
CSE 344
Final Review

August 16th



Final

• In class on Friday

• One sheet of notes, front and back
• cost formulas also provided

• Practice exam on web site

• Good luck!



Primary Topics

• Parallel DBs

• parallel join algorithms

• parallel query optimization

• MapReduce

• DB Design

• E/R diagrams

• constraints

• normalization



Primary Topics

• Transactions

• ACID properties

• serial vs serializable vs
conflict serializable

• (strict) 2PL locking

• First-half material also fair game!



Review...



Motivation

• important uses of databases
• big data

• almost every company has too much for 1 machine

• very important data

• critical that the data is not lost or corrupted

• complex queries

• hard to answer them efficiently

• modern DBs solve these problems



What is a database?

• collection of related data

• provides languages to describe, query, and 
update data
• checks that new data satisfies constraints

• allows you to change the schema

• very common & hard problem

• easy languages for querying data

• also efficient implementation

• provides high levels of reliability

• hides many (physical) details



SQL (everywhere)

• best language we have

• easy for non-programmers to learn

• can express almost any query you have

• works well for parallel DBs just as well



Relational Algebra

• all of SQL simplifies to just a few operations
• union, intersect, select, projection, join, & 

aggregation

• not as useful for users
• harder than writing SQL

• have to say how to implement query

• very useful for DB implementers
• similar to intermediate language of compiler

• implementers call RA “query plans”



Datalog

• very different way of writing relation query

• closer to logic
• explanation for why it can answer any question

• (connections to AI)

• only slightly more expressive than SQL / RA
• only adds recursion!

• w/out recursion can convert back and forth

• need to write “safe” rules
• unsafe rules generate infinite results



NoSQL

• relational data is not natural
• lists are natural to users but not 1NF

• JSON is more natural

• early systems: key-val pairs & extensible records
• huge scale for OLTP workloads

• BUT reduced functionality

• limited data model

• no joins (ouch!)

• modern systems have JSON + full functionality



SQL++

• supports querying non-1NF data

• all you need is un-nesting
• e.g., “world x, x.rivers y”

• pretty easy to add to other systems

• also allows working with lists directly
• both input and output

• remove restriction on subquery location

• can have >1 rows in result in SELECT clause

• more convenient for users



Internals

• logical plans: RA

• physical plans: choice of op implementations
• e.g., join algorithms

• pipelining
• allows tuples to go to the user more quickly

• don’t need to wait for all tuples to be ready

• no need to store intermediate results

• no disk cost for selection & projection



Internals cont.

• indexing
• clustered vs unclustered

• hash vs B+ tree vs other

• disks are unbelievably slow
• hard disks are mechanical devices

• reading 1-2% is as slow as reading whole file

• for speed: store in memory of many machines

• becoming increasingly common



Parallel DBs

• shared memory & shared disk work with 
smaller amounts of data
• BUT modern systems are shared nothing

• workloads: OLAP vs OLTP
• OLAP is big read-only queries

• OLTP is many read/write queries, each 
accessing only a small amount of data

• can’t support both at scale!

• best solution is to execute OLAP on old data

• (multi-version)



Parallel DBs cont.

• easy solutions for OLAP & OLTP are different
• partitioning & replication

• we want both!
• need to use partitioning (for OLTP)

• then figure out how to execute OLAP queries 
on partitioned data...



Parallel query plans

• can still use cost-based optimization
• could be disk cost or network cost

• (only network if no disk involved)

• only new operation is reshuffle!
• all other work on a single machine

• can use in-memory operations at no cost

• cost will generally be worse with more 
reshuffling

• where have I seen reshuffle before...



Parallel query plans cont.

• map reduce
• steps: input > map > shuffle > reduce > output

• you provide map and reduce parts

• framework provides (re)shuffle

• all steps use (key,value) pairs as data format

• framework only looks at key

• value is opaque

• framework handles many low-level details

• restarts workers that fail

• reassigns finished workers to straggling jobs



DB Design

• Getting the data right is half(?) the problem

• E/R is a great way to communicate design
• higher level than SQL, a picture!

• some new complexities

• multi-way relationships

• subclasses

• weak entities



DB Design cont.

• People really do make schema design errors

• Normalization is a great way to find them!
• BCNF is the standard

• 4NF might also be useful

• Functional dependencies are constraints



DB Design cont.

• Constraints are really important
• how can you ensure they are always satisfied 

without identifying them?

• DB automatically checks many constraints

• even auto-fixes broke FK constraints

• cascade, set null, etc.

• Rest are up to you

• only need to check before committing



DB Performance

• Main choices that affect performance
• indexes

• materialized views

• Indexing
• includes choice of clustering

• e.g., if multiple keys, which is primary?

• primary key becomes clustering

• indexes improve queries but slow updates

• also create more lock contention

• queries are most important though...



DB Performance cont.

• Views are tables computed from others
• you give the query used to compute them

• can then refer to the view by name without 
giving the query

• ways to implement:

• re-compute on demand

• just substitute the query

• store and updated

• called materialized views



Transactions

• ACID properties let us write correct apps
• (you saw this in HW8)

• other models are difficult

• consistency and durability are easy

• consistency: check constraints before commit

• durability; write to (multiple) disks

• ideally, geographically-separated disks

• atomicity and isolation are harder

• locking or MVCC provide these



Locking

• serial schedules are isolated by definition

• serializable schedules are more general
• just as good: identical behavior

• allows parallelism

• conflict serializability
• special type of serializable schedules

• can prove serializability by simple swaps



Locking cont.

• 2PL ensures conflict serializability

• strict 2PL gives atomicity & isolation
• trouble for 2PL is rollback (atomicity)

• phantom tuples are still an issue

• easiest solution: lock part of the index

• can also use predicate locks (hard)

• ways to fine tune performance

• lock modes

• lock granularity

• admission control sometimes actually helps!



Locking

• tradeoff between correctness & performance
• saw how to get ACID but at substantial cost

• DBs default to non-ACID

• SQL Server allows phantoms

• in that case, correctness is up to you

• need to think through whether phantoms will 
break any of your apps

• this is very hard!

• especially as the code is changing

• especially with many programmers



Final notes

• Study
• transactions: CS, locking

• DB design: E/R, BCNF

• parallel DBs: network cost estimation

• see Wednesday lecture

• Briefly review other materials


