CSE 344
Midterm Review
July 26th
Midterm

- In class on Friday
- One sheet of notes, front and back
 - cost formulas also provided
- Practice exam on web site
- Good luck!
General Topics

- Databases
 - Motivations and definitions
- Relational Databases
 - SQL
 - Relational Algebra
 - Datalog
- Semi-structured Data
 - Motivations and definitions
General Topics

- Internals
 - Indexes
 - Physical plans/Cost Estimation
 - Disk I/o
- No Parallel DBs
 - (that will be on final exam)
Databases

• Motivations
 • Collections of related files
• Databases vs. DBMS
• What is stored?
• What is the DBMS’ responsibility?
Databases

- Motivations
 - Collections of related files
- Databases vs. DBMS
- What is stored?
- What is the DBMS’ responsibility?
 - Data storage and manipulation
 - Black box thought
 - Physical data independence
Relational Databases

- Motivations
 - Breaking away from singular flat files
 - Why/how do we break up data?
- Data model
 - Schemas and keys
 - Records and attributes
 - Attribute types/typing
Relational Databases

- Primary keys
 - What are the constraints?
 - When do we select keys?
 - Multiple keys
- Foreign keys
 - Constraints vs. Joining
- Keys across different data
SQL Structure

- Flat tables
 - First normal form
 - Breaking up data into multiple relations
SQL Code

- Create statements
 - Key declarations
 - Type declarations
 - Constraints: PK, FK, and general
- Insert/Delete statements
- Update statements
- Drop table
Select
From
Where
Group by
Having
Order by
SQL Code

- Distinct (and relation to group by)
- Inner vs. Outer Joining
 - Left/Right/Full
- Nested loop semantics
 - Cross product with selection
- Self joins
 - Produce companies that produce gadgets and cameras
SQL Code

- Aggregation
 - Count, sum, min, max, avg
- Null values
 - IS NOT null
 - Count(null)
- Where vs. Having
SQL Code

- Constructing Queries
 - FWGHOS (i.e., select is last)
- Subqueries
 - In Select (Single attribute projection)
 - In From (subquery AS, WITH AS)
 - In Where (EXISTS, IN, ANY)
- Correlated vs. Non-correlated
- Un-nesting
- Finding the Witness
SQL Code

- Negation in subqueries
- Monotonicity
 - Definitions
 - Example
 - Difficulties and necessity of subqueries
Relational Algebra

- Set vs Bag semantics
 - Why bag?
- Query plans and RA expressions
- Operations (on relations, some with conditions)
 - Union, difference
 - Selection
 - Projection
 - Joins
Relational Algebra

• Operations (on relations, some with conditions)
 • Union, difference
 • Selection
 • Projection
 • Joins
 • Duplicate elimination
 • Grouping
 • Sorting
Relational Algebra

- Operations (on relations, some with conditions)
 - Union, difference
 - Selection
 - Projection
 - Joins (remember your conditions)
 - Duplicate elimination
 - Grouping
 - Sorting
Relational Algebra

• How do we know SQL and RA are equally expressive?
 • Translating one to the other
 • Multiple RA expressions possible for same query
 • DBMS optimization
Relational Algebra

- Producing RA expressions/trees
 - From queries
 - Visa-versa
- Bag vs. Set RA
 - Datalog is set semantic
Datalog

- Queries which cannot be defined in RA
 - Recursive queries
- Expressing RA expressions in datalog
 - Set semantics (procedural)
 - “Simple, concise, elegant”
- Fixed point semantics
 - Recursion builds from base case (empty)
Datalog

• Logical framework
• Explicitly defined intermediate results
• Terminology
 • Facts and Rules
 • Extensional vs. Intensional Predicates
 • Head and body
 • Head vs. Existential Variables
 • Unsafe rules
Datalog

- Writing Rules
 - Safety
 - Base cases
 - Aggregation and negation
 - Variable scope
 - Simple recursive queries
 - Converting from RA
Semistructured Data

- Motivations
 - Transactional vs. Analytical Workloads
 - Data distribution
 - Consistency
 - Partition vs. Replication
 - Key-value storage -> Document Storage
JSON

- Gives structure to data
- Objects and collections
- Self-describing
- Separate and less constrained than SQL++
- Nested structure (non-first normal form)
Asterix DB

- Document-based
- NoSQL
- Semi-structured
- Over JSON objects
 - Constraints (types, no duplicates)
- SQL++
 - Description vs. Manipulation
Asterix DB

- Dataverse
 - Database - set of data currently working with
- Types
 - UUID - auto generated
 - Null vs. Missing
 - Nested collections
 - Open v. Closed
 - Required v. Optional fields
Asterix DB

- Datasets
 - Relations
 - Defined over a type
 - Must have a key
- Indexes
 - Over particular attributes
 - Speeds up selections and joins
Asterix DB

- SQL++
 - Heterogeneity
 - Unnesting
 - Nesting/Aggregation and non-first normal
 - Multi-value join
 - data stores one to many instead of reverse
 - Can often be represented in SQL
Semistructured

- Distributed systems
- Short-term analysis
- Lower set-up costs
- Higher query costs (often)
- Higher query complexity
 - no free lunch... have to pay for costs of heterogeneity somewhere
Internals

- Physical Plans
 - Operators
 - Pipelining (selection, projection)
 - Joins
 - Nested Loop
 - Hash
 - Sorted merge
 - Index
Internals

• Physical Plans
 • Operators
 • Not discussed
 • Grouping/aggregation
Internals

- Physical Plans
 - Indexes
 - Clustered v. Unclustered
 - Hash v. B-Tree
 - When to apply
 - Benefit?
Internals

• Physical Plans
 • Cost estimation
 • Disk I/Os
 • Blocks and Tuples
 • Formulae (provided)
 • Tuple/block estimation
 • Selectivity factor
Questions

- That’s the material
- Things that will be on the exam
 - Relational data
 - schema design
 - queries in RA, SQL, Datalog
 - NoSQL
 - simplified data models
 - JSON and SQL++
- Query optimization
 - cost estimation
Advice

• Look through the exam first
 • Try and do easiest questions first
 • Short answer questions are worth equal amounts, varying difficulty
 • Long exam, get easy points first
• Always be sure you understand the question
Advice

- Go through previous exams
 - Good judgement for questions
- Go through HW, WQ assignments
 - If I’ve asked you something before, I am certain that you should know how to do it
- Think about how null values/your assumptions impact the interpretation of the data