
CSE 344
FEBRUARY 12TH – RDBMS INTERNALS



ADMINISTRIVIA
• HW5 out tonight
• OQ5 out Wednesday
• Both due February 21 (11:30 & 11:00)
• Exam grades on canvas by Wednesday
• Handed back in section on Thursday



TODAY
• Back to RDBMS

• ”Query plans” and DBMS planning
• Management between SQL and 

execution
• Optimization techniques
• Indexing and data arrangement



QUERY EVALUATION STEPS

Parse & Rewrite Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query
optimization

Logical
plan (RA)

Physical
plan



LOGICAL VS 
PHYSICAL PLANS

Logical plans:
• Created by the parser from the input SQL text
• Expressed as a relational algebra tree
• Each SQL query has many possible logical plans

Physical plans:
• Goal is to choose an efficient implementation for each 

operator in the RA tree
• Each logical plan has many possible physical plans



REVIEW: RELATIONAL 
ALGEBRA

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

Relational algebra expression is 
also called the “logical query plan”

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and  y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’



PHYSICAL QUERY PLAN 1

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
A physical query plan is a logical 
query plan annotated with 
physical implementation details

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and  y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’



PHYSICAL QUERY PLAN 2

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Hash join)

(On the fly)

(On the fly)
Same logical query plan
Different physical plan

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and  y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’



PHYSICAL QUERY PLAN 3

CSE 344 - 2017au 9

Supplier Supply

sid = sid

(a) σscity=‘Seattle’ and sstate=‘WA’

πsname

(File scan) (File scan)

(Sort-merge join)

(On the fly)

(b) σpno=2

(Scan & write to T1)

(c)

(d)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Different but equivalent logical 
query plan; different physical plan
SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and  y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

(Scan & write to T2)



QUERY OPTIMIZATION 
PROBLEM

For each SQL query… many logical plans

For each logical plan… many physical plans

Next: we will discuss physical operators;
how exactly are query executed?



PHYSICAL OPERATORS
Each of the logical operators may have one 
or more implementations = physical 
operators

Will discuss several basic physical 
operators, with a focus on join



MAIN MEMORY ALGORITHMS
Logical operator:
Supplier ⨝sid=sid Supply
Propose three physical operators for the join, assuming the 
tables are in main memory:
1.
2.
3.

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)



MAIN MEMORY ALGORITHMS
Logical operator:
Supplier ⨝sid=sid Supply
Propose three physical operators for the join, assuming the 
tables are in main memory:
1. Nested Loop Join O(??)
2. Merge join O(??)
3. Hash join O(??)

CSE 344 - 2017au 13

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)



MAIN MEMORY ALGORITHMS
Logical operator:
Supplier ⨝sid=sid Supply
Propose three physical operators for the join, assuming the 
tables are in main memory:
1. Nested Loop Join O(n2)
2. Merge join O(n log n)
3. Hash join O(n) … O(n2)

CSE 344 - 2017au 14

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)



BRIEF REVIEW OF 
HASH TABLES

0
1
2
3
4
5
6
7
8
9

Separate chaining:

h(x) = x mod 10

A (naïve) hash function:

503 103

76 666

48

503

Duplicates OK
WHY ??

Operations:

find(103) = ??
insert(488) = ??



BRIEF REVIEW OF 
HASH TABLES
insert(k, v) = inserts a key k with value v

Many values for one key
• Hence, duplicate k’s are OK

find(k) = returns the list of all values v associated to the key k

CSE 344 - 2017au 16



ITERATOR 
INTERFACE
Each operator implements three methods:

open()

next()

close()

CSE 344 - 2017au 17



interface Operator {

// initializes operator state 
// and sets parameters
void open (...); 

// calls next() on its inputs
// processes an input tuple    
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p, 

Iterator child) {
this.p = p; this.child = child;

}  
Tuple next () {
boolean found = false;
while (!found) {

Tuple in = child.next();
if (in == EOF) return EOF;
found = p(in);

}
return in;

}  
void close () { child.close(); }

}

Example “on the fly” selection operator

ITERATOR INTERFACE



interface Operator {

// initializes operator state 
// and sets parameters
void open (...); 

// calls next() on its inputs
// processes an input tuple    
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p, 

Operator child) {
this.p = p; this.child = child;

}  
Tuple next () {
boolean found = false;
while (!found) {

Tuple in = child.next();
if (in == EOF) return EOF;
found = p(in);

}

return in;
}  
void close () { child.close(); }

}

Example “on the fly” selection operator

ITERATOR INTERFACE



interface Operator {

// initializes operator state 
// and sets parameters
void open (...); 

// calls next() on its inputs
// processes an input tuple    
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p, 

Operator child) {
this.p = p; this.child = child;

}  
Tuple next () {

}  

}

Example “on the fly” selection operator

ITERATOR INTERFACE



interface Operator {

// initializes operator state 
// and sets parameters
void open (...); 

// calls next() on its inputs
// processes an input tuple    
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p, 

Operator child) {
this.p = p; this.child = child;

}  
Tuple next () {
boolean found = false;
Tuple r = null;
while (!found) {

r = child.next();
if (r == null) break;
found = p(in);

}

}  

}

Example “on the fly” selection operator

ITERATOR INTERFACE



interface Operator {

// initializes operator state 
// and sets parameters
void open (...); 

// calls next() on its inputs
// processes an input tuple    
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p, 

Operator child) {
this.p = p; this.child = child;

}  
Tuple next () {
boolean found = false;
Tuple r = null;
while (!found) {

r = child.next();
if (r == null) break;
found = p(in);

}
return r;

}  

}

Example “on the fly” selection operator

ITERATOR INTERFACE



ITERATOR INTERFACE

interface Operator {

// initializes operator state 
// and sets parameters
void open (...); 

// calls next() on its inputs
// processes an input tuple    
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p, 

Operator child) {
this.p = p; this.child = child;

}  
Tuple next () {
boolean found = false;
Tuple r = null;
while (!found) {

r = child.next();
if (r == null) break;
found = p(in);

}
return r;

}  
void close () { child.close(); }

}

Example “on the fly” selection operator



ITERATOR INTERFACE

Operator q = parse(“SELECT ...”);
q = optimize(q);

q.open();
while (true) { 
Tuple t = q.next();
if (t == null) break;
else printOnScreen(t);

}
q.close();

Query plan execution
interface Operator {

// initializes operator state 
// and sets parameters
void open (...); 

// calls next() on its inputs
// processes an input tuple    
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}



PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join



PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
open()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join



PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
open()

open()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join



PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
open()

open()

open()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join



PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
open()

open()

open()

open()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join



PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
open()

open()

open()

open() open()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join



PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join



PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
next()

next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join



PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
next()

next()

next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join



PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
next()

next()

next()

next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join



PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
next()

next()

next()

next() next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join



PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
next()

next()

next()

next()
next()

next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join



PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss hash-join
in class



PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss hash-join
in class

Tuples from
here are
pipelined



PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss hash-join
in class

Tuples from
here are
pipelined

Tuples from
here are
“blocked”



BLOCKED EXECUTION

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Merge Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss merge-join
in class



BLOCKED EXECUTION

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Merge Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Blocked Blocked

Discuss merge-join
in class



PIPELINED 
EXECUTION

Tuples generated by an operator are 
immediately sent to the parent
Benefits:

• No operator synchronization issues
• No need to buffer tuples between operators
• Saves cost of writing intermediate data to disk
• Saves cost of reading intermediate data from disk

This approach is used whenever possible



QUERY EXECUTION 
BOTTOM LINE

SQL query transformed into physical plan
• Access path selection for each relation

• Scan the relation or use an index (next lecture)
• Implementation choice for each operator

• Nested loop join, hash join, etc.
• Scheduling decisions for operators

• Pipelined execution or intermediate materialization
Pipelined execution of physical plan



RECALL: PHYSICAL 
DATA INDEPENDENCE

Applications are insulated from changes in 
physical storage details

SQL and relational algebra facilitate physical 
data independence 

• Both languages input and output relations
• Can choose different implementations for operators



QUERY 
PERFORMANCE

My database application is too slow… why?
One of the queries is very slow… why?

To understand performance, we need to understand:
• How is data organized on disk
• How to estimate query costs

• In this course we will focus on disk-based DBMSs



DATA STORAGE

DBMSs store data in files
Most common organization is row-wise storage
On disk, a file is split into 
blocks
Each block contains 
a set of tuples

In the example, we have 4 blocks with 2 tuples each

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

block 1

block 2

block 3



DATA FILE TYPES
The data file can be one of:
Heap file

• Unsorted
Sequential file

• Sorted according to some attribute(s) called key

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…



DATA FILE TYPES
The data file can be one of:
Heap file

• Unsorted
Sequential file

• Sorted according to some attribute(s) called key

48

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

CSE 344 - 2017au

Note: key here means something different from primary key: 
it just means that we order the file according to that attribute.  
In our example we ordered by ID.  Might as well order by fName, 
if that seems a better idea for the applications running on
our database. 



INDEX

An additional file, that allows fast access to records in the data file 
given a search key



INDEX

An additional file, that allows fast access to records in the data file 
given a search key
The index contains (key, value) pairs:

• The key = an attribute value (e.g., student ID or name)
• The value = a pointer to the record



INDEX

An additional file, that allows fast access to records in the data file 
given a search key
The index contains (key, value) pairs:

• The key = an attribute value (e.g., student ID or name)
• The value = a pointer to the record

Could have many indexes for one table

Key = means here search key



KEYS IN INDEXING
Different keys:
Primary key – uniquely identifies a tuple
Key of the sequential file – how the data file is sorted, if at all
Index key – how the index is organized



EXAMPLE 1:
INDEX ON ID

10

20

50

200

220

240

420

800

Data File Student

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800
950

…

Index Student_ID on Student.ID



EXAMPLE 2:
INDEX ON FNAME

Index Student_fName
on Student.fName

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

Amy

Ann

Bob

Cho

…

…

…

…

…

…

Tom

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800

Data File Student



INDEX ORGANIZATION
We need a way to represent indexes after loading into memory 
so that they can be used
Several ways to do this:
Hash table
B+ trees – most popular

• They are search trees, but they are not binary instead have 
higher fanout

• Will discuss them briefly next
Specialized indexes: bit maps, R-trees, inverted index



HASH TABLE EXAMPLE

10

20

50

200

220

240

420

800

… …

… …

Data File Student

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800

Index Student_ID on Student.ID

Index File
(preferably
in memory)

Data file
(on disk)



B+ TREE INDEX BY 
EXAMPLE

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2
Find the key 40

40 <= 80

20 < 40 <= 60

30 < 40 <= 40



CLUSTERED VS
UNCLUSTERED

Index entries
(Index File)

(Data file)

Data Records

Index entries

Data Records
CLUSTERED UNCLUSTERED

B+ Tree B+ Tree

Every table can have only one clustered and many unclustered indexes
Why?



INDEX 
CLASSIFICATION
Clustered/unclustered

• Clustered = records close in index are close in data
• Option 1: Data inside data file is sorted on disk
• Option 2: Store data directly inside the index (no separate files)

• Unclustered = records close in index may be far in data



INDEX 
CLASSIFICATION
Clustered/unclustered

• Clustered = records close in index are close in data
• Option 1: Data inside data file is sorted on disk
• Option 2: Store data directly inside the index (no separate files)

• Unclustered = records close in index may be far in data
Primary/secondary

• Meaning 1:
• Primary = is over attributes that include the primary key
• Secondary = otherwise

• Meaning 2: means the same as clustered/unclustered



INDEX 
CLASSIFICATION
Clustered/unclustered

• Clustered = records close in index are close in data
• Option 1: Data inside data file is sorted on disk
• Option 2: Store data directly inside the index (no separate files)

• Unclustered = records close in index may be far in data
Primary/secondary

• Meaning 1:
• Primary = is over attributes that include the primary key
• Secondary = otherwise

• Meaning 2: means the same as clustered/unclustered
Organization B+ tree or Hash table


