
CSE 344
FEBRUARY 14TH – INDEXING

EXAM
• Grades posted to Canvas
• Exams handed back in section tomorrow
• Regrades: Friday office hours

EXAM
• Overall, you did well

• Average: 79
• Remember: lowest between midterm/final

is only worth 25% of your grade
• Still ~50% of points are still up for grabs

COURSE SCHEDULE
• Staggered assignments for next few

weeks
• HW6 on AWS, some setup time, easier

assignment
• HW7: Written Assignment – Feedback

back before finals week
• HW8: Java/JDBC assignment

COURSE SCHEDULE

HW5 Out HW6 Out

HW5 Due HW7 Out

HW8 Out HW6 Due HW7 Due

HW8 Due

Monday Wednesday Friday

Finals week

This week

COURSE SCHEDULE
• Multiple assignments out at once

• 2 additional late days – total of 5
• Only 2 per assignment
• HW8 – use only one tag

• HW3/4 Feedback by Wednesday (21st)

TODAY
• RDBMS

• Physical plans
• Pipelining
• Indexing

QUERY EVALUATION STEPS

Parse & Rewrite Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query
optimization

Logical
plan (RA)

Physical
plan

LOGICAL VS
PHYSICAL PLANS

Logical plans:
• Created by the parser from the input SQL text
• Expressed as a relational algebra tree
• Each SQL query has many possible logical plans

Physical plans:
• Goal is to choose an efficient implementation for each

operator in the RA tree
• Each logical plan has many possible physical plans

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Iterator child) {
this.p = p; this.child = child;

}
Tuple next () {
boolean found = false;
while (!found) {

Tuple in = child.next();
if (in == EOF) return EOF;
found = p(in);

}
return in;

}
void close () { child.close(); }

}

Example “on the fly” selection operator

ITERATOR INTERFACE

ITERATOR INTERFACE

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Operator child) {
this.p = p; this.child = child;

}
Tuple next () {
boolean found = false;
Tuple r = null;
while (!found) {

r = child.next();
if (r == null) break;
found = p(in);

}
return r;

}
void close () { child.close(); }

}

Example “on the fly” selection operator

PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Tuples from
here are
pipelined

PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Tuples from
here are
pipelined

Tuples from
here are
“blocked”

BLOCKED EXECUTION

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Merge Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss merge-join
in class

BLOCKED EXECUTION

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Merge Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Blocked Blocked

Discuss merge-join
in class

PIPELINED
EXECUTION

Tuples generated by an operator are
immediately sent to the parent
Benefits:

• No operator synchronization issues
• No need to buffer tuples between operators
• Saves cost of writing intermediate data to disk
• Saves cost of reading intermediate data from disk

This approach is used whenever possible

QUERY EXECUTION
BOTTOM LINE

SQL query transformed into physical plan
• Access path selection for each relation

• Scan the relation or use an index (next lecture)
• Implementation choice for each operator

• Nested loop join, hash join, etc.
• Scheduling decisions for operators

• Pipelined execution or intermediate materialization
Pipelined execution of physical plan

RECALL: PHYSICAL
DATA INDEPENDENCE

Applications are insulated from changes in
physical storage details

SQL and relational algebra facilitate physical
data independence

• Both languages input and output relations
• Can choose different implementations for operators

QUERY
PERFORMANCE

My database application is too slow… why?
One of the queries is very slow… why?

To understand performance, we need to understand:
• How is data organized on disk
• How to estimate query costs

• In this course we will focus on disk-based DBMSs

DATA STORAGE

DBMSs store data in files
Most common organization is row-wise storage
On disk, a file is split into
blocks
Each block contains
a set of tuples

In the example, we have 4 blocks with 2 tuples each

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

block 1

block 2

block 3

DATA FILE TYPES
The data file can be one of:
Heap file

• Unsorted
Sequential file

• Sorted according to some attribute(s) called key

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

DATA FILE TYPES
The data file can be one of:
Heap file

• Unsorted
Sequential file

• Sorted according to some attribute(s) called key

23

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

CSE 344 - 2017au

Note: key here means something different from primary key:
it just means that we order the file according to that attribute.
In our example we ordered by ID. Might as well order by fName,
if that seems a better idea for the applications running on
our database.

INDEX

An additional file, that allows fast access to records in the data file
given a search key

INDEX

An additional file, that allows fast access to records in the data file
given a search key
The index contains (key, value) pairs:

• The key = an attribute value (e.g., student ID or name)
• The value = a pointer to the record

INDEX

An additional file, that allows fast access to records in the data file
given a search key
The index contains (key, value) pairs:

• The key = an attribute value (e.g., student ID or name)
• The value = a pointer to the record

Could have many indexes for one table

Key = means here search key

KEYS IN INDEXING
Different keys:
Primary key – uniquely identifies a tuple
Key of the sequential file – how the data file is sorted, if at all
Index key – how the index is organized

EXAMPLE 1:
INDEX ON ID

10

20

50

200

220

240

420

800

Data File Student

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800
950

…

Index Student_ID on Student.ID

EXAMPLE 2:
INDEX ON FNAME

Index Student_fName
on Student.fName

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

Amy

Ann

Bob

Cho

…

…

…

…

…

…

Tom

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800

Data File Student

INDEX ORGANIZATION
We need a way to represent indexes after loading into memory
so that they can be used
Several ways to do this:
Hash table
B+ trees – most popular

• They are search trees, but they are not binary instead have
higher fanout

• Will discuss them briefly next
Specialized indexes: bit maps, R-trees, inverted index

HASH TABLE EXAMPLE

10

20

50

200

220

240

420

800

… …

… …

Data File Student

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800

Index Student_ID on Student.ID

Index File
(preferably
in memory)

Data file
(on disk)

B+ TREE INDEX BY
EXAMPLE

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2
Find the key 40

40 <= 80

20 < 40 <= 60

30 < 40 <= 40

CLUSTERED VS
UNCLUSTERED

Index entries
(Index File)

(Data file)

Data Records

Index entries

Data Records
CLUSTERED UNCLUSTERED

B+ Tree B+ Tree

Every table can have only one clustered and many unclustered indexes
Why?

INDEX
CLASSIFICATION
Clustered/unclustered

• Clustered = records close in index are close in data
• Option 1: Data inside data file is sorted on disk
• Option 2: Store data directly inside the index (no separate files)

• Unclustered = records close in index may be far in data

INDEX
CLASSIFICATION
Clustered/unclustered

• Clustered = records close in index are close in data
• Option 1: Data inside data file is sorted on disk
• Option 2: Store data directly inside the index (no separate files)

• Unclustered = records close in index may be far in data
Primary/secondary

• Meaning 1:
• Primary = is over attributes that include the primary key
• Secondary = otherwise

• Meaning 2: means the same as clustered/unclustered

INDEX
CLASSIFICATION
Clustered/unclustered

• Clustered = records close in index are close in data
• Option 1: Data inside data file is sorted on disk
• Option 2: Store data directly inside the index (no separate files)

• Unclustered = records close in index may be far in data
Primary/secondary

• Meaning 1:
• Primary = is over attributes that include the primary key
• Secondary = otherwise

• Meaning 2: means the same as clustered/unclustered
Organization B+ tree or Hash table

SCANNING A DATA
FILE

Disks are mechanical devices!
• Technology from the 60s; density much higher now

Read only at the rotation speed!
Consequence:
Sequential scan is MUCH FASTER than random reads

• Good: read blocks 1,2,3,4,5,…
• Bad: read blocks 2342, 11, 321,9, …

Rule of thumb:
• Random reading 1-2% of the file ≈ sequential scanning the entire

file; this is decreasing over time (because of increased density of
disks)

Solid state (SSD): $$$ expensive; put indexes, other “hot” data
there, still too expensive for everything

SUMMARY SO FAR
Index = a file that enables direct access to records in another
data file

• B+ tree / Hash table
• Clustered/unclustered

Data resides on disk
• Organized in blocks
• Sequential reads are efficint
• Random access less efficient
• Random read 1-2% of data worse than sequential

EXAMPLE

SELECT	*
FROM		Student	x,	Takes	y
WHERE	x.ID=y.studentID	AND	y.courseID	>	300

Assume the database has indexes on these attributes:
• Takes_courseID = index on Takes.courseID
• Student_ID = index on Student.ID

for	y	in Takes
if courseID	>	300	then
for x	in Student

if x.ID=y.studentID
output	*

Student(ID, fname, lname)
Takes(studentID, courseID)

EXAMPLE

SELECT	*
FROM		Student	x,	Takes	y
WHERE	x.ID=y.studentID	AND	y.courseID	>	300

for	y’	in	Takes_courseID	where y’.courseID	>	300
y	=	fetch	the	Takes	record	pointed	to	by	y’
for x’	in Student_ID	where x’.ID	=	y.studentID

x	=	fetch	the	Student	record	pointed	to	by	x’
output	*

Assume the database has indexes on these attributes:
• Takes_courseID = index on Takes.courseID
• Student_ID = index on Student.ID

for	y	in Takes
if courseID	>	300	then
for x	in Student

if x.ID=y.studentID
output	*

Index	selection

Index	join

Student(ID, fname, lname)
Takes(studentID, courseID)

EXAMPLE

SELECT	*
FROM		Student	x,	Takes	y
WHERE	x.ID=y.studentID	AND	y.courseID	>	300

for	y’	in	Takes_courseID	where y’.courseID	>	300
y	=	fetch	the	Takes	record	pointed	to	by	y’
for x’	in Student_ID	where x’.ID	=	y.studentID

x	=	fetch	the	Student	record	pointed	to	by	x’
output	*

Assume the database has indexes on these attributes:
• Takes_courseID = index on Takes.courseID
• Student_ID = index on Student.ID

for	y	in Takes
if courseID	>	300	then
for x	in Student

if x.ID=y.studentID
output	*

Index	selection

Index	join

Student(ID, fname, lname)
Takes(studentID, courseID)

Takes Student

σcourseID>300

⋈studentID=ID

Index	selection

CREATING INDEXES IN SQL

CREATE		INDEX	V1	ON	V(N)

CREATE		TABLE				V(M	int,			N	varchar(20),				P	int);

CREATE		INDEX	V2	ON	V(P,	M)

CREATE		INDEX	V3	ON	V(M,	N)

CREATE	CLUSTERED	INDEX	V5	ON V(N)

CREATE UNIQUE	INDEX V4	ON V(N)

GETTING PRACTICAL:
CREATING INDEXES IN
SQL

CREATE		INDEX	V1	ON	V(N)

CREATE		TABLE				V(M	int,			N	varchar(20),				P	int);

CREATE		INDEX	V2	ON	V(P,	M)

CREATE		INDEX	V3	ON	V(M,	N)

CREATE	CLUSTERED	INDEX	V5	ON V(N)

CREATE UNIQUE	INDEX V4	ON V(N)

What	does	this	mean?

GETTING PRACTICAL:
CREATING INDEXES IN
SQL

CREATE		INDEX	V1	ON	V(N)

CREATE		TABLE				V(M	int,			N	varchar(20),				P	int);

CREATE		INDEX	V2	ON	V(P,	M)

CREATE		INDEX	V3	ON	V(M,	N)

CREATE	CLUSTERED	INDEX	V5	ON V(N)

CREATE UNIQUE	INDEX V4	ON V(N)

select *
from V
where P=55

select *
from V
where M=77

select *
from V
where P=55 and M=77

GETTING PRACTICAL:
CREATING INDEXES IN
SQL

CREATE		INDEX	V1	ON	V(N)

CREATE		TABLE				V(M	int,			N	varchar(20),				P	int);

CREATE		INDEX	V2	ON	V(P,	M)

CREATE		INDEX	V3	ON	V(M,	N)

CREATE	CLUSTERED	INDEX	V5	ON V(N)

CREATE UNIQUE	INDEX V4	ON V(N)

select *
from V
where P=55

select *
from V
where M=77

select *
from V
where P=55 and M=77

no

yes

yes

GETTING PRACTICAL:
CREATING INDEXES IN
SQL

CREATE		INDEX	V1	ON	V(N)

CREATE		TABLE				V(M	int,			N	varchar(20),				P	int);

CREATE		INDEX	V2	ON	V(P,	M)

CREATE		INDEX	V3	ON	V(M,	N)

CREATE	CLUSTERED	INDEX	V5	ON V(N)

CREATE UNIQUE	INDEX V4	ON V(N)

select *
from V
where P=55

select *
from V
where M=77

select *
from V
where P=55 and M=77

no

yes

yes

Not	supported
in	SQLite

WHICH INDEXES?

The index selection problem

• Given a table, and a “workload” (big Java application with lots
of SQL queries), decide which indexes to create (and which
ones NOT to create!)

Who does index selection:
• The database administrator DBA

• Semi-automatically, using a database administration tool

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

INDEX SELECTION: WHICH SEARCH
KEY
Make some attribute K a search key if the WHERE clause
contains:

• An exact match on K
• A range predicate on K
• A join on K

THE INDEX SELECTION
PROBLEM 1

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

THE INDEX SELECTION
PROBLEM 1

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

What indexes ?

THE INDEX SELECTION
PROBLEM 1

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

A: V(N) and V(P) (hash tables or B-trees)

THE INDEX SELECTION
PROBLEM 2

V(M, N, P);

SELECT *
FROM V
WHERE N>? and N<?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

What indexes ?

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

THE INDEX SELECTION
PROBLEM 2

V(M, N, P);

SELECT *
FROM V
WHERE N>? and N<?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

A: definitely V(N) (must B-tree); unsure about V(P)

THE INDEX SELECTION
PROBLEM 3

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:

Your workload is this

What indexes ?

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

THE INDEX SELECTION
PROBLEM 3

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:

Your workload is this

A: V(N, P)

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

How does this index differ from:
1. Two indexes V(N) and V(P)?
2. An index V(P, N)?

THE INDEX SELECTION
PROBLEM 4

56

V(M, N, P);

SELECT *
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:

Your workload is this

SELECT *
FROM V
WHERE N>? and N<?

What indexes ?

CSE 344 - 2017au

THE INDEX SELECTION
PROBLEM 4

V(M, N, P);

SELECT *
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:

Your workload is this

SELECT *
FROM V
WHERE N>? and N<?

A: V(N) secondary, V(P) primary index

TWO TYPICAL KINDS
OF QUERIES

• Point queries
• What data structure should

be used for index?

SELECT *
FROM Movie
WHERE year = ?

SELECT *
FROM Movie
WHERE year >= ? AND

year <= ?

• Range queries
• What data structure should

be used for index?

BASIC INDEX SELECTION
GUIDELINES

Consider queries in workload in order of importance

Consider relations accessed by query
• No point indexing other relations

Look at WHERE clause for possible search key

Try to choose indexes that speed-up multiple queries

TO CLUSTER OR NOT
Range queries benefit mostly from clustering
Covering indexes do not need to be clustered: they work
equally well unclustered

Percentage tuples retrieved

Cost

0 100

SELECT *
FROM R
WHERE R.K>? and R.K<?

Percentage tuples retrieved

Cost

0 100

Sequential scan

SELECT *
FROM R
WHERE R.K>? and R.K<?

Percentage tuples retrieved

Cost

0 100

Sequential scan

SELECT *
FROM R
WHERE R.K>? and R.K<?

Percentage tuples retrieved

Cost

0 100

Sequential scan

SELECT *
FROM R
WHERE R.K>? and R.K<?

