
CSE 344
FEBRUARY 16TH – DISK I/O AND
ESTIMATION

ADMINISTRIVIA
• HW6/OQ5 out after class

• HW6 Due Wednesday, Feb 28th

• OQ5 Due Friday, Feb 23rd

• Office hours for exam regrades
• Additional HW5 OH on Wednesday

HW6 AWS
• Making account

• Use accurate information (matching
academic records)

• Create full account – not ‘starter code’
• Be sure to terminate services when done

INDEX

An additional file, that allows fast access to records in the data file
given a search key
The index contains (key, value) pairs:

• The key = an attribute value (e.g., student ID or name)
• The value = a pointer to the record

Could have many indexes for one table

Key = means here search key

KEYS IN INDEXING
Different keys:
Primary key – uniquely identifies a tuple
Key of the sequential file – how the data file is sorted, if at all
Index key – how the index is organized

EXAMPLE 1:
INDEX ON ID

10

20

50

200

220

240

420

800

Data File Student

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800
950

…

Index Student_ID on Student.ID

EXAMPLE 2:
INDEX ON FNAME

Index Student_fName
on Student.fName

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

Amy

Ann

Bob

Cho

…

…

…

…

…

…

Tom

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800

Data File Student

INDEX ORGANIZATION
We need a way to represent indexes after loading into memory
so that they can be used
Several ways to do this:
Hash table
B+ trees – most popular

• They are search trees, but they are not binary instead have
higher fanout

• Will discuss them briefly next
Specialized indexes: bit maps, R-trees, inverted index

CLUSTERED VS
UNCLUSTERED

Index entries
(Index File)

(Data file)

Data Records

Index entries

Data Records
CLUSTERED UNCLUSTERED

B+ Tree B+ Tree

INDEX
CLASSIFICATION
Clustered/unclustered

• Clustered = records close in index are close in data
• Option 1: Data inside data file is sorted on disk
• Option 2: Store data directly inside the index (no separate files)

• Unclustered = records close in index may be far in data
Primary/secondary

• Meaning 1:
• Primary = is over attributes that include the primary key
• Secondary = otherwise

• Meaning 2: means the same as clustered/unclustered
Organization B+ tree or Hash table

SCANNING A DATA
FILE

Disks are mechanical devices!
• Technology from the 60s; density much higher now

Read only at the rotation speed!
Consequence:
Sequential scan is MUCH FASTER than random reads

• Good: read blocks 1,2,3,4,5,…
• Bad: read blocks 2342, 11, 321,9, …

Rule of thumb:
• Random reading 1-2% of the file ≈ sequential scanning the entire

file; this is decreasing over time (because of increased density of
disks)

Solid state (SSD): $$$ expensive; put indexes, other “hot” data
there, still too expensive for everything

SUMMARY SO FAR
Index = a file that enables direct access to records in another
data file

• B+ tree / Hash table
• Clustered/unclustered

Data resides on disk
• Organized in blocks
• Sequential reads are efficint
• Random access less efficient
• Random read 1-2% of data worse than sequential

CREATING INDEXES IN SQL

CREATE		INDEX	V1	ON	V(N)

CREATE		TABLE				V(M	int,			N	varchar(20),				P	int);

CREATE		INDEX	V2	ON	V(P,	M)

CREATE		INDEX	V3	ON	V(M,	N)

CREATE	CLUSTERED	INDEX	V5	ON V(N)

CREATE UNIQUE	INDEX V4	ON V(N)

GETTING PRACTICAL:
CREATING INDEXES IN
SQL

CREATE		INDEX	V1	ON	V(N)

CREATE		TABLE				V(M	int,			N	varchar(20),				P	int);

CREATE		INDEX	V2	ON	V(P,	M)

CREATE		INDEX	V3	ON	V(M,	N)

CREATE	CLUSTERED	INDEX	V5	ON V(N)

CREATE UNIQUE	INDEX V4	ON V(N)

What	does	this	mean?

GETTING PRACTICAL:
CREATING INDEXES IN
SQL

CREATE		INDEX	V1	ON	V(N)

CREATE		TABLE				V(M	int,			N	varchar(20),				P	int);

CREATE		INDEX	V2	ON	V(P,	M)

CREATE		INDEX	V3	ON	V(M,	N)

CREATE	CLUSTERED	INDEX	V5	ON V(N)

CREATE UNIQUE	INDEX V4	ON V(N)

select *
from V
where P=55

select *
from V
where M=77

select *
from V
where P=55 and M=77

GETTING PRACTICAL:
CREATING INDEXES IN
SQL

CREATE		INDEX	V1	ON	V(N)

CREATE		TABLE				V(M	int,			N	varchar(20),				P	int);

CREATE		INDEX	V2	ON	V(P,	M)

CREATE		INDEX	V3	ON	V(M,	N)

CREATE	CLUSTERED	INDEX	V5	ON V(N)

CREATE UNIQUE	INDEX V4	ON V(N)

select *
from V
where P=55

select *
from V
where M=77

select *
from V
where P=55 and M=77

no

yes

yes

GETTING PRACTICAL:
CREATING INDEXES IN
SQL

CREATE		INDEX	V1	ON	V(N)

CREATE		TABLE				V(M	int,			N	varchar(20),				P	int);

CREATE		INDEX	V2	ON	V(P,	M)

CREATE		INDEX	V3	ON	V(M,	N)

CREATE	CLUSTERED	INDEX	V5	ON V(N)

CREATE UNIQUE	INDEX V4	ON V(N)

select *
from V
where P=55

select *
from V
where M=77

select *
from V
where P=55 and M=77

no

yes

yes

Not	supported
in	SQLite

WHICH INDEXES?

The index selection problem

• Given a table, and a “workload” (big Java application with lots
of SQL queries), decide which indexes to create (and which
ones NOT to create!)

Who does index selection:
• The database administrator DBA

• Semi-automatically, using a database administration tool

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

INDEX SELECTION: WHICH SEARCH
KEY
Make some attribute K a search key if the WHERE clause
contains:

• An exact match on K
• A range predicate on K
• A join on K

THE INDEX SELECTION
PROBLEM 1

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

THE INDEX SELECTION
PROBLEM 1

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

What indexes ?

THE INDEX SELECTION
PROBLEM 1

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

A: V(N) and V(P) (hash tables or B-trees)

THE INDEX SELECTION
PROBLEM 2

V(M, N, P);

SELECT *
FROM V
WHERE N>? and N<?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

What indexes ?

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

THE INDEX SELECTION
PROBLEM 2

V(M, N, P);

SELECT *
FROM V
WHERE N>? and N<?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

A: definitely V(N) (must B-tree); unsure about V(P)

THE INDEX SELECTION
PROBLEM 3

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:

Your workload is this

What indexes ?

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

THE INDEX SELECTION
PROBLEM 3

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:

Your workload is this

A: V(N, P)

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

How does this index differ from:
1. Two indexes V(N) and V(P)?
2. An index V(P, N)?

THE INDEX SELECTION
PROBLEM 4

27

V(M, N, P);

SELECT *
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:

Your workload is this

SELECT *
FROM V
WHERE N>? and N<?

What indexes ?

CSE 344 - 2017au

THE INDEX SELECTION
PROBLEM 4

V(M, N, P);

SELECT *
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:

Your workload is this

SELECT *
FROM V
WHERE N>? and N<?

A: V(N) secondary, V(P) primary index

TWO TYPICAL KINDS
OF QUERIES

• Point queries
• What data structure should

be used for index?

SELECT *
FROM Movie
WHERE year = ?

SELECT *
FROM Movie
WHERE year >= ? AND

year <= ?

• Range queries
• What data structure should

be used for index?

BASIC INDEX SELECTION
GUIDELINES

Consider queries in workload in order of importance

Consider relations accessed by query
• No point indexing other relations

Look at WHERE clause for possible search key

Try to choose indexes that speed-up multiple queries

TO CLUSTER OR NOT
Range queries benefit mostly from clustering
Point indexes do not need to be clustered: they work equally
well unclustered

Percentage tuples retrieved

Cost

0 100

SELECT *
FROM R
WHERE R.K>? and R.K<?

Percentage tuples retrieved

Cost

0 100

Sequential scan

SELECT *
FROM R
WHERE R.K>? and R.K<?

Percentage tuples retrieved

Cost

0 100

Sequential scan

SELECT *
FROM R
WHERE R.K>? and R.K<?

Percentage tuples retrieved

Cost

0 100

Sequential scan

SELECT *
FROM R
WHERE R.K>? and R.K<?

CHOOSING INDEX IS
NOT ENOUGH
To estimate the cost of a query plan, we still need to consider
other factors:

• How each operator is implemented

• The cost of each operator

• Let’s start with the basics

COST PARAMETERS
Cost = I/O + CPU + Network BW

• We will focus on I/O in this class
Parameters (a.k.a. statistics):

• B(R) = # of blocks (i.e., pages) for relation R
• T(R) = # of tuples in relation R
• V(R, a) = # of distinct values of attribute a

COST PARAMETERS
Cost = I/O + CPU + Network BW

• We will focus on I/O in this class
Parameters (a.k.a. statistics):

• B(R) = # of blocks (i.e., pages) for relation R
• T(R) = # of tuples in relation R
• V(R, a) = # of distinct values of attribute a

When a is a key, V(R,a) = T(R)
When a is not a key, V(R,a) can be anything <= T(R)

COST PARAMETERS
Cost = I/O + CPU + Network BW

• We will focus on I/O in this class
Parameters (a.k.a. statistics):

• B(R) = # of blocks (i.e., pages) for relation R
• T(R) = # of tuples in relation R
• V(R, a) = # of distinct values of attribute a

DBMS collects statistics about base tables
must infer them for intermediate results

When a is a key, V(R,a) = T(R)
When a is not a key, V(R,a) can be anything <= T(R)

SELECTIVITY FACTORS FOR CONDITIONS
A = c /* σA=c(R) */

• Selectivity = 1/V(R,A)

A < c /* σA<c(R)*/
• Selectivity = (c - min(R, A))/(max(R,A) - min(R,A))

c1 < A < c2 /* σc1<A<c2(R)*/
• Selectivity = (c2 – c1)/(max(R,A) - min(R,A))

COST OF READING
DATA FROM DISK
Sequential scan for relation R costs B(R)

Index-based selection
• Estimate selectivity factor f (see previous slide)
• Clustered index: f*B(R)
• Unclustered index f*T(R)

Note: we ignore I/O cost for index pages

INDEX BASED
SELECTION

Example:

Table scan:
Index based selection:

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

INDEX BASED
SELECTION

Example:

Table scan: B(R) = 2,000 I/Os
Index based selection:

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

INDEX BASED
SELECTION

Example:

Table scan: B(R) = 2,000 I/Os
Index based selection:

• If index is clustered:
• If index is unclustered:

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

INDEX BASED
SELECTION

Example:

Table scan: B(R) = 2,000 I/Os
Index based selection:

• If index is clustered: B(R) * 1/V(R,a) = 100 I/Os
• If index is unclustered:

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

INDEX BASED
SELECTION

Example:

Table scan: B(R) = 2,000 I/Os
Index based selection:

• If index is clustered: B(R) * 1/V(R,a) = 100 I/Os
• If index is unclustered: T(R) * 1/V(R,a) = 5,000 I/Os

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

INDEX BASED
SELECTION

Example:

Table scan: B(R) = 2,000 I/Os
Index based selection:

• If index is clustered: B(R) * 1/V(R,a) = 100 I/Os
• If index is unclustered: T(R) * 1/V(R,a) = 5,000 I/Os

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

Lesson: Don’t build unclustered indexes when V(R,a) is small !

OUTLINE
Join operator algorithms

• One-pass algorithms (Sec. 15.2 and 15.3)
• Index-based algorithms (Sec 15.6)

Note about readings:
• In class, we discuss only algorithms for joins
• Other operators are easier: read the book

JOIN ALGORITHMS
Hash join

Nested loop join

Sort-merge join

HASH JOIN
Hash join: R ⋈ S
Scan R, build buckets in main memory
Then scan S and join
Cost: B(R) + B(S)
Which relation to build the hash table on?

CSE 344 - 2017au 50

HASH JOIN
Hash join: R ⋈ S
Scan R, build buckets in main memory
Then scan S and join
Cost: B(R) + B(S)
Which relation to build the hash table on?

One-pass algorithm when B(R) ≤ M
• M = number of memory pages available

HASH JOIN EXAMPLE

Patient Insurance

Patient(pid, name, address)
Insurance(pid, provider, policy_nb)

1 ‘Bob’ ‘Seattle’

2 ‘Ela’ ‘Everett’

3 ‘Jill’ ‘Kent’

4 ‘Joe’ ‘Seattle’

Patient
2 ‘Blue’ 123

4 ‘Prem’ 432

Insurance

4 ‘Prem’ 343

3 ‘GrpH’ 554

Two tuples
per page

HASH JOIN EXAMPLE
Patient Insurance

1 2

3 4

Patient
2 4

Insurance

4 3

Showing
pid only

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

Some large-
enough #

This is one page
with two tuples

HASH JOIN EXAMPLE
Step 1: Scan Patient and build hash table in memory
Can be done in
method open()

1 2

3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 2

HASH JOIN EXAMPLE
Step 2: Scan Insurance and probe into hash table
Done during
calls to next()

1 2

3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 22 4

Output buffer

2 2

Write to disk or
pass to next

operator

HASH JOIN EXAMPLE
Step 2: Scan Insurance and probe into hash table
Done during
calls to next()

1 2

3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 22 4

Output buffer

4 4

HASH JOIN EXAMPLE

57

Step 2: Scan Insurance and probe into hash table
Done during
calls to next()

1 2

3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 24 3

Output buffer

4 4

Keep going until read all of Insurance

Cost: B(R) + B(S)

NESTED LOOP JOINS
Tuple-based nested loop R ⋈ S
R is the outer relation, S is the inner relation

for each tuple t1 in R do
for each tuple t2 in S do

if t1 and t2 join then output (t1,t2)

What is the Cost?

NESTED LOOP JOINS
Tuple-based nested loop R ⋈ S
R is the outer relation, S is the inner relation

Cost: B(R) + T(R) B(S)
Multiple-pass since S is read many times

What is the Cost?

for each tuple t1 in R do
for each tuple t2 in S do

if t1 and t2 join then output (t1,t2)

PAGE-AT-A-TIME
REFINEMENT

Cost: B(R) + B(R)B(S) What is the Cost?

for each page of tuples r in R do
for each page of tuples s in S do

for all pairs of tuples t1 in r, t2 in s
if t1 and t2 join then output (t1,t2)

1 2

PAGE-AT-A-TIME
REFINEMENT

1 2

3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient

Output buffer

2 2

Input buffer for Insurance2 4

PAGE-AT-A-TIME
REFINEMENT

1 2

3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient1 2

Output buffer

Input buffer for Insurance4 3

1 2

PAGE-AT-A-TIME
REFINEMENT

3 4

Patient
2 4

Insurance

4 3

8 5

9 6

8 9

6 6

1 3

Disk

Input buffer for Patient1 2

Output buffer

Input buffer for Insurance2 8

1 2

2 2

Cost: B(R) + B(R)B(S)

Keep going until read
all of Insurance

Then repeat for next
page of Patient… until end of Patient

1 2

2 8

BLOCK-NESTED-LOOP
REFINEMENT

Cost: B(R) + B(R)B(S)/(M-1) What is the Cost?

for each group of M-1 pages r in R do
for each page of tuples s in S do

for all pairs of tuples t1 in r, t2 in s
if t1 and t2 join then output (t1,t2)

SORT-MERGE JOIN
Sort-merge join: R ⋈ S
Scan R and sort in main memory
Scan S and sort in main memory
Merge R and S

Cost: B(R) + B(S)
One pass algorithm when B(S) + B(R) <= M
Typically, this is NOT a one pass algorithm

SORT-MERGE JOIN
EXAMPLE

1 2

3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 1: Scan Patient and sort in memory

SORT-MERGE JOIN
EXAMPLE

1 2

3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 2: Scan Insurance and sort in memory

1 2 3 4

6 8 8 9

2 3 4 6

SORT-MERGE JOIN
EXAMPLE

1 2

3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer

1 1

SORT-MERGE JOIN
EXAMPLE

1 2

3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer

2 2

Keep going until end of first relation

INDEX NESTED LOOP
JOIN

R ⋈ S
Assume S has an index on the join attribute
Iterate over R, for each tuple fetch corresponding tuple(s) from S

Cost:
• If index on S is clustered:

B(R) + T(R) * (B(S) * 1/V(S,a))
• If index on S is unclustered:

B(R) + T(R) * (T(S) * 1/V(S,a))

