CSE 344

FEBRUARY 16™ - DISK 1/0 AND
ESTIMATION

ADMINISTRIVIA

« HW6/0Q5 out after class

« HW6 Due Wednesday, Feb 28"
« OQ5 Due Friday, Feb 23
« Office hours for exam regrades

 Additional HW5 OH on Wednesday

HW6 AWS

 Making account

» Use accurate information (matching
academic records)
* Create full account — not ‘starter code’

 Be sure to terminate services when done

INDEX

An additional file, that allows fast access to records in the data file
given a search key

The index contains (key, value) pairs:

* The key = an attribute value (e.g., student ID or name)
* The value = a pointer to the record
Could have many indexes for one table

Key = means here search key

KEYS IN INDEXING

Different keys:
Primary key — uniquely identifies a tuple
Key of the sequential file — how the data file is sorted, if at all

Index key — how the index is organized

Student

EXAMPLE 1: ID | fName IName
INDEX ON ID 10 | Tom Hanks

20 | Amy Hanks

Index Student_ID on Student.ID Data File Student] ..

/_/\
K_H
10 | ——10 | Tom Hanks
20 1120 | Amy Hanks
%0 I —— | 50

200 —
| 200

220

240 220
420 240
800

420

950

800

Student

EXAMPLE 2: ID | fName IName
INDEX ON FNAME 10 [Tom | Hanks
20 | Amy Hanks
Index Student_fName
on Student.fName Data File Student] ...
—— —
Amy 10 Tom Hanks
po \ﬁi 20 |Amy Hanks
Bob >[50 | ..
Cho
= 200 | ...
220
240
420
800
Tom /

INDEX ORGANIZATION

We need a way to represent indexes after loading into memory
so that they can be used

Several ways to do this:
Hash table

B+ trees — most popular

* They are search trees, but they are not binary instead have
higher fanout
 Will discuss them briefly next

Specialized indexes: bit maps, R-trees, inverted index

CLUSTERED VS

UNCLUSTERED
/ \ Index entries, | .
Index entries _
/A 1\ NN (Index File) m /X

/4R \% Datafil) /XN) o4 I

Data Records Data Records
CLUSTERED UNCLUSTERED

INDEX
CLASSIFICATION

Clustered/unclustered

* Clustered = records close in index are close in data
« Option 1: Data inside data file is sorted on disk
« Option 2: Store data directly inside the index (no separate files)

* Unclustered = records close in index may be far in data
Primary/secondary

* Meaning 1:
* Primary = is over attributes that include the primary key
« Secondary = otherwise

* Meaning 2: means the same as clustered/unclustered
Organization B+ tree or Hash table

SCANNING A DATA
FILE

Disks are mechanical devices!

 Technology from the 60s; density much higher now
Read only at the rotation speed!

Consequence:
Sequential scan is MUCH FASTER than random reads

* Good: read blocks 1,2,3,4.,5,...
« Bad: read blocks 2342, 11, 321,9, ...

Rule of thumb:

* Random reading 1-2% of the file = sequential scanning the entire
file; this is decreasing over time (because of increased density of
disks)

Solid state (SSD): $$$ expensive; put indexes, other “hot” data
there, still too expensive for everything

SUMMARY SO FAR

Index = a file that enables direct access to records in another
data file

B+ tree / Hash table

» Clustered/unclustered
Data resides on disk

 Organized in blocks

« Sequential reads are efficint

« Random access less efficient

« Random read 1-2% of data worse than sequential

CREATING INDEXES IN SQL

CREATE TABLE V(M int, Nvarchar(20), P int); I
CREATE INDEX V1 ON V(N) I

CREATE INDEX V2 ON V(P, M) I

CREATE INDEX V3 ON V(M, N) l

CREATE UNIQUE INDEX V4 ON V(N) l

CREATE CLUSTERED INDEX V5 ON V(N) I

GETTING PRACTICAL:
CREATING INDEXES IN
SQL

CREATE TABLE V(M int, Nvarchar(20), P int); I

CREATE INDEX V1 ON V(N) I

CREATE INDEX V2 ON V(P, M) i What does this mean?
CREATE INDEX V3 ON V(M, N) l

CREATE UNIQUE INDEX V4 ON V(N) l

CREATE CLUSTERED INDEX V5 ON V(N) l

GETTING PRACTICAL:
CREATING INDEXES IN
SQL

CREATE TABLE V(M int, N varchar(20), P int); I
CREATE INDEX V1 ON V(N) select *
fromV
where P=55 and M=77
CREATE INDEX V2 ON V(P, M) I
CREATE INDEX V3 ON V(M, N) select *
fromV

where P=55

CREATE UNIQUE INDEX V4 ON V(N) l
select *

fromV

CREATE CLUSTERED INDEX V5 ON V(N) l where M=77

GETTING PRACTICAL:
CREATING INDEXES IN
SQL

CREATE TABLE V(M int, Nvarchar(20), P int); I yes
CREATE INDEX V1 ON V(N) select *

from V

where P=55 and M=77
CREATE INDEX V2 ON V(P, M) I
CREATE INDEX V3 ON V(M, N) select *

from V yes

where P=55

CREATE UNIQUE INDEX V4 ON V(N) l
select *

from V no

CREATE CLUSTERED INDEX V5 ON V(N) l where M=77

GETTING PRACTICAL:
CREATING INDEXES IN
SQL

CREATE TABLE V(M int, Nvarchar(20), P int); I yes
CREATE INDEX V1 ON V(N) I select ”

from V

where P=55 and M=77
CREATE INDEX V2 ON V(P, M) I

CREATE INDEX V3 ON V(M, N) I select *

from V yes

where P=55
CREATE UNIQUE INDEX V4 ON V(N) l

select *

from V no
CREATE CLUSTERED INDEX V5 ON V(N) | where M=77

Not supported
in SQLite

Student

ID fName IName

WHICH INDEXES? 10 [Tom | Hanks

20 | Amy Hanks

The index selection problem

 Given a table, and a “workload” (big Java application with lots

of SQL queries), decide which indexes to create (and which
ones NOT to create!)

Who does index selection:

 The database administrator DBA

« Semi-automatically, using a database administration tool

INDEX SELECTION: WHICH SEARCH
KEY

Make some attribute K a search key if the WHERE clause
contains:

* An exact match on K

* Arange predicate on K

* Ajoinon K

THE INDEX SELECTION
PROBLEM 1

V(M, N, P); I

Your workload is this

100000 queries: 100 queries:
SELECT * SELECT *
FROM V FROM V

WHERE N=7? WHERE P=?

THE INDEX SELECTION

PROBLEM 1

V(M, N, P); l

Your workload is this

100000 queries:

SELECT *
FROM V
WHERE N=7?

What indexes ?

100 queries:

SELECT *
FROM V
WHERE P=?

THE INDEX SELECTION
PROBLEM 1

V(M, N, P); I

Your workload is this

100000 queries: 100 queries:
SELECT * SELECT *
FROM V FROM V
WHERE N=? WHERE P=?

A: V(N) and V(P) (hash tables or B-trees)

THE INDEX SELECTION
PROBLEM 2

V(M, N, P); l

Your workload is this

100000 queries: 100 queries:
SELECT * SELECT *
FROM YV FROM V
WHERE N>? and N<? WHERE P=?

What indexes ?

100000 queries:

INSERT INTO V
VALUES (2, 2, ?)

THE INDEX SELECTION
PROBLEM 2

V(M, N, P); I

Your workload is this

100000 queries: 100 queries: 100000 queries:
SELECT * SELECT * INSERT INTO V
FROM V FROM V VALUES (?, ?, ?)
WHERE N>? and N<? WHERE P=?

A: definitely V(N) (must B-tree); unsure about V(P)

THE INDEX SELECTION
PROBLEM 3

V(M, N, P); l

Your workload is this

100000 queries: 1000000 queries: 100000 queries:
SELECT * SELECT * INSERT INTO V
FROM V FROM V VALUES (?, ?, ?)
WHERE N=? WHERE N=? and P>?

What indexes ?

THE INDEX SELECTION
PROBLEM 3

V(M, N, P); I

Your workload is this

100000 queries: 1000000 queries: 100000 queries:
SELECT * SELECT * INSERT INTO V
FROM V FROM V VALUES (?, ?, ?)
WHERE N=? WHERE N=? and P>?

A: V(N, P)

How does this index differ from:
1. Two indexes V(N) and V(P)?
2. Anindex V(P, N)?

THE INDEX SELECTION

PROBLEM 4

V(M, N, P); l

Your workload is this

1000 queries:

SELECT *
FROM V
WHERE N>7 and N<?

What indexes ?

CSE 344 - 2017au

100000 queries:

SELECT *
FROM V
WHERE P>? and P<?

THE INDEX SELECTION
PROBLEM 4

V(M, N, P); I

Your workload is this

1000 queries: 100000 queries:
SELECT * SELECT *
FROM V FROM V
WHERE N>? and N<? WHERE P>? and P<?

A: V(N) secondary, V(P) primary index

TWO TYPICAL KINDS

OF QUERIES

SELECT *
FROM Movie
WHERE year =?

SELECT *

FROM Movie

WHERE year >= ? AND
year <=7?

Point queries

What data structure should
be used for index?

Range queries

What data structure should
be used for index?

BASIC INDEX SELECTION
GUIDELINES

Consider queries in workload in order of importance

Consider relations accessed by query

* No point indexing other relations

Look at WHERE clause for possible search key

Try to choose indexes that speed-up multiple queries

TO CLUSTER OR NOT

Range queries benefit mostly from clustering

Point indexes do not need to be clustered: they work equally
well unclustered

SELECT *
FROM R
WHERE R.K>? and R.K<?

Cost

0 100
Percentage tuples retrieved

SELECT *
FROM R
WHERE R.K>? and R.K<?
Cost Sequential scan
0 100

Percentage tuples retrieved

SELECT *
FROM R
WHERE R.K>? and R.K<?
Cost Sequential scan
. Q€
G\\)s\e‘ed\“
0 100

Percentage tuples retrieved

& SELECT *

[e;

= FROM R
§’ WHERE R.K>? and R.K<?
3
N

Cost = Sequential scan
3C
O\\)s\emd\(\
0 100

Percentage tuples retrieved

CHOOSING INDEX IS
NOT ENOUGH

To estimate the cost of a query plan, we still need to consider
other factors:

* How each operator is implemented
* The cost of each operator

 Let’s start with the basics

COST PARAMETERS

Cost =1/0 + CPU + Network BW
» We will focus on /O in this class
Parameters (a.k.a. statistics):

* B(R) = # of blocks (i.e., pages) for relation R
* T(R) = # of tuples in relation R
* V(R, a) = # of distinct values of attribute a

COST PARAMETERS

Cost =1/0 + CPU + Network BW
» We will focus on /O in this class
Parameters (a.k.a. statistics):

* B(R) = # of blocks (i.e., pages) for relation R
* T(R) = # of tuples in relation R
* V(R, a) = # of distinct values of attribute a

When a is a key, V(R,a) = T(R)
When a is not a key, V(R,a) can be anything <= T(R)

COST PARAMETERS

Cost =1/0 + CPU + Network BW
» We will focus on /O in this class
Parameters (a.k.a. statistics):

* B(R) = # of blocks (i.e., pages) for relation R
* T(R) = # of tuples in relation R
* V(R, a) = # of distinct values of attribute a

When a is a key, V(R,a) = T(R)
When a is not a key, V(R,a) can be anything <= T(R)

DBMS collects statistics about base tables
must infer them for intermediate results

SELECTIVITY FACTORS FOR CONDITIONS
A=c I* 0 p-c(R) */

- Selectivity = 1/V(R,A)
A<c [* opc(R)

- Selectivity = (c - min(R, A))/(max(R,A) - min(R,A))

c1<A<c2 I* Ocq1<p<c2(R)*/
 Selectivity = (c2 — c¢1)/(max(R,A) - min(R,A))

COST OF READING
DATA FROM DISK

Sequential scan for relation R costs B(R)

Index-based selection

- Estimate selectivity factor f (see previous slide)
* Clustered index: f*B(R)
 Unclustered index f*T(R)

Note: we ignore I/O cost for index pages

INDEX BASED

SELECTION
B(R) = 2000
Example: T(R) = 100,000 cost of 5_(R) = 7?
V(R, a) = 20
Table scan:

Index based selection:

INDEX BASED

SELECTION
B(R) = 2000
Example: T(R) = 100,000
V(R, a) =20

cost of 5_(R) = 7?

Table scan: B(R) = 2,000 I/Os

Index based selection:

INDEX BASED

SELECTION
B(R) = 2000
Example: T(R) = 100,000
V(R, a) =20

cost of 5_(R) = 7?

Table scan: B(R) = 2,000 I/Os

Index based selection:

* If index is clustered:
* If index is unclustered:

INDEX BASED

SELECTION
B(R) = 2000
Example: T(R) = 100,000
V(R, a) =20

cost of 5_(R) = 7?

Table scan: B(R) = 2,000 I/Os
Index based selection:

- If index is clustered: B(R) * 1/V(R,a) = 100 I/Os
» If index is unclustered:

INDEX BASED

SELECTION
B(R) = 2000
Example: T(R) = 100,000
V(R, a) =20

cost of 5_(R) = 7?

Table scan: B(R) = 2,000 I/Os
Index based selection:

- If index is clustered: B(R) * 1/V(R,a) = 100 I/Os
* If index is unclustered: T(R) * 1/V(R,a) = 5,000 I/Os

INDEX BASED

SELECTION
B(R) = 2000
Example: T(R) = 100,000 cost of 5_(R) = 7?
V(R, a) = 20

Table scan: B(R) = 2,000 I/Os
Index based selection:

- If index is clustered: B(R) * 1/V(R,a) = 100 I/Os
* If index is unclustered: T(R) * 1/V(R,a) = 5,000 I/Os

Lesson: Don'’t build unclustered indexes when V(R,a) is small !

OUTLINE

Join operator algorithms

* One-pass algorithms (Sec. 15.2 and 15.3)
* Index-based algorithms (Sec 15.6)

Note about readings:

* In class, we discuss only algorithms for joins
« Other operators are easier: read the book

JOIN ALGORITHMS

Hash join
Nested loop join

Sort-merge join

HASH JOIN

Hash join: R>~S

Scan R, build buckets in main memory
Then scan S and join

Cost: B(R) + B(S)

Which relation to build the hash table on?

CSE 344 - 2017au

HASH JOIN

Hash join: R>~S

Scan R, build buckets in main memory
Then scan S and join

Cost: B(R) + B(S)

Which relation to build the hash table on?

One-pass algorithm when B(R) =M

* M = number of memory pages available

HASH JOIN EXAMPLE

Patient(pid, name, address)
Insurance(pid, provider, policy nb)
Patient >« Insurance

Two tuples
per page

Patient Insurance
2 ‘Blue’ 123

4 ‘Prem’ 343
3 ‘GrpH’ 554

HASH JOIN EXAMPLE S
ge-
Patient o< Insurance enough #

Memory M = 21 pages

| Disk

Insurance
21 4 6 | 6

4 | 31111 3

2|8

This is one page
with two tuples

[TT1T
/

HASH JOIN EXAMPLE

Step 1: Scan Patient and build hash table in memory
Can be done in Memory M = 21 pages
method open() Hash h: pid % 5

| =

< Disk <

//
Patient Insurance

W2 2466 Input buffer
Bl [«]s][1]s

Bl 27s

BE [s]o

\ //

HASH JOIN EXAMPLE

Step 2: Scan Insurance and probe into hash table
Done during Memory M = 21 pages
calls to next() Hash h: pid % 5

| =

— Disk
\ //

Patient Insurance 2 | 4

P2 (2466 Input buffer
B [4]s][1]s

Bl (2]
_ | NEE

\ //

utput buffer

Write to disk or
pass to next
operator

HASH JOIN EXAMPLE

Step 2: Scan Insurance and probe into hash table
Done during Memory M = 21 pages
calls to next() Hash h: pid % 5

| =

— Disk
\ //

38]le]9]
Patient Insurance 2 4 . 4

- | 2 | . | 616 Input buffer Output buffer

_ | BEEIEE
Bl (2]
_ | NEE

\ //

HASH JOIN EXAMPLE

Step 2: Scan Insurance and probe into hash table
Done during Memory M = 21 pages

calls to next() Hash h: pid % 5
— Disk
\

. | . |
-

Patient Insurance BE e
- 2|14|/6|6 Input buffer Output buffer
- | 4 | 3 | 11 3 Keep going until read all of Insurance

Bl (2]
- s | 9 Cost: B(R) + B(S)

\ //

NESTED LOOP JOINS

Tuple-based nested loop R~ S

R is the outer relation, S is the inner relation

for each tuple t; in R do
for each tuple t, in S do
if t; and t, join then output (t4,t,)

What is the Cost?

NESTED LOOP JOINS

Tuple-based nested loop R~ S

R is the outer relation, S is the inner relation

for each tuple t; in R do
for each tuple t, in S do
if t; and t, join then output (t4,t,)

Cost: B(R) + T(R) B(S)

Multiple-pass since S is read many times

What is the Cost?

PAGE-AT-A-TIME
REFINEMENT

for each page of tuples rin R do
for each page of tuples s in S do
for all pairs of tuples t;inr, t,ins
if t; and t, join then output (t,,t,)

Cost: B(R) + B(R)B(S) What is the Cost?

PAGE-AT-A-TIME
REFINEMENT

— Disk
\ //

Patient Insurance
B2 [2]4][e]s
Bl [«]3][1]s

- Input buffer for Patient

2 | 4 | Input buffer for Insurance

_E

Output buffer

B (2]s
B [s]o

\ //

PAGE-AT-A-TIME
REFINEMENT

— Disk
\ //

Patient Insurance

B][]
T EnalnE

- Input buffer for Patient

4 | 3 | Input buffer for Insurance

Output buffer

B (2]s
B [s]o

\ //

PAGE-AT-A-TIME

REFINEMENT
— Disk
\ //
Patient Insurance
B (2«65
Bl [«]3][1]s
B [2]s]

U EEBE
\ //

- Input buffer for Patient

2 | 8 | Input buffer for Insurance

Keep going until read

2
all of Insurance E
Then repeat for next Output butfer
page of Patient... until end of Patient

Cost: B(R) + B(R)B(S)

BLOCK-NESTED-LOOP
REFINEMENT

for each group of M-1 pages rin R do
for each page of tuples s in S do
for all pairs of tuples t;inr, t,ins
if t; and t, join then output (t,,t,)

Cost: B(R) + B(R)B(S)/(M-1) What is the Cost?

SORT-MERGE JOIN

Sort-merge join: R~ S

Scan R and sort in main memory
Scan S and sort in main memory
Merge Rand S

Cost: B(R) + B(S)
One pass algorithm when B(S) + B(R) <=M
Typically, this is NOT a one pass algorithm

SORT-MERGE JOIN
EXAMPLE

Step 1: Scan Patient and sort in memory
Memory M = 21 pages

— Disk
\ //
Patient Insurance

214 |6 |6

4 | 3 1 3

2|8

(11T

SORT-MERGE JOIN
EXAMPLE

Step 2: Scan Insurance and sort in memory
Memory M = 21 pages

11212133446
— Disk
T —— | Te T8 18 s

Patient Insurance
2 | 4 6 | 6

4 | 3 1 3

2|8

(11T

SORT-MERGE JOIN
EXAMPLE

Step 3: Merge Patient and Insurance
Memory M = 21 pages

112 1123|341 4|6
— Disk
\

—— e Ts 83
Patient Insurance . 1
- 2 | 4 6| 6 Output buffer
B [«]s][1]3
e (2]
- EEBE
\ //

SORT-MERGE JOIN
EXAMPLE

Step 3: Merge Patient and Insurance
Memory M = 21 pages

112 1123|341 4|6
— Disk
\

—— ||Te[s][s]s
Patient Insurance E
- 2 | 4 6| 6 Output buffer
- 4 13|13 Keep going until end of first relation
___NBE
. NOE
\ //

INDEX NESTED LOOP
JOIN

R>~S
Assume S has an index on the join attribute

Iterate over R, for each tuple fetch corresponding tuple(s) from S

Cost:

* |[f index on S is clustered:

B(R) + T(R) * (B(S) * 1/V(S,a))
* Ifindex on S is unclustered:

B(R) + T(R) * (T(S) * 1/V(S,a))

