CSE 344: Section 8
 Design Theory

Aug 2nd, 2018

Big Idea "Measure Twice, Cut Once"

E / R is mostly a visualization technique
Poor schemas can lead to inconsistency and performance inefficiencies
Updating a schema is expensive
Identify functional dependencies and normalize to make well-behaved and fast databases the first time

Motivating Example

We want to store information about people
(Name, SSN, PhoneNumber, City)
Known properties:

- Each person may have multiple phones
- Each person lives in only one city

Motivating Example

Is this a good representation of people?

Name	SSN	PhoneNumber	City
Fred	$123-45-6789$	$206-123-4567$	Seattle
Fred	$123-45-6789$	$206-890-1234$	Seattle
Joe	$987-65-4321$	$626-246-8024$	Los Angeles

Motivating Example

Why is this a poor representation of people?

Name	SSN	PhoneNumber	City
Fred	$123-45-6789$	$206-123-4567$	Seattle
Fred	$123-45-6789$	$206-890-1234$	Seattle
Joe	$987-65-4321$	$626-246-8024$	Los Angeles

Anomalies:

- Redundancy (data for Fred is duplicated)
- Slow Updates (what if Fred moved to Oahu?)
- Zealous Deletion (what if Joe got rid of his phone?)

Motivating Example

		Normalization!				
		Name	SSN	PhoneNumber	City	
		Fred	123-45-6789	206-123-4567	Seattle	
		Fred	123-45-6789	206-890-1234	Seattle	
		Joe	987-65-4321	626-246-8024	Los Angeles	
Name	SSN	City			SSN	PhoneNumber
Fred	123-45-6789	Seattle			123-45-6789	206-123-4567
Joe	987-65-4321	Los Angeles			123-45-6789	206-890-1234
					987-65-4321	626-246-8024

Motivating Example

Name	SSN	City
Fred	$123-45-6789$	Seattle
Joe	$987-65-4321$	Los Angeles

SSN	PhoneNumber
$123-45-6789$	$206-123-4567$
$123-45-6789$	$206-890-1234$
$987-65-4321$	$626-246-8024$

Anomalies are gone!

- Minimal Redundancy
- Fast Updates
- Precise Deletion

Functional Dependencies (FD)

What is a Functional Dependency?

Formally:
Definition $A_{1}, \ldots, A_{m} \rightarrow B_{1}, \ldots, B_{n}$ holds in R if:
$\forall \mathrm{t}, \mathrm{t}^{\prime} \in \mathrm{R}$,
$\left(\mathrm{t} . \mathrm{A}_{1}=\mathrm{t}^{\prime} . \mathrm{A}_{1} \wedge \ldots \wedge \mathrm{t} . \mathrm{A}_{\mathrm{m}}=\mathrm{t}^{\prime} . \mathrm{A}_{\mathrm{m}} \rightarrow \mathrm{t} . \mathrm{B}_{1}=\mathrm{t}^{\prime} . \mathrm{B}_{1} \wedge \ldots \wedge \mathrm{t} . \mathrm{B}_{\mathrm{n}}=\mathrm{t}^{\prime} . \mathrm{B}_{\mathrm{n}}\right)$

What is a Functional Dependency?

Informally:
An FD holds when some attributes imply other attributes

What is a Functional Dependency?

SSN -> Name ?

SSN -> Name, City?

Name	SSN	PhoneNumber	City
Fred	$123-45-6789$	$206-123-4567$	Seattle
Fred	$123-45-6789$	$206-890-1234$	Seattle
Joe	$987-65-4321$	$626-246-8024$	Los Angeles

SSN -> Name, City, PhoneNumber ?

What is a Functional Dependency?

SSN -> Name?
Yes

SSN -> Name, City ?

Name	SSN	PhoneNumber	City
Fred	$123-45-6789$	$206-123-4567$	Seattle
Fred	$123-45-6789$	$206-890-1234$	Seattle
Joe	$987-65-4321$	$626-246-8024$	Los Angeles

SSN -> Name, City, PhoneNumber ?

What is a Functional Dependency?

SSN -> Name ?
Yes

SSN -> Name, City?
Yes

Name	$\underline{\text { SSN }}$	PhoneNumber	City
Fred	$123-45-6789$	$206-123-4567$	Seattle
Fred	$123-45-6789$	$206-890-1234$	Seattle
Joe	$987-65-4321$	$626-246-8024$	Los Angeles

SSN -> Name, City, PhoneNumber ?

What is a Functional Dependency?

SSN -> Name?
Yes

SSN -> Name, City ?
Yes

Name	$\underline{\text { SSN }}$	PhoneNumber	City
Fred	$123-45-6789$	$206-123-4567$	Seattle
Fred	$123-45-6789$	$206-890-1234$	Seattle
Joe	$987-65-4321$	$626-246-8024$	Los Angeles

SSN -> Name, City, PhoneNumber ?
No

Finding FDs

Could be mapped from data... But usually, FDs should be established from prior knowledge about the data.

SSN -> Name
Name -> SSN

Name	SSN	PhoneNumber	City
Fred	$123-45-6789$	$206-123-4567$	Seattle
Fred	$123-45-6789$	$206-890-1234$	Seattle
Joe	$987-65-4321$	$626-246-8024$	Los Angeles

Finding FDs

Could be mapped from data... But usually, FDs should be established from prior knowledge about the data.

SSN -> Name \boldsymbol{V}
Name -> SSN true for now...

Name	SSN	PhoneNumber	City
Fred	$123-45-6789$	$206-123-4567$	Seattle
Fred	$123-45-6789$	$206-890-1234$	Seattle
Joe	$987-65-4321$	$626-246-8024$	Los Angeles

Closure Algorithm

Repeat until X doesn't change do: if $\quad B_{1}, \ldots, B_{n} \rightarrow C$ is a FD and B_{1}, \ldots, B_{n} are all in X then add C to X .

Goal: We want everything that an attribute/set of attributes determine
Observation:
If we have $\mathrm{A}->\mathrm{B}$ and $\mathrm{B}->\mathrm{C}$, then $\mathrm{A}->\mathrm{C}$

Closure Algorithm

Repeat until X doesn't change do: if $\quad B_{1}, \ldots, B_{n} \rightarrow C$ is a FD and B_{1}, \ldots, B_{n} are all in X then add C to X .

Goal: We want everything that an attribute/set of attributes determine
Observation:
If we have $\mathrm{A}->\mathrm{B}$ and $\mathrm{B}->\mathrm{C}$, then $\mathrm{A}->\mathrm{C}$
So really, A -> B and C

Closure Algorithm

Repeat until X doesn't change do: if $\quad B_{1}, \ldots, B_{n} \rightarrow C$ is a FD and B_{1}, \ldots, B_{n} are all in X then add C to X .

Goal: We want everything that an attribute/set of attributes determine
Observation:
If we have $\mathrm{A}->\mathrm{B}$ and $\mathrm{B}->\mathrm{C}$, then $\mathrm{A}->\mathrm{C}$
So really, A -> B and C
Formal notation is $\{\mathrm{A}\}^{+}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$

Closure Algorithm

Repeat until X doesn't change do: if $\quad B_{1}, \ldots, B_{n} \rightarrow C$ is a FD and B_{1}, \ldots, B_{n} are all in X then add C to X .

Goal: We want everything that an attribute/set of attributes determine
Observation:
If we have $\mathrm{A}->\mathrm{B}$ and $\mathrm{B}->\mathrm{C}$, then $\mathrm{A}->\mathrm{C}$
So really, A -> B and C
Formal notation is $\{\mathrm{A}\}^{+}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$
Since the closure of A is all attributes, A is a superkey

Keys

We call an attribute that determines all other attributes in a schema to be a superkey.

If it is the smallest set of attributes (in terms of cardinality) that does this we call that set a minimal key or just key

Anomalies

X -> Y in your table schema implies an anomaly UNLESS X is a (super)key
We deal with this by normalizing the schema (i.e. ripping apart tables until these anomalies are gone)

Boyce-Codd
Normal Form (BCNF)

What is a "Normal Form"?

Goal of normal forms is to promote consistency, speed, ease of use, etc.
1st Normal Form: Tables are flat
2nd Normal Form: Obsolete
3rd Normal Form: See textbook for more details

BCNF (3.5 Normal Form): No bad FDs

What is BCNF?

Definition. A relation R is in BCNF if:
Whenever $X \rightarrow B$ is a non-trivial dependency, then X is a superkey.

Definition. A relation R is in BCNF if:
$\forall \mathrm{X}$, either $\quad \mathrm{X}^{+}=\mathrm{X}$ or $\mathrm{X}^{+}=$[all attributes]

Example

Relation R : [Property_id (key), Country_name, Lot (key), Area]
Dependency: Property_id \rightarrow \{Country_name, Lot, Area\}
\{Country_name, Lot\} \rightarrow \{Property_id, Area\}
Area \rightarrow Country_name

- $\mathrm{R} \rightarrow \mathrm{BCNF}$?

Example

Relation R : [Property_id (key), Country_name, Lot (key), Area]
Dependency: Property_id \rightarrow \{Country_name, Lot, Area\}
\{Country_name, Lot\} \rightarrow \{Property_id, Area\}
Area \rightarrow Country_name

- $\mathrm{R} \rightarrow \mathrm{BCNF}$? No.
- How to normalize?

Example

Relation R : [Property_id (key), Country_name, Lot (key), Area]
Dependency: Property_id \rightarrow \{Country_name, Lot, Area\}
\{Country_name, Lot\} \rightarrow \{Property_id, Area\}
Area \rightarrow Country_name

- $\mathrm{R} \rightarrow \mathrm{BCNF}$? No.
- How to normalize?
[Property_id (key), Area, Lot (key)]
[Area (key), country_name]

Practical Tips

Normalization is great for promoting consistency about current states
Fully normalized data can be hindering (think about joins). Denormalizing can bring back redundancy but improve performance in some cases.

