
CSE 344
JANUARY 5TH – INTRO TO THE
RELATIONAL DATABASE

ADMINISTRATIVE MINUTIAE
•  Midterm Exam: February 9th : 3:30-4:20
•  Final Exam: March 15th : 2:30 – 4:20

ADMINISTRATIVE MINUTIAE
•  Midterm Exam: February 9th : 3:30-4:20
•  Final Exam: March 15th : 2:30 – 4:20
•  HW#1 “Out” on Monday
•  Online Quiz #1 out on Monday
•  Syllabus and course website
•  Expect email w/link to Piazza over the weekend

ADMINISTRATIVE MINUTIAE
•  Midterm Exam: February 9th : 3:30-4:20
•  Final Exam: March 15th : 2:30 – 4:20
•  HW#1 “Out” on Monday
•  Online Quiz #1 out on Monday
•  Syllabus and course website
•  Expect email w/link to Piazza over the weekend
•  Next week: section will be very helpful – setting

up git and SQLite. Don’t hesitate to come to OH
if you’re having trouble – tutorial w/ lecture
slides

CLASS OVERVIEW
Unit 1: Intro
Unit 2: Relational Data Models and Query Languages

•  Data models, SQL RA, Datalog
Unit 3: Non-relational data
Unit 4: RDMBS internals and query optimization
Unit 5: Parallel query processing

Unit 6: DBMS usability, conceptual design
Unit 7: Transactions
Unit 8: Advanced topics (time permitting)

REVIEW

What is a database?
•  A collection of files storing related data

What is a DBMS?

•  An application program that allows us to manage efficiently
the collection of data files

DATA MODELS
Recall our example: want to design a database of books:

•  author, title, publisher, pub date, price, etc
•  How should we describe this data?

Data model = mathematical formalism (or conceptual way) for
describing the data

DATA MODELS
Relational

• Data represented as relations

Semi-structured (Json/XML)
• Data represented as trees

Key-value pairs
• Used by NoSQL systems

Graph
Object-oriented

Unit 2

Unit 3

DATABASES VS.
DATA STRUCTURES
•  What are some important distinctions between

database systems, and data structure systems?

DATABASES VS.
DATA STRUCTURES
•  What are some important distinctions between

database systems, and data structure systems?
•  Structure:

DATABASES VS.
DATA STRUCTURES
•  What are some important distinctions between

database systems, and data structure systems?
•  Structure: Java – concerned with “physical

structure”. DBMS – concerned with “conceptual
structure”

DATABASES VS.
DATA STRUCTURES
•  What are some important distinctions between

database systems, and data structure systems?
•  Structure: Java – concerned with “physical

structure”. DBMS – concerned with “conceptual
structure”

•  Operations: Java – low level, DBMS – restricts
allowable operations. Why?

DATABASES VS.
DATA STRUCTURES
•  What are some important distinctions between

database systems, and data structure systems?
•  Structure: Java – concerned with “physical

structure”. DBMS – concerned with “conceptual
structure”

•  Operations: Java – low level, DBMS – restricts
allowable operations. Efficiency and data control

DATABASES VS.
DATA STRUCTURES
•  What are some important distinctions between

database systems, and data structure systems?
•  Structure: Java – concerned with “physical

structure”. DBMS – concerned with “conceptual
structure”

•  Operations: Java – low level, DBMS – restricts
allowable operations. Efficiency and data control

•  Data constraints:

DATABASES VS.
DATA STRUCTURES
•  What are some important distinctions between

database systems, and data structure systems?
•  Structure: Java – concerned with “physical

structure”. DBMS – concerned with “conceptual
structure”

•  Operations: Java – low level, DBMS – restricts
allowable operations. Efficiency and data control

•  Data constraints: Enforced typing allows us to
maximize our memory usage and to be confident
our operations are successful

3 ELEMENTS OF DATA
MODELS
Instance

•  The actual data
Schema

•  Describe what data is being stored
Query language

•  How to retrieve and manipulate data

RELATIONAL MODEL
Data is a collection of relations / tables:

mathematically, relation is a set of tuples
•  each tuple (or entry) must have a value for each attribute
•  order of the rows is unspecified

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

columns /
attributes /
fields

rows /
tuples /
records

RELATIONAL MODEL
Data is a collection of relations / tables:

mathematically, relation is a set of tuples
•  each tuple (or entry) must have a value for each attribute
•  order of the rows is unspecified

What is the schema for this table?

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

columns /
attributes /
fields

rows /
tuples /
records

RELATIONAL MODEL
Data is a collection of relations / tables:

mathematically, relation is a set of tuples

•  each tuple (or entry) must have a value for each attribute
•  order of the rows is unspecified

What is the schema for this table?
Company(cname, country, no_employees, for_profit)

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

columns /
attributes /
fields

rows /
tuples /
records

THE RELATIONAL DATA MODEL
Degree (arity) of a relation = #attributes
Each attribute has a type.

•  Examples types:
•  Strings: CHAR(20), VARCHAR(50), TEXT
•  Numbers: INT, SMALLINT, FLOAT
•  MONEY, DATETIME, …
•  Few more that are vendor specific

•  Statically and strictly enforced

KEYS
Key = one (or multiple) attributes that uniquely identify a
record

KEYS
Key = one (or multiple) attributes that uniquely identify a
record

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Key

KEYS
Key = one (or multiple) attributes that uniquely identify a
record

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Key Not a key

KEYS
Key = one (or multiple) attributes that uniquely identify a
record

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Key Not a key Is this a key?

KEYS
Key = one (or multiple) attributes that uniquely identify a
record

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Key Not a key Is this a key?

No: future updates to the
database may create duplicate
no_employees

MULTI-ATTRIBUTE
KEY

fName lName Income Department
Alice Smith 20000 Testing
Alice Thompson 50000 Testing
Bob Thompson 30000 SW
Carol Smith 50000 Testing

Key = fName,lName
(what does this mean?)

MULTIPLE KEYS

SSN fName lName Income Department
111-22-3333 Alice Smith 20000 Testing
222-33-4444 Alice Thompson 50000 Testing
333-44-5555 Bob Thompson 30000 SW
444-55-6666 Carol Smith 50000 Testing

Key Another key

We can choose one key and designate it as primary key
E.g.: primary key = SSN

FOREIGN KEY

cname country no_employees for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y

name population
USA 320M
Japan 127M

Company(cname,	 country,	 no_employees,	 for_profit)	
Country(name,	 population)	

Foreign key to
Country.name Company

Country

KEYS: SUMMARY
Key = columns that uniquely identify tuple

•  Usually we underline
•  A relation can have many keys, but only one can be chosen as

primary key
Foreign key:

•  Attribute(s) whose value is a key of a record in some other relation
•  Foreign keys are sometimes called semantic pointer

QUERY LANGUAGE
SQL

•  Structured Query Language
•  Developed by IBM in the 70s
•  Most widely used language to query relational data

Other relational query languages

•  Datalog, relational algebra

OUR FIRST DBMS
SQL Lite
Will switch to SQL Server later in the quarter

DEMO 1

DEMO 1
•  What operations should we expect SQLite (or any DBMS)

to support just on what we know right now?

DEMO 1
•  What operations should we expect SQLite (or any DBMS)

to support just on what we know right now?
•  create table
•  insert into
•  select
•  delete from

DEMO 1
•  What operations should we expect SQLite (or any DBMS)

to support just on what we know right now?
•  create table
•  insert into
•  select
•  delete from

•  What sorts of inputs do these functions need to have?

DEMO 1
•  What operations should we expect SQLite (or any DBMS)

to support just on what we know right now?
•  create table
•  insert into
•  select
•  delete from

•  What sorts of inputs do these functions need to have?

•  create table:

DEMO 1
•  What operations should we expect SQLite (or any DBMS)

to support just on what we know right now?
•  create table
•  insert into
•  select
•  delete from

•  What sorts of inputs do these functions need to have?

•  create table: table name, schema

DEMO 1
•  What operations should we expect SQLite (or any DBMS)

to support just on what we know right now?
•  create table
•  insert into
•  select
•  delete from

•  What sorts of inputs do these functions need to have?

•  create table: table name, schema
•  insert into:

DEMO 1
•  What operations should we expect SQLite (or any DBMS)

to support just on what we know right now?
•  create table
•  insert into
•  select
•  delete from

•  What sorts of inputs do these functions need to have?

•  create table: table name, schema
•  insert into: table name, tuple

DEMO 1
•  What operations should we expect SQLite (or any DBMS)

to support just on what we know right now?
•  create table
•  insert into
•  select
•  delete from

•  What sorts of inputs do these functions need to have?

•  create table: table name, schema
•  insert into: table name, tuple
•  select:

DEMO 1
•  What operations should we expect SQLite (or any DBMS)

to support just on what we know right now?
•  create table
•  insert into
•  select
•  delete from

•  What sorts of inputs do these functions need to have?

•  create table: table name, schema
•  insert into: table name, tuple
•  select: table name, attributes

DEMO 1
•  What operations should we expect SQLite (or any DBMS)

to support just on what we know right now?
•  create table
•  insert into
•  select
•  delete from

•  What sorts of inputs do these functions need to have?

•  create table: table name, schema
•  insert into: table name, tuple
•  select: table name, attributes
•  delete from: table name, condition

DEMO 1
•  What operations should we expect SQLite (or any DBMS)

to support just on what we know right now?
•  create table
•  insert into
•  select
•  delete from

•  What other behavior do we expect from these functions?

DEMO 1
•  What operations should we expect SQLite (or any DBMS)

to support just on what we know right now?
•  create table
•  insert into
•  select
•  delete from

•  What other behavior do we expect from these functions?

•  Much of the behavior is similar to a dictionary from 332.
•  Create table ~= new DS(), insert into ~= insert(k,v), select !

~= find(k), delete from ~= remove(k)

DEMO 1
•  What operations should we expect SQLite (or any DBMS)

to support just on what we know right now?
•  create table
•  insert into
•  select
•  delete from

•  What other behavior do we expect from these functions?

•  Much of the behavior is similar to a dictionary from 332.
•  Create table ~= new DS(), insert into ~= insert(k,v), select !

~= find(k), delete from ~= remove(k)
•  Also have the key constraints!

DEMO 1
•  Common Syntax

•  CREATE TABLE [tablename]
 ([att1] [type1],
 [att2] [type2]…);

•  INSERT INTO [tablename] VALUES ([val1],[val2]…);
•  SELECT * FROM [tablename]

DEMO 1
•  Common Syntax

•  CREATE TABLE [tablename]
 ([att1] [type1],
 [att2] [type2]…);

•  INSERT INTO [tablename] VALUES ([val1],[val2]…);
•  SELECT [att1],[att2],… FROM [tablename]

DEMO 1
•  Common Syntax

•  CREATE TABLE [tablename]
 ([att1] [type1],
 [att2] [type2]…);

•  INSERT INTO [tablename] VALUES ([val1],[val2]…);
•  SELECT [att1],[att2],… FROM [tablename]

WHERE [condition]

DEMO 1
•  Common Syntax

•  CREATE TABLE [tablename]
 ([att1] [type1],
 [att2] [type2]…);

•  INSERT INTO [tablename] VALUES ([val1],[val2]…);
•  SELECT [att1],[att2],… FROM [tablename]

WHERE [condition]
•  DELETE FROM [tablename]

DEMO 1
•  Common Syntax

•  CREATE TABLE [tablename]
 ([att1] [type1],
 [att2] [type2]…);

•  INSERT INTO [tablename] VALUES ([val1],[val2]…);
•  SELECT [att1],[att2],… FROM [tablename]

WHERE [condition]
•  DELETE FROM [tablename]

WHERE [condition]

DEMO 1

DISCUSSION
•  Two other operations we want to support

•  ALTER TABLE: Adds a new attribute to the table
•  UPDATE: Change the attribute for a particular tuple in the

table.
•  Common Syntax

•  ALTER TABLE [tablename] ADD [attname] [atttype]
•  UPDATE [tablename] SET [attname]=[value]

DISCUSSION
•  Two other operations we want to support

•  ALTER TABLE: Adds a new attribute to the table
•  UPDATE: Change the attribute for a particular tuple in the

table.
•  Common Syntax

•  ALTER TABLE [tablename] ADD [attname] [atttype]
•  UPDATE [tablename] SET [attname]=[value]

WHERE [condition]

DEMO 2

DISCUSSION
Tables are NOT ordered

•  they are sets or multisets (bags)
Tables are FLAT

•  No nested attributes
Tables DO NOT prescribe how they are implemented / stored on
disk

•  This is called physical data independence

TABLE
IMPLEMENTATION

How would you implement this?

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

TABLE
IMPLEMENTATION

How would you implement this?

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Row major: as an array of objects

GizmoWorks
USA
20000
True

Canon
Japan
50000
True

Hitachi
Japan
30000
True

HappyCam
Canada
500
False

TABLE
IMPLEMENTATION

How would you implement this?

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Column major: as one array per attribute

GizmoWorks Canon Hitachi HappyCam

USA Japan Japan Canada

True True True False

20000 50000 30000 500

TABLE
IMPLEMENTATION

How would you implement this?

Physical data independence
The logical definition of the data remains
unchanged, even when we make changes to
the actual implementation

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

FIRST NORMAL FORM

All relations must be flat: we say that the
relation is in first normal form

cname country no_employees for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y

FIRST NORMAL FORM

All relations must be flat: we say that the
relation is in first normal form
E.g. we want to add products manufactured
by each company:

cname country no_employees for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y

FIRST NORMAL FORM

All relations must be flat: we say that the
relation is in first normal form
E.g. we want to add products manufactured
by each company:

cname country no_employees for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y

cname country no_employees for_profit products

Canon Japan 50000 Y

Hitachi Japan 30000 Y

pname price category

AC 300 Appliance

pname price category

SingleTouch 149.99 Photography

Gadget 200 Toy

FIRST NORMAL FORM

All relations must be flat: we say that the
relation is in first normal form
E.g. we want to add products manufactured
by each company:

cname country no_employees for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y

cname country no_employees for_profit products

Canon Japan 50000 Y

Hitachi Japan 30000 Y

pname price category

AC 300 Appliance

pname price category

SingleTouch 149.99 Photography

Gadget 200 Toy

Non-1NF!

FIRST NORMAL FORM

cname country no_employees for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y

pname price category manufacturer
SingleTouch 149.99 Photography Canon
AC 300 Appliance Hitachi
Gadget 200 Toy Canon

Company

Products

Now it’s in 1NF

DEMO 3

DATA MODELS:
SUMMARY
Schema + Instance + Query language
Relational model:

•  Database = collection of tables
•  Each table is flat: “first normal form”
•  Key: may consists of multiple attributes
•  Foreign key: “semantic pointer”
•  Physical data independence

