CSE 344 Midterm Review

July 26th

Midterm

- In class on Friday
- One sheet of notes, front and back
- cost formulas also provided
- Practice exam on web site
- Good luck!

General Topics

- Databases
- Motivations and definitions
- Relational Databases
- SQL
- Relational Algebra
- Datalog
- Semi-structured Data
- Motivations and definitions

General Topics

- Internals
- Indexes
- Physical plans/Cost Estimation
- Disk I/o
- No Parallel DBs
- (that will be on final exam)

Databases

- Motivations
- Collections of related files
- Databases vs. DBMS
- What is stored?
- What is the DBMS' responsibility?

Databases

- Motivations
- Collections of related files
- Databases vs. DBMS
- What is stored?
- What is the DBMS' responsibility?
- Data storage and manipulation
- Black box thought
- Physical data independence

Relational Databases

- Motivations
- Breaking away from singular flat files
- Why/how do we break up data?
- Data model
- Schemas and keys
- Records and attributes
- Attribute types/typing

Relational Databases

- Primary keys
- What are the constraints?
-When do we select keys?
- Multiple keys
- Foreign keys
- Constraints vs. Joining
- Keys across different data

SQL Structure

- Flat tables
- First normal form
- Breaking up data into multiple relations

SQL Code

- Create statements
- Key declarations
- Type declarations
- Constraints: PK, FK, and general
- Insert/Delete statements
- Update statements
- Drop table

SQL Code

- Select
- From
- Where
- Group by
- Having
- Order by

SQL Code

- Distinct (and relation to group by)
- Inner vs. Outer Joining
- Left/Right/Full
- Nested loop semantics
- Cross product with selection
- Self joins
- Produce companies that produce gadgets and cameras

SQL Code

- Aggregation
- Count, sum, min, max, avg
- Null values
- IS NOT null
- Count(null)
- Where vs. Having

SQL Code

- Constructing Queries
- FWGHOS (i.e., select is last)
- Subqueries
- In Select (Single attribute projection)
- In From (subquery AS, WITH AS)
- In Where (EXISTS, IN, ANY)
- Correlated vs. Non-correlated
- Un-nesting
- Finding the Witness

SQL Code

- Negation in subqueries
- Monotonicity
- Definitions
- Example
- Difficulties and necessity of subqueries

Relational Algebra

- Set vs Bag semantics
- Why bag?
- Query plans and RA expressions
- Operations (on relations, some with conditions)
- Union, difference
- Selection
- Projection
- Joins

Relational Algebra

- Operations (on relations, some with conditions)
- Union, difference
- Selection
- Projection
- Joins
- Duplicate elimination
- Grouping
- Sorting

Relational Algebra

- Operations (on relations, some with conditions)
- Union, difference
- Selection
- Projection
- Joins (remember your conditions)
- Duplicate elimination
- Grouping
- Sorting

Relational Algebra

- How do we know SQL and RA are equally expressive?
- Translating one to the other
- Multiple RA expressions possible for same query
- DBMS optimization

Relational Algebra

- Producing RA expressions/trees
- From queries
- Visa-versa
- Bag vs. Set RA
- Datalog is set semantic

Datalog

- Queries which cannot be defined in RA
- Recursive queries
- Expressing RA expressions in datalog
- Set semantics (procedural)
- "Simple, concise, elegant"
- Fixed point semantics
- Recursion builds from base case (empty)

Datalog

- Logical framework
- Explicitly defined intermediate results
- Terminology
- Facts and Rules
- Extensional vs. Intensional Predicates
- Head and body
- Head vs. Existential Variables
- Unsafe rules

Datalog

- Writing Rules
- Safety
- Base cases
- Aggregation and negation
- Variable scope
- Simple recursive queries
- Converting from RA

Semistructured Data

- Motivations
- Transactional vs. Analytical Workloads
- Data distribution
- Consistency
- Partition vs. Replication
- Key-value storage -> Document Storage
- Gives structure to data
- Objects and collections
- Self-describing
- Separate and less constrained than SQL++
- Nested structure (non-first normal form)

Asterix DB

- Document-based
- NoSQL
- Semi-structured
- Over JSON objects
- Constraints (types, no duplicates)
- SQL++
- Description vs. Manipulation

Asterix DB

- Dataverse
- Database - set of data currently working with

Types

- UUID - auto generated
- Null vs. Missing
- Nested collections
- Open v. Closed
- Required v. Optional fields

Asterix DB

- Datasets
- Relations
- Defined over a type
- Must have a key
- Indexes
- Over particular attributes
- Speeds up selections and joins

Asterix DB

- SQL++
- Heterogeneity
- Unnesting
- Nesting/Aggregation and non-first normal
- Multi-value join
- data stores one to many instead of reverse
- Can often be represented in SQL

Semistructured

- Distributed systems
- Short-term analysis
- Lower set-up costs
- Higher query costs (often)
- Higher query complexity
- no free lunch... have to pay for costs of heterogeneity somewhere

Internals

- Physical Plans
- Operators
- Pipelining (selection, projection)
- Joins
- Nested Loop
- Hash
- Sorted merge
- Index

Internals

- Physical Plans
- Operators
- Not discussed
- Grouping/aggregation

Internals

- Physical Plans
- Indexes
- Clustered v. Unclustered
- Hash v. B-Tree
- When to apply
- Benefit?

Internals

- Physical Plans
- Cost estimation
- Disk I/Os
- Blocks and Tuples
- Formulae (provided)
- Tuple/block estimation
- Selectivity factor

Questions

- That's the material
- Things that will be on the exam
- Relational data
- schema design
- queries in RA, SQL, Datalog
- NoSQL
- simplified data models
- JSON and SQL++
- Query optimization
- cost estimation

Advice

- Look through the exam first
- Try and do easiest questions first
- Short answer questions are worth equal amounts, varying difficulty
- Long exam, get easy points first
- Always be sure you understand the question

Advice

- Go through previous exams
- Good judgement for questions
- Go through HW, WQ assignments
- If I've asked you something before, I am certain that you should know how to do it
- Think about how null values/your assumptions impact the interpretation of the data

