Put in debit card number (because you don’t trust the gov’t)
• Click submit
• Screen shows money deducted from your account
• [Your browser crashes]

Lesson:
Changes to the database
should be ALL or NOTHING

TRANSACTIONS
Collection of statements that are executed atomically (logically
speaking)

48

BEGIN TRANSACTION
[SQL statements]

COMMIT or ROLLBACK (=ABORT)

[single SQL statement]

If BEGIN… missing,
then TXN consists

of a single instruction

KNOW YOUR
TRANSACTIONS: ACID
Atomic

• State shows either all the effects of txn, or none of them
Consistent

• Txn moves from a DBMS state where integrity holds, to
another where integrity holds

• remember integrity constraints?
Isolated

• Effect of txns is the same as txns running one after another
(i.e., looks like batch mode)

Durable
• Once a txn has committed, its effects remain in the database

ATOMIC
Definition: A transaction is ATOMIC if all its updates must
happen or not at all.
Example: move $100 from A to B

• UPDATE accounts SET bal = bal – 100
WHERE acct = A;

• UPDATE accounts SET bal = bal + 100
WHERE acct = B;

• BEGIN TRANSACTION;
UPDATE accounts SET bal = bal – 100 WHERE acct
= A;
UPDATE accounts SET bal = bal + 100 WHERE acct
= B;
COMMIT;

ISOLATED
• Definition:

• An execution ensures that transactions are isolated, if the
effect of each transaction is as if it were the only
transaction running on the system.

CONSISTENT
Recall: integrity constraints govern how values in tables are
related to each other

• Can be enforced by the DBMS, or ensured by the app

How consistency is achieved by the app:
• App programmer ensures that txns only takes a consistent DB state

to another consistent state
• DB makes sure that txns are executed atomically

Can defer checking the validity of constraints until the end of a
transaction

DURABLE
A transaction is durable if its effects continue to exist after
the transaction and even after the program has terminated

How?
• By writing to disk!
• More in 444

ROLLBACK
TRANSACTIONS
If the app gets to a state where it cannot complete the
transaction successfully, execute ROLLBACK

The DB returns to the state prior to the transaction

What are examples of such program states?

ACID
Atomic
Consistent
Isolated
Durable

Again: by default each statement is its own txn
• Unless auto-commit is off then each statement starts a

new txn

