Solutions:

Winter 2016 #4
(a) Consider a concurrency control manager that uses strict two phase locking that schedules
three transactions:

e Ti1:Ri(A), Ri(B), W1(A), W1(B), Co1
e T2:R2(B), W2(B), R2(C), W2(C), Co2
e T3:R3(C), W3(C), R3(A), W3(A), Co3

Each transaction begins with its first read operation, and commits with the Co statement.
Answer the following questions for each of the schedules below:
e Isthe schedule conflict-serializable? If yes, indicate a serialization order.
e Is this schedule possible under a strict 2PL protocol?
e If strict 2PL does not allow this schedule because it denies a read or a write request, is
the system in a deadlock at the time when the request is denied?

1. Schedule 1:

R2(B), W2(B), R3(C), W3(C), R3(A), W3(A), Co3, R2(C), W2(C), Co2, R1(A), R1(B),
Wi(A), Wi(B), Co1

a) Is this schedule conflict-serializable? If yes, indicate a serialization order.
Solution: yes: 3,2,1 Additional note to clarify how these questions differ (also clarifies
Schedule 3 and Schedule 4 from the same exam):

B) Is it possible under strict 2PL Conflict serializable does not always mean a schedule is possible under
Solution: Yes strict 2PL. While the schedule is always serializable (equivalent to a
serial schedule), consider the following schedule:
R1(A), W1(A), R2(A), W2(A), R1(B), W1(B), R2(B), W2(B)

: 9 It is equivalent to executing T1, then executing T2, but under strict 2PL,
Y) Does strict .2PL lead to a deadlock: T2 cannot grab the lock for A because T1 hasn’t committed.
Solution: No

While this schedule isn’t possible under strict 2PL, it is also not because
.. of a deadlock problem. B is not locked so T2 could still acquire it, T1 is
ii. Schedule 2: not trying to acquire a lock from T2, but T2 cannot proceed because T1
holds A.

R2(B), W2(B), R3(C), W3(C), R1(A), R1(B), W1(A), W1(B), Co1, R2(C), W2(C), Coz2,
R3(A), W3(A), Co3

a) Is this schedule conflict-serializable? If yes, indicate a serialization order.
Solution: no L(C) and none can make progress.

B) Is it possible under strict 2PL?
Solution: no L(C) and none can make progress.

y) Does strict 2PL lead to a deadlock?
Solution: yes: T1 holds L(A), T2 holds L(B), T3 holds L(C) and none
can make progress.


Additional note to clarify how these questions differ (also clarifies Schedule 3 and Schedule 4 from the same exam):

Conflict serializable does not always mean a schedule is possible under strict 2PL. While the schedule is always serializable (equivalent to a serial schedule), consider the following schedule:
R1(A), W1(A), R2(A), W2(A), R1(B), W1(B), R2(B), W2(B)
It is equivalent to executing T1, then executing T2, but under strict 2PL, T2 cannot grab the lock for A because T1 hasn’t committed. 

While this schedule isn’t possible under strict 2PL, it is also not because of a deadlock problem. B is not locked so T2 could still acquire it, T1 is not trying to acquire a lock from T2, but T2 cannot proceed because T1 holds A.


(b) Consider the following three transactions:

e Ti1:Ri(A), Wi(B), Co1
e T2:R2(B), W2(C), Coz2
e T3:R3(C), W3(D), Co3

Given an example of a conflict-serializable schedule that has the following properties:
transaction T1 commits before transaction T3 starts, and the equivalent serial order is T3, T2,
Ti1.
Solution: R1(A), R2(B), W1(B), Co1, R3(C), W2(C), Co2, W3(D), Co3
Variations include: swap the first two reads (of A and B), and the last two
writes (of C and D, together with the commit order)

(c) A read-only transaction is a transaction that only reads from the database, without
writing/inserting deleting. Answer the questions below by circling the correct answer.

i. If all transactions are read-only, then every schedule is serializable.
TRUE or FALSE

ii. If no transaction reads the same element twice, then the serialization level READ
COMMITTED is equivalent to REPEATABLE READS.
TRUE or FALSE
Solution: A counterexample is: R1(A), W2(B), W2(A), Co2, R1(B). This
schedule is possible under READ COMMITTED, but not under
REPEATABLE READS (since the latter uses strict 2PL, which on a static
database ensures conflict serializability, while this schedule is not conflict
serializable).

iii. If no transaction inserts or deletes records to/from the database, then the serialization level
REPEATABLE READS is equivalent to SERIALIZABLE.
TRUE or FALSE

iv. The reason why some applications use serialization levels other than SERIALIZABLE is
because they would not be correct under the SERIALIZABLE isolation level.
TRUE or FALSE

v. In Sqlite phantoms are not possible.
TRUE or FALSE

vi. The difference between Two Phase Locking and Strict Two Phase Locking is that the latter
avoids deadlocks, while the former may allow deadlocks.
TRUE or FALSE

vii. Only one transaction can hold a shared lock at any time.
TRUE or FALSE



viii. Only one transaction can hold an exclusive lock at any time.
TRUE or FALSE

Autumn 2016 #4
Given the following three transactions:

T1: R(A), W(B), I(D), R(C)
T2: R(B), R(D), W(C)
T3: R(D), R(C), R(D), W(A)

Assume that R(X) reads all tuples in table X, W(X) updates all tuples in X, and I(X) inserts one
new tuple in X. Co and Ab mean commit and abort, respectively. In the following, indicate the
strongest isolation level that can generate each schedule, with serializable being the strongest

isolation level. If serializable, then also give the serial schedule.

a) R1(A); W1(B); I1(D); R3(D); R2(B); R3(C); R3(D); R2(D); R1(C); W2(C);
W3(A); Col; Co2; Co3;

None Read uncommitted Read committed Repeatable read Serializable

Serial schedule:

N/A

b)R2(B); R1(A); R3(D); R3(C); R2(D); W2(C); Co2; R3(D); W3(A); Ab3; W1(B);
I1(D); R1(C); Co1l;

None Read uncommitted Read committed Repeatable read Serializable

Serial schedule:

T2; T3, T1; or T2; T1; T3; or T3; T2, T1;

¢)R1(A); R2(B); R3(D); R3(C); R2(D); I1(D); W2(C); Co2; R3(A); W1(B); W3(D);
Co3; R1(C); Ab1i;

None Read uncommitted Read committed Repeatable read Serializable

Serial schedule:

N/A




This schedule contains R3(A) and W3 (D) which were not part of T3.

(Problem 3 continued)
Transactions copied here for your reference.

T1: R(A), W(B), I(D), R(C)
T2: R(B), R(D), W(C)
T3: R(D), R(C), R(D), W(A)

d) Does there exist a schedule of the above transactions that would result in a deadlock if
executed under strict 2PL with both shared and exclusive table locks? If so write such a
schedule with lock / unlock ops, and explain why the transactions are deadlocked. Otherwise
write “No”. Use L1(A) to refer to T1 locking table A, and U1 (A) for unlocking.

Use S1(A) for grabbing shared lock, and X1(A) for exclusive lock.

S1(A); R1(A); X1(B); W1(B); S3(D); R3(D); S3(C); R3(C); R3(D); X1(D);
I1(D); X3(A); W3(A); <deadlock>

T1 and T3 both hold shared locks on A and D but need to grab exclusive locks on the two
elements in order to proceed.

e) Does there exist a schedule of the above transactions that would result in a deadlock if
executed under strict 2PL with only exclusive table locks? If so write such a schedule with
lock and unlock operations and indicate why the transactions are deadlocked. Otherwise write
“No”. Use L1(A) to refer to T1 locking table A, and U1(A) for unlocking.

L1(A); R1(A); L2(B); R2(B); L3(D); R3(D); L3(C); R3(C); <deadlock>
T1 holds lock on A and is waiting for lock on B, which is held by T2
T2 holds lock on B and is waiting for lock on D, which is held by T3
T3 holds lock on D and is waiting for lock on A, which is held by T1

To get full points, students will need to show both a schedule, explain which transaction holds
which lock, and how that leads to a deadlock.




(Problem 3 continued)
Transactions copied here for your reference.

T1: R(A), W(B), I(D), R(C)
T2: R(B), R(D), W(C)
T3: R(D), R(C), R(D), W(A)

f) Does there exist a schedule of the above transactions that would result in a manifestation of
the phantom problem under non-strict 2PL with exclusive table locks? If so write out such a
schedule with lock and unlock operations and indicate why there is a phantom problem.
Otherwise write “No”.

No. Phantoms do not appear with table level locking.

g) Suppose we change locking granularity to tuple rather than table level, where we only lock the
tuples that are read / written / inserted from the affected table. Is there a schedule of the above
transactions that would result in a manifestation of the phantom problem under non-strict 2PL
with exclusive tuple locks? If so write out such a schedule with lock and unlock operations and
indicate why there is a phantom problem. Otherwise write “No”.

L3(D); R3(D); L1(A,B,C,D); R1(A); W1(B); I1(D); L3(C,D); R3(C); R3(D);
Here T3 will retrieve a different D in the second read as compared to the first one, due to the
insertion by T1.

To get full points, students need to show both a schedule and explain what versions of D will
T3 read and why are they different.




