
CSE 344: Section 9
Transactions
Aug 10th, 2018



Administrivia

• HW	#8	(due	Aug	15th):	Use	Java	+	SQL	Server	to	make	application	for	booking	flights
• final	homework	of	the	quarter	(yay!)
• most	time-consuming	homework,	so	start	early

• Quiz	#7	(due	Aug	13th):	transactions	&	scheduling



Definition of SCHEDULE 

The	sequence	of	the	read/write	operations	of	several	transactions	as	they	are	
executed	in	the	Database



Serial Schedule 

•	Transactions	execute	fully.	
•	One	at	a	time.	
•	No	interleaving.	
•	Different	orders	of	execution	may	produce	different	final	values

t1	 t2	
R(A)	 	
W(A)	 	
R(B)	 	
W(B)	 	
	 R(A)	
	 W(A)	
	 R(B)	
	 W(B)	

	

Serial



Serializable Schedules

•	Interleaved.	
•	Equivalent	to	SOME	serial	schedule.	
•	Equivalence	does	NOT	mean	"ending	up	with	the	same	values	as".	
•	Equivalence	cannot	depend	on	initial	values	of	database	items.	
•	Cannot	depend	on	values	written	DB	doesn’t	know	logic	of	transaction.	
•	Depends	only	on	order	of	operations.

t1	 t2	
R(A)	 	
W(A)	 	
	 R(A)	
	 W(A)	
R(B)	 	
W(B)	 	
	 R(B)	
	 W(B)	

	

Serializable	schedule



Serializable Schedules

• Serial	Schedule
• r1(A),w1(A),r1(B),w1(B),r2(A),w2(A),r2(B),w2(B)

• Serializable	Schedule
• r1(A),w1(A),r2(A),w2(A),r1(B),w1(B),r2(B),w2(B)

t1	 t2	
R(A)	 	
W(A)	 	
R(B)	 	
W(B)	 	
	 R(A)	
	 W(A)	
	 R(B)	
	 W(B)	

	

t1	 t2	
R(A)	 	
W(A)	 	
	 R(A)	
	 W(A)	
R(B)	 	
W(B)	 	
	 R(B)	
	 W(B)	

	

Serializable Serial



Conflicting Operations 

•	Used	to	define	how	schedules	are	equivalent	

•	2	OPERATIONS	CONFLICT	if
– belong	to	different	transactions
– access	same	data	item	
– at	least	one	is	a	write	

•	IMPORTANT:	they	do	NOT	have	to	ACTUALLY	come	into	CONFLICT!	
– A	better	name	would	be	‘Potentially	Conflicting	Operations’	



CONFLICT EQUIVALENCE

•	2	Schedules	are	Conflict	Equivalent	
If	the	order	of	any	2	conflicting	operations	is	the	same	in	both	schedules.	

•	SERIALIZABLE	SCHEDULE	is	CONFLICT	EQUIVALENT	to	some	serial	schedule



CONFLICT EQUIVALENCE



Serializability

Conflict serializable is stricter thanserializable

I.e. Any schedule that is conflict serializable must be serializable.

Serializable

Conflict  
Serializable



Serializability

Conflict serializable is stricter thanserializable

I.e. Any schedule that is conflict serializable must be
serializable.

Not all serializable schedules are conflict serializable:

t1 t2

W(A,	0)

W(A,	0)

R(A)

R(B)



Serializability

Checking for conflictserializability -> precedence graph and cycle checking
Precedence	graph:	•	A	node	for	each	transaction	Ti ,	•	An	edge	from	Ti to	Tj
whenever	an	action	in	Ti conflicts	with,	and	comes	before	an	action	in	Tj



Serializability

S1: w1(Y); w2(Y); w1(X); w2(X); w3(X)

S2: w1(Y); w2(Y); w2(X); w1(X); w3(X)

Are these serializable?  
Conflict serializable?



Serializability

S1: w1(Y); w2(Y); w1(X); w2(X); w3(X)

Conflict Serializable

S2: w1(Y); w2(Y); w2(X); w1(X); w3(X)

Serializable (but not conflict serializable)



2PL v.s. Strict 2PL

2PL:
● In every transaction, all lock  

requests must precede allunlock  
requests

● Ensure Conflict Serializability
● Might not be able to recover  

(Dirty Read: Read on some write  
that gets rolled back)

Strict 2PL:
● Every lock each transaction is  

held until commit orabort
● Ensure Conflict Serializability
● Recoverable as each  

transaction does not affect  
others until commit/abort



2PL v.s. Strict 2PL



Isolation Level: ReadUncommitted

Write Locks? Strict 2PL

Read Locks? No (ImmediateRead)

Problem: Dirty-Read

Reading uncommitted data that can be rolled back



Isolation Level: ReadUncommitted

Example Transaction: T2 is reading value of A updated by T1’s write on A,  
but T1 has not committedyet.

The value of A read by T2 might not even be in the  
result.

Then T2’s action can be influenced bysuch  
uncommitted data.

T1 T2

W(A)

R(A)

W(B)

Commit

R(B)

Commit



Isolation Level: ReadCommitted

Write Locks? Strict 2PL

Read Locks? Obtain before read, release after (No more dirty read)

If transaction wants to read, it needs to wait until the lock on the value is 
released (when the other transaction commits or aborts)

Problem: Unrepeatable Read

The values of 2 reads on the same tuple can be different in the same  
transaction



Isolation Level: ReadCommitted

Example Transaction: T1’s firstR(A) and T1’s second R(A) might have  
different results.

Updated by T2’s W(A).



Isolation Level: Repeatable Read

Write Locks? Strict 2PL

Read Locks? Strict 2PL (No more unrepeatable read)  

Same as Serializable if no insert or delete

Problem: Phantom Read

In the same transaction, some tuples appear sometimes and disappear other  
times



Isolation Level: Repeatable Read



Isolation Level: Serializable

Not the same thing as Serializable schedule!!!

Write Locks: Strict 2PL

Read Locks: Strict2PL

Predicate Lock/Table Lock (No Phantom)

Difference between Repeatable Read and Serializable is that serializable 
schedule blocks inserts & deletes from another transaction



Isolation Level: Serializable

Predicate Lock Example:

In Transaction T, we have a statement:  

SELECT * FROM People WHERE age > 18;

In this case, the transaction will grab a predicate lock that prevent inserting and  
deleting tuples that can affect the predicate/statement.

In this case, the lock prevents inserting and deleting tuples with age > 18.



Isolation Level: Summary

Isolation	Level Read	Locks Write	Locks Dirty	Reads Nonrepeatable	
Reads

Phantom	
Inserts

Read	
Uncommitted None Strict	2PL Allowed Allowed Allowed

Read	Committed Temporary	lock Strict	2PL Not	Allowed Allowed Allowed

Repeatable	Read Strict	2PL Strict	2PL Not	Allowed Not	Allowed Allowed

Serializable Strict	2PL Strict	2PL	+
Insert	Lock Not	Allowed Not	Allowed Not	Allowed


