CSE 344

FEBRUARY 26TH – MAP/REDUCE

ADMINISTRIVIA

- HW6 Due next Wednesday (Feb 28)
- HW4 Grades Out
- HW8 Out tomorrow
 - Due Mar 9th
- HW7 Out Wednesday
 - Need to wait for E/R Diagrams
 - Due Mar 7th

ADMINISTRIVIA

- OQ6 Out Wednesday
 - Only one left after this one
- Course Evaluations
 - Out Saturday

TODAY'S LECTURE

- Map/Reduce
 - Applications
 - Motivation

MOTIVATION

We learned how to parallelize relational database systems

While useful, it might incur too much overhead if our query plans consist of simple operations

MapReduce is a programming model for such computation

First, let's study how data is stored in such systems

DISTRIBUTED FILE SYSTEM (DFS)

For very large files: TBs, PBs

Each file is partitioned into *chunks*, typically 64MB

Each chunk is replicated several times (≥3), on different racks, for fault tolerance

Implementations:

- Google's DFS: GFS, proprietary
- Hadoop's DFS: HDFS, open source

Google: paper published 2004

Free variant: Hadoop

MapReduce = high-level programming model and implementation for large-scale parallel data processing

TYPICAL PROBLEMS SOLVED BY MR

Read a lot of data

Map: extract something you care about from each record

Shuffle and Sort

Reduce: aggregate, summarize, filter, transform

Write the results

Paradigm stays the same, change map and reduce functions for different problems

DATA MODEL

Files!

A file = a bag of (key, value) pairs

A MapReduce program: Input: a bag of (inputkey, value) pairs Output: a bag of (outputkey, value) pairs

STEP 1: THE MAP PHASE

User provides the MAP-function: Input: (input key, value) Ouput: bag of (intermediate key, value)

System applies the map function in parallel to all (input key, value) pairs in the input file

STEP 2: THE REDUCE PHASE

User provides the REDUCE function: Input: (intermediate key, bag of values) Output: bag of output (values)

System groups all pairs with the same intermediate key, and passes the bag of values to the REDUCE function

Counting the number of occurrences of each word in a large collection of documents

Each Document

- The key = document id (did)
- The value = set of words (word)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
 EmitIntermediate(w, "1");

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
 result += ParseInt(v);
Emit(AsString(result));

JOBS VS TASKS

A MapReduce Job

- One single "query", e.g. count the words in all docs
- More complex queries may consists of multiple jobs

A Map <u>Task</u>, or a Reduce <u>Task</u>

• A group of instantiations of the map-, or reduce-function, which are scheduled on a single worker

A worker is a process that executes one task at a time

Typically there is one worker per processor, hence 4 or 8 per node

FAULT TOLERANCE

If one server fails once every year...

... then a job with 10,000 servers will fail in less than one hour

MapReduce handles fault tolerance by writing intermediate files to disk:

- Mappers write file to local disk
- Reducers read the files (=reshuffling); if the server fails, the reduce task is restarted on another server

MAPREDUCE EXECUTION DETAILS

MAPREDUCE PHASES

IMPLEMENTATION

There is one master node

Master partitions input file into *M* splits, by key

Master assigns *workers* (=servers) to the *M map tasks*, keeps track of their progress

Workers write their output to local disk, partition into *R regions*

Master assigns workers to the *R* reduce tasks

Reduce workers read regions from the map workers' local disks

INTERESTING IMPLEMENTATION DETAILS

Worker failure:

Master pings workers periodically,

If down then reassigns the task to another worker

INTERESTING IMPLEMENTATION DETAILS

Backup tasks:

Straggler = a machine that takes unusually long time to complete one of the last tasks. E.g.:

- Bad disk forces frequent correctable errors (30MB/s → 1MB/s)
- The cluster scheduler has scheduled other tasks on that machine

Stragglers are a main reason for slowdown

Solution: pre-emptive backup execution of the last few remaining in-progress tasks

USING MAPREDUCE IN PRACTICE:

IMPLEMENTING RA OPERATORS IN MR

RELATIONAL OPERATORS IN MAPREDUCE

Given relations R(A,B) and S(B, C) compute:

Selection: $\sigma_{A=123}(R)$

Group-by: γ_{A,sum(B)}(R)

Join: R ⋈ S

SELECTION Σ_{A=123}(R)

map(String value):
if value.A = 123:
 EmitIntermediate(value.key, value);

reduce(String k, Iterator values):
for each v in values:
 Emit(v);

SELECTION Σ_{A=123}(**R**)

map(String value):
if value.A = 123:
 EmitIntermediate(value.key, value);

No need for reduce. But need system hacking in Hadoop to remove reduce from MapReduce

GROUP BY Γ_{A,SUM(B)}(R)

map(String value):
EmitIntermediate(value.A, value.B);

reduce(String k, Iterator values):
s = 0
for each v in values:
 s = s + v
 Emit(k, v);

Two simple parallel join algorithms:

Partitioned hash-join (we saw it, will recap)

Broadcast join

R(A,B) ⋈_{B=C} S(C,D) **PARTITIONED HASH-**JOIN

R(A,B) ⋈_{B=C} S(C,D) **PARTITIONED HASH-**JOIN

BROADCAST JOIN

$\mathsf{R}(\mathsf{A},\mathsf{B}) \bowtie_{\mathsf{B}=\mathsf{C}} \mathsf{S}(\mathsf{C},\mathsf{D})$

BROADCAST JOIN

map(String value):
open(S); /* over the network */
hashTbl = new()
for each w in S:
 hashTbl.insert(w.C, w)
 close(S);

for each v in value: for each w in hashTbl.find(v.B) Emit(v,w); map should read several records of R: value = some group of records

> Read entire table S, build a Hash Table

reduce(...):
/* empty: map-side only */

CONCLUSIONS

MapReduce offers a simple abstraction, and handles distribution + fault tolerance

Speedup/scaleup achieved by allocating dynamically map tasks and reduce tasks to available server. However, skew is possible (e.g., one huge reduce task)

Writing intermediate results to disk is necessary for fault tolerance, but very slow.

Spark replaces this with "Resilient Distributed Datasets" = main memory + lineage