
CSE 344
JANUARY 31ST – SEMI-STRUCTURED
DATA

ADMINISTRATIVE MINUTIAE
• HW3 due Friday
• OQ due Wednesday
• HW4 out Wednesday
• Exam next Friday

• 3:30 - 5:00

CLASS OVERVIEW
Unit 1: Intro
Unit 2: Relational Data Models and Query Languages
Unit 3: Non-relational data

• NoSQL
• Json
• SQL++

Unit 4: RDMBS internals and query optimization
Unit 5: Parallel query processing
Unit 6: DBMS usability, conceptual design
Unit 7: Transactions
Unit 8: Advanced topics (time permitting)

TWO CLASSES OF
DATABASE APPLICATIONS

OLTP (Online Transaction Processing)
• Queries are simple lookups: 0 or 1 join

E.g., find customer by ID and their orders
• Many updates. E.g., insert order, update payment
• Consistency is critical: transactions (more later)

OLAP (Online Analytical Processing)
• aka “Decision Support”
• Queries have many joins, and group-by’s

E.g., sum revenues by store, product, clerk, date
• No updates

NOSQL MOTIVATION
Originally motivated by Web 2.0 applications

• E.g. Facebook, Amazon, Instagram, etc
• Web startups need to scaleup from 10 to 100000 users very

quickly

Needed: very large scale OLTP workloads
Give up on consistency
Give up OLAP

WHAT IS THE
PROBLEM?

Single server DBMS are too small for Web data

Solution: scale out to multiple servers

This is hard for the entire functionality of DMBS

NoSQL: reduce functionality for easier scale up
• Simpler data model
• Very restricted updates

RDBMS REVIEW: SERVERLESS

User
SQLite:
One data file
One user
One DBMS application

Consistency is easy
But only a limited number of scenarios
work with such model

DBMS
Application

(SQLite)

File

Desktop

Data file

Disk

RDBMS REVIEW: CLIENT-SERVER

Server Machine

Connection (JDBC, ODBC)

Client
Applications

One server running the database
Many clients, connecting via the ODBC or JDBC
(Java Database Connectivity) protocol

DB Server

File 1

File 2

File 3

RDBMS REVIEW: CLIENT-SERVER

Server Machine

Connection (JDBC, ODBC)

Client
Applications

One server running the database
Many clients, connecting via the ODBC or JDBC
(Java Database Connectivity) protocol

Many users and apps
Consistency is harder à

transactions

DB Server

File 1

File 2

File 3

CLIENT-SERVER

One server that runs the DBMS (or RDBMS):
• Your own desktop, or
• Some beefy system, or
• A cloud service (SQL Azure)

CLIENT-SERVER

One server that runs the DBMS (or RDBMS):
• Your own desktop, or
• Some beefy system, or
• A cloud service (SQL Azure)

Many clients run apps and connect to DBMS
• Microsoft’s Management Studio (for SQL Server), or
• psql (for postgres)
• Some Java program (HW8) or some C++ program

CLIENT-SERVER

One server that runs the DBMS (or RDBMS):
• Your own desktop, or
• Some beefy system, or
• A cloud service (SQL Azure)

Many clients run apps and connect to DBMS
• Microsoft’s Management Studio (for SQL Server), or
• psql (for postgres)
• Some Java program (HW8) or some C++ program

Clients “talk” to server using JDBC/ODBC
protocol

WEB APPS: 3 TIER

DB Server

File 1

File 2

File 3

Browser

WEB APPS: 3 TIER

DB Server

File 1

File 2

File 3
App+Web Server

Connection
(e.g., JDBC)

HTTP/SSL

Browser

WEB APPS: 3 TIER

DB Server

File 1

File 2

File 3
App+Web Server

Web-based applications

Connection
(e.g., JDBC)

HTTP/SSL

Browser

WEB APPS: 3 TIER

DB Server

File 1

File 2

File 3

App+Web Server

Connection
(e.g., JDBC)

HTTP/SSL
App+Web Server

App+Web Server

Web-based applications

WEB APPS: 3 TIER

DB Server

File 1

File 2

File 3

17

Why not replicate DB server?

App+Web Server

Connection
(e.g., JDBC)

HTTP/SSL
App+Web Server

App+Web Server

Web-based applications

Replicate
App server
for scaleup

WEB APPS: 3 TIER

DB Server

File 1

File 2

File 3

18

Why not replicate DB server?
Consistency!

App+Web Server

Connection
(e.g., JDBC)

HTTP/SSL
App+Web Server

App+Web Server

Web-based applications

Replicate
App server
for scaleup

REPLICATING THE
DATABASE
Two basic approaches:

• Scale up through partitioning
• Scale up through replication

Consistency is much harder to enforce

SCALE THROUGH
PARTITIONING

Partition the database across many machines in a
cluster

• Database now fits in main memory
• Queries spread across these machines

Can increase throughput
Easy for writes but reads become expensive!

Application
updates here May also

update here
Three partitions

SCALE THROUGH
REPLICATION

Create multiple copies of each database partition
Spread queries across these replicas
Can increase throughput and lower latency
Can also improve fault-tolerance
Easy for reads but writes become expensive!

App 1
updates
here only

App 2
updates
here onlyThree replicas

RELATIONAL MODEL à NOSQL
Relational DB: difficult to replicate/partition

Given
Supplier(sno,…),Part(pno,…),Supply(sno,pno)

• Partition: we may be forced to join across servers
• Replication: local copy has inconsistent versions
• Consistency is hard in both cases (why?)

NoSQL: simplified data model
• Given up on functionality
• Application must now handle joins and consistency

DATA MODELS
Taxonomy based on data models:
Key-value stores

• e.g., Project Voldemort, Memcached
Document stores

• e.g., SimpleDB, CouchDB, MongoDB
Extensible Record Stores

• e.g., HBase, Cassandra, PNUTS

☞

KEY-VALUE STORES
FEATURES
Data model: (key,value) pairs

• Key = string/integer, unique for the entire data
• Value = can be anything (very complex object)

KEY-VALUE STORES
FEATURES
Data model: (key,value) pairs

• Key = string/integer, unique for the entire data
• Value = can be anything (very complex object)

Operations
• get(key), put(key,value)
• Operations on value not supported

KEY-VALUE STORES
FEATURES
Data model: (key,value) pairs

• Key = string/integer, unique for the entire data
• Value = can be anything (very complex object)

Operations
• get(key), put(key,value)
• Operations on value not supported

Distribution / Partitioning – w/ hash function
• No replication: key k is stored at server h(k)
• 3-way replication: key k stored at h1(k),h2(k),h3(k)

KEY-VALUE STORES
FEATURES
Data model: (key,value) pairs

• Key = string/integer, unique for the entire data
• Value = can be anything (very complex object)

Operations
• get(key), put(key,value)
• Operations on value not supported

Distribution / Partitioning – w/ hash function
• No replication: key k is stored at server h(k)
• 3-way replication: key k stored at h1(k),h2(k),h3(k)

How does get(k) work? How does put(k,v) work?

EXAMPLE
How would you represent the Flights data as key,
value pairs?

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

How does query processing work?

EXAMPLE
How would you represent the Flights data as key,
value pairs?

Option 1: key=fid, value=entire flight record

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

How does query processing work?

EXAMPLE
How would you represent the Flights data as key,
value pairs?

Option 1: key=fid, value=entire flight record

Option 2: key=date, value=all flights that day

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

How does query processing work?

EXAMPLE
How would you represent the Flights data as key,
value pairs?

Option 1: key=fid, value=entire flight record

Option 2: key=date, value=all flights that day

Option 3: key=(origin,dest), value=all flights
between

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

How does query processing work?

KEY-VALUE STORES
INTERNALS

Partitioning:
• Use a hash function h, and store every (key,value) pair on server

h(key)
• In class: discuss get(key), and put(key,value)

Replication:
• Store each key on (say) three servers
• On update, propagate change to the other servers; eventual

consistency
• Issue: when an app reads one replica, it may be stale

Usually: combine partitioning+replication

DATA MODELS
Taxonomy based on data models:
Key-value stores

• e.g., Project Voldemort, Memcached
Document stores

• e.g., SimpleDB, CouchDB, MongoDB
Extensible Record Stores

• e.g., HBase, Cassandra, PNUTS

☞

MOTIVATION
In Key, Value stores, the Value is often a very complex object

• Key = ‘2010/7/1’, Value = [all flights that date]

Better: allow DBMS to understand the value
• Represent value as a JSON (or XML...) document
• [all flights on that date] = a JSON file
• May search for all flights on a given date

DOCUMENT STORES
FEATURES
Data model: (key,document) pairs

• Key = string/integer, unique for the entire data
• Document = JSon, or XML

Operations
• Get/put document by key
• Query language over JSon

Distribution / Partitioning
• Entire documents, as for key/value pairs

We will discuss JSon

DATA MODELS
Taxonomy based on data models:
Key-value stores

• e.g., Project Voldemort, Memcached
Document stores

• e.g., SimpleDB, CouchDB, MongoDB
Extensible Record Stores

• e.g., HBase, Cassandra, PNUTS
☞

EXTENSIBLE RECORD
STORES
Based on Google’s BigTable

Data model is rows and columns

Scalability by splitting rows and columns over nodes
• Rows partitioned through sharding on primary key
• Columns of a table are distributed over multiple nodes by using

“column groups”

HBase is an open source implementation of BigTable

WHERE WE ARE

So far we have studied the relational data model

• Data is stored in tables(=relations)
• Queries are expressions in SQL, relational algebra, or Datalog

Today: Semistructured data model
• Popular formats today: XML, JSon, protobuf

JSON - OVERVIEW

JavaScript Object Notation = lightweight text-based open
standard designed for human-readable data interchange.
Interfaces in C, C++, Java, Python, Perl, etc.

The filename extension is .json.

We will emphasize JSon as semi-structured data

JSON SYNTAX
{ "book": [

{"id":"01",

"language": "Java”,

"author": ”H. Javeson”,

“year”: 2015

},

{"id":"07",

"language": "C++",

"edition": "second"

"author": ”E. Sepp”,

“price”: 22.25

}

]

}

JSON VS RELATIONAL
Relational data model

• Rigid flat structure (tables)
• Schema must be fixed in advanced
• Binary representation: good for performance, bad for exchange
• Query language based on Relational Calculus

Semistructured data model / JSon
• Flexible, nested structure (trees)
• Does not require predefined schema ("self describing”)
• Text representation: good for exchange, bad for performance
• Most common use: Language API; query languages emerging

JSON TERMINOLOGY
Data is represented in name/value pairs.
Curly braces hold objects

• Each object is a list of name/value pairs separated by ,
(comma)

• Each pair is a name is followed by ':'(colon) followed by the
value

Square brackets hold arrays and values are separated by
,(comma).

JSON DATA
STRUCTURES
Collections of name-value pairs:

• {“name1”: value1, “name2”: value2, …}
• The “name” is also called a “key”

Ordered lists of values:
• [obj1, obj2, obj3, ...]

AVOID USING
DUPLICATE KEYS

{"id":"07",
"title": "Databases",
"author": "Garcia-Molina",
"author": "Ullman",
"author": "Widom"

}

{"id":"07",
"title": "Databases",
"author": ["Garcia-Molina",

"Ullman",
"Widom"]

}

The standard allows them, but many implementations don’t

JSON DATATYPES
Number

String = double-quoted

Boolean = true or false

null empty

JSON SEMANTICS: A
TREE !

person

Mary

name address

name address

street no city

Maple 345 Seattle

John
Thai

phone

23456

{“person”:
[{“name”: “Mary”,

“address”:
{“street”:“Maple”,
“no”:345,
“city”: “Seattle”}},

{“name”: “John”,
“address”: “Thailand”,
“phone”:2345678}}

]
}

JSON DATA
JSon is self-describing
Schema elements become part of the data

• Relational schema: person(name,phone)
• In Json “person”, “name”, “phone” are part of the data, and

are repeated many times
Consequence: JSon is much more flexible
JSon = semistructured data

MAPPING RELATIONAL
DATA TO JSON

name name namephone phone phone
“John” 3634 “Sue” “Dirk”6343 6363

Person

person

name phone
John 3634
Sue 6343
Dirk 6363

{“person”:
[{“name”: “John”, “phone”:3634},
{“name”: “Sue”, ”phone”:6343},
{“name”: “Dirk”, ”phone”:6383}
]

}

MAPPING RELATIONAL DATA TO JSON

Person

name phone
John 3634
Sue 6343

May inline foreign keys

Orders

personName date product
John 2002 Gizmo
John 2004 Gadget
Sue 2002 Gadget

{“Person”:
[{“name”: “John”,
“phone”:3646,
“Orders”:[{“date”:2002,

“product”:”Gizmo”},
{“date”:2004,
“product”:”Gadget”}

]
},
{“name”: “Sue”,
“phone”:6343,
“Orders”:[{“date”:2002,

“product”:”Gadget”}
]

}
]

}

JSON=SEMI-
STRUCTURED DATA (1/3)

Missing attributes:

Could represent in
a table with nulls

name phone
John 1234
Joe -

{“person”:
[{“name”:”John”, “phone”:1234},
{“name”:”Joe”}]

} no phone !

JSON=SEMI-
STRUCTURED DATA (2/3)

Repeated attributes

Impossible in
one table:

name phone
Mary 2345 3456 ???

{“person”:
[{“name”:”John”, “phone”:1234},
{“name”:”Mary”, “phone”:[1234,5678]}]

}

Two phones !

JSON=SEMI-
STRUCTURED DATA (3/3)
Attributes with different types in different objects

Nested collections
Heterogeneous collections

{“person”:
[{“name”:”Sue”, “phone”:3456},
{“name”:{“first”:”John”,”last”:”Smith”},”phone”:2345}
]

}

Structured
name !

