CSE 344

FEBRUARY 26TH – MAP/REDUCE
ADMINISTRIVIA

• HW6 Due next Wednesday (Feb 28)
• HW4 Grades Out
• HW8 Out tomorrow
 • Due Mar 9th
• HW7 Out Wednesday
 • Need to wait for E/R Diagrams
 • Due Mar 7th
ADMINISTRIVIA

• OQ6 Out Wednesday
 • Only one left after this one
• Course Evaluations
 • Out Saturday
TODAY’S LECTURE

• Map/Reduce
 • Applications
 • Motivation
MOTIVATION

We learned how to parallelize relational database systems

While useful, it might incur too much overhead if our query plans consist of simple operations

MapReduce is a programming model for such computation

First, let’s study how data is stored in such systems
DISTRIBUTED FILE SYSTEM (DFS)

For very large files: TBs, PBs

Each file is partitioned into *chunks*, typically 64MB

Each chunk is replicated several times (≥3), on different racks, for fault tolerance

Implementations:

- Google’s DFS: GFS, proprietary
- Hadoop’s DFS: HDFS, open source
MAPREDUCE

Google: paper published 2004
Free variant: Hadoop

MapReduce = high-level programming model and implementation for large-scale parallel data processing
TYPICAL PROBLEMS SOLVED BY MR

Read a lot of data

Map: extract something you care about from each record

Shuffle and Sort

Reduce: aggregate, summarize, filter, transform

Write the results

Paradigm stays the same, change map and reduce functions for different problems
DATA MODEL

Files!

A file = a bag of \((\text{key}, \text{value})\) pairs

A MapReduce program:
Input: a bag of \((\text{inputkey}, \text{value})\) pairs
Output: a bag of \((\text{outputkey}, \text{value})\) pairs
STEP 1: THE MAP PHASE

User provides the MAP-function:

Input: *(input key, value)*

Output: bag of *(intermediate key, value)*

System applies the map function in parallel to all *(input key, value)* pairs in the input file.
STEP 2: THE REDUCE PHASE

User provides the REDUCE function:

Input: \((\text{intermediate key, bag of values})\)

Output: bag of output \((\text{values})\)

System groups all pairs with the same intermediate key, and passes the bag of values to the REDUCE function
EXAMPLE

Counting the number of occurrences of each word in a large collection of documents

Each Document

- The key = document id (did)
- The value = set of words (word)

map(String key, String value):
 // key: document name
 // value: document contents
 for each word w in value:
 EmitIntermediate(w, "1");

reduce(String key, Iterator values):
 // key: a word
 // values: a list of counts
 int result = 0;
 for each v in values:
 result += ParseInt(v);
 Emit(AsString(result));
MAP

(did1, v1) → (w1, 1)
(did2, v2) → (w2, 1)
(did3, v3) → (w3, 1)
...

REDUCE

(w1, (1, 1, 1, ..., 1)) → (w1, 25)
(w2, (1, 1, ...)) → (w2, 77)
(w3, (1, ...)) → (w3, 12)
...
...
...
...
...

Shuffle
JOBS VS TASKS

A MapReduce Job

- One single “query”, e.g. count the words in all docs
- More complex queries may consists of multiple jobs

A Map Task, or a Reduce Task

- A group of instantiations of the map-, or reduce-function, which are scheduled on a single worker
WORKERS

A worker is a process that executes one task at a time

Typically there is one worker per processor, hence 4 or 8 per node
FAULT TOLERANCE

If one server fails once every year...

... then a job with 10,000 servers will fail in less than one hour

MapReduce handles fault tolerance by writing intermediate files to disk:

- Mappers write file to local disk
- Reducers read the files (=reshuffling); if the server fails, the reduce task is restarted on another server
MAP Tasks (M)

REDUCE Tasks (R)

Shuffle

(did1, v1)

(did2, v2)

(did3, v3)

(w1, 1)

(w2, 1)

(w3, 1)

...

(w1, (1,1,1,...,1))

(w2, (1,1,...))

(w3,(1...))

...

(w1, 25)

(w2, 77)

(w3, 12)

...
MAPREDUCE EXECUTION DETAILS

Reduce (Shuffle)

Map

Data not necessarily local

Intermediate data goes to local disk: \(M \times R \) files (why?)

Output to disk, replicated in cluster

File system: GFS or HDFS
MAPREDUCE PHASES

Map Task

Reduce Task

HDFS

Local storage

file

Split → Record Reader → Map → Combine

Copy → Sort → Reduce

{P 1} {P 2} {P 3} {P 4} {P 5}
IMPLEMENTATION

There is one master node

Master partitions input file into \(M \) splits, by key

Master assigns workers (=servers) to the \(M \) map tasks, keeps track of their progress

Workers write their output to local disk, partition into \(R \) regions

Master assigns workers to the \(R \) reduce tasks

Reduce workers read regions from the map workers’ local disks
INTERESTING IMPLEMENTATION DETAILS

Worker failure:

Master pings workers periodically,

If down then reassigns the task to another worker
Backup tasks:

Straggler = a machine that takes unusually long time to complete one of the last tasks. E.g.:

- Bad disk forces frequent correctable errors (30MB/s → 1MB/s)
- The cluster scheduler has scheduled other tasks on that machine

Stragglers are a main reason for slowdown

Solution: *pre-emptive backup execution of the last few remaining in-progress tasks*
STRAGGLER EXAMPLE

Worker 1

Worker 2

Worker 3

Backup execution

Straggler

Killed

Killed

time
USING MAPREDUCE IN PRACTICE:

IMPLEMENTING RA OPERATORS IN MR
RELATIONAL OPERATORS IN MAPREDUCE

Given relations R(A,B) and S(B, C) compute:

Selection: \(\sigma_{A=123}(R) \)

Group-by: \(\gamma_{A,sum(B)}(R) \)

Join: \(R \bowtie S \)
SELECTION $\Sigma_{A=123}(R)$

map (String value):
if value.A = 123:
 EmitIntermediate(value.key, value);

reduce (String k, Iterator values):
for each v in values:
 Emit(v);
SELECTION \(\Sigma_{A=123}(R) \)

map(String value):
 if value.A = 123:
 EmitIntermediate(value.key, value);

reduce(String k, Iterator values):
 for each v in values:
 Emit(v);

No need for reduce.
But need system hacking in Hadoop to remove reduce from MapReduce
GROUP BY $\Gamma_{A, \sum(B)}(R)$

map(String value):
 EmitIntermediate(value.A, value.B);

reduce(String k, Iterator values):
 s = 0
 for each v in values:
 s = s + v
 Emit(k, v);
JOIN

Two simple parallel join algorithms:

Partitioned hash-join (we saw it, will recap)

Broadcast join
PARTITIONED HASH-JOIN

Initially, both R and S are horizontally partitioned

\[R(A,B) \bowtie_{B=C} S(C,D) \]

Reshuffle R on R.B and S on S.B

Each server computes the join locally
R(A,B) \bowtie_{B=C} S(C,D)

PARTITIONED HASH-JOIN

map(String value):
 case value.relationName of
 ‘R’: EmitIntermediate(value.B, (‘R’, value));
 ‘S’: EmitIntermediate(value.C, (‘S’, value));

reduce(String k, Iterator values):
 R = empty; S = empty;
 for each v in values:
 case v.type of:
 ‘R’: R.insert(v)
 ‘S’: S.insert(v);
 for v1 in R, for v2 in S
 Emit(v1, v2);
BROADCAST JOIN

\[R(A,B) \bowtie_{B=C} S(C,D) \]
R(A,B) \bowtie_{B=C} S(C,D)

BROADCAST JOIN

map(String value):
- open(S); /* over the network */
- hashTbl = new()
- for each w in S:
 - hashTbl.insert(w.C, w)
- close(S);

for each v in value:
 for each w in hashTbl.find(v.B)
 Emit(v,w);

reduce(...):
 /* empty: map-side only */

map should read several records of R:
value = some group of records

Read entire table S, build a Hash Table
CONCLUSIONS

MapReduce offers a simple abstraction, and handles distribution + fault tolerance.

Speedup/scaleup achieved by allocating dynamically map tasks and reduce tasks to available server. However, skew is possible (e.g., one huge reduce task).

Writing intermediate results to disk is necessary for fault tolerance, but very slow.

Spark replaces this with “Resilient Distributed Datasets” = main memory + lineage.