
CSE 344
JULY 2ND

DATALOG

ADMINISTRATIVE MINUTIAE
• No class Wednesday

• HW2 Due Wednesday

RELATIONAL
ALGEBRA
Set-at-a-time algebra, which manipulates relations

In SQL we say what we want

In RA we can express how to get it

Every DBMS implementations converts a SQL query to RA in
order to execute it

An RA expression is called a query plan

BASICS

• Relations and attributes

• Functions that are applied to relations
– Return relations

– Can be composed together

– Often displayed using a tree rather than linearly

– Use Greek symbols as shorthand:
• union and difference –

• selection σ

• projection p
• cartesian product ×

• natural join

NATURAL JOIN

Meaning: R1 R2 = PA(sq (R1 × R2))

• Returns a relation where all attribute names are unambiguous

Where:

• Selection sq checks equality of all common attributes (i.e.,
attributes with same names)

• Projection PA eliminates duplicate common attributes

R1 R2

NATURAL JOIN EXAMPLE
A B

X Y

X Z

Y Z

Z V

B C

Z U

V W

Z V

A B C

X Z U

X Z V

Y Z U

Y Z V

Z V W

R S

R S =
PABC(sR.B=S.B(R × S))

NATURAL JOIN
EXAMPLE 2

age zip disease

54 98125 heart

20 98120 flu

AnonPatient P Voters V

P V

name age zip

Alice 54 98125

Bob 20 98120

age zip disease name

54 98125 heart Alice

20 98120 flu Bob

THETA JOIN

A join that involves a predicate

Here q can be any condition

No projection in this case!

For our voters/patients example:

q qR1 q R2 = sq (R1 X R2)

P P.zip = V.zip and P.age >= V.age -1 and P.age <= V.age +1 V

AnonPatient (age, zip, disease)
Voters (name, age, zip)

EQUIJOIN

A theta join where q is an equality predicate

By far the most used variant of join in practice

What is the relationship with natural join?

q qR1 q R2 = sq (R1 × R2)

EQUIJOIN EXAMPLE

age zip disease

54 98125 heart

20 98120 flu

AnonPatient P Voters V

P P.age=V.age V

name age zip

p1 54 98125

p2 20 98120

P.age P.zip P.disease V.name V.age V.zip

54 98125 heart p1 54 98125

20 98120 flu p2 20 98120

JOIN SUMMARY
Theta-join: R q S = σq (R × S)

• Join of R and S with a join condition θ
• Cross-product followed by selection θ
• No projection

Equijoin: R θ S = σθ (R × S)
• Join condition θ consists only of equalities
• No projection

Natural join: R S = πA (σθ (R × S))
• Equality on all fields with same name in R and in S
• Projection πA drops all redundant attributes

MORE JOINS
Outer join

• Include tuples with no matches in the output

• Use NULL values for missing attributes

• Does not eliminate duplicate columns

Variants

• Left outer join

• Right outer join

• Full outer join

SOME EXAMPLES
Supplier(sno,sname,scity,sstate)

Part(pno,pname,psize,pcolor)

Supply(sno,pno,qty,price)

Name of supplier of parts with size greater than 10

πsname(Supplier ⨝ Supply ⨝ (σpsize>10 (Part))

Name of supplier of red parts or parts with size greater than 10

πsname(Supplier ⨝ Supply ⨝ (σ psize>10 (Part) ∪ σpcolor=‘red’ (Part)))

πsname(Supplier ⨝ Supply ⨝ (σ psize>10 ∨ pcolor=‘red’ (Part)))

Can be represented as trees as well

REPRESENTING RA QUERIES AS
TREES

πsname(Supplier Supply (σpsize>10 (Part))

Part

Supplyσpsize>10

πsname

Answer

Supplier

RELATIONAL ALGEBRA OPERATORS

Union , intersection ∩, difference -

Selection σ

Projection π

Cartesian product X, join

(Rename ρ)

Duplicate elimination δ

Grouping and aggregation ɣ

Sorting

RA

Extended RA

All operators take in 1 or more relations as inputs
and return another relation

EXTENDED RA:
OPERATORS ON BAGS
Duplicate elimination d

Grouping g

• Takes in relation and a list of grouping operations
(e.g., aggregates). Returns a new relation.

Sorting t

• Takes in a relation, a list of attributes to sort on, and
an order. Returns a new relation.

USING EXTENDED RA
OPERATORS

SELECT city, sum(quantity)
FROM sales
GROUP BY city
HAVING count(*) > 100

T1, T2 = temporary tables sales(product, city, quantity)

g city, sum(quantity)→q, count(*) → c

s c > 100

P city, q

Answer

T1(city,q,c)

T2(city,q,c)

TYPICAL PLAN FOR A
QUERY (1/2)

R S

join condition

σselection condition

πfields

join condition

…

SELECT-PROJECT-JOIN
Query

Answer

SELECT fields
FROM R, S, …
WHERE condition

TYPICAL PLAN FOR A QUERY (1/2)
πfields

ɣfields, sum/count/min/max(fields)

σhaving condition

σwhere condition

join condition

… …

SELECT fields
FROM R, S, …
WHERE condition
GROUP BY fields
HAVING condition

HOW ABOUT
SUBQUERIES?

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’
and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno

and P.price > 100)

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’
and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno

and P.price > 100)

HOW ABOUT
SUBQUERIES?

Correlation !

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’
and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno

and P.price > 100)

HOW ABOUT
SUBQUERIES?

De-Correlation

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’
and Q.sno not in
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’
and Q.sno not in
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

HOW ABOUT
SUBQUERIES?

(SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’)

EXCEPT
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

EXCEPT = set difference

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Un-nesting

(SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’)

EXCEPT
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

HOW ABOUT
SUBQUERIES?

Supply

σsstate=‘WA’

Supplier

σPrice > 100

−
Finally…

πsnoπsno

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

SUMMARY OF RA AND
SQL
SQL = a declarative language where we say what data we
want to retrieve

RA = an algebra where we say how we want to retrieve the
data

Theorem: SQL and RA can express exactly the same class of
queries

RDBMS translate SQL  RA, then optimize RA

RELATIONAL ALGEBRA
TAKEAWAYS
• For a given query, be able write the

equivalent relational algebra expression

• Given a relational algebra expression,
write the equivalent query

• Understand what each are trying to get
semantically

SUMMARY OF RA AND
SQL
SQL (and RA) cannot express ALL queries
that we could write in, say, Java

Example:

• Parent(p,c): find all descendants of ‘Alice’

• No RA query can compute this!

• This is called a recursive query

Datalog is an extension that can compute
recursive queries

WHAT IS DATALOG?
Another query language for relational model

• Designed in the 80’s

• Simple, concise, elegant

• Extends relational queries with recursion

Relies on a logical framework for ”record” selection

DATALOG: FACTS AND
RULES

Facts = tuples in the database Rules = queries

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Schema

DATALOG: FACTS AND
RULES

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

DATALOG: FACTS AND
RULES

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

DATALOG: FACTS AND
RULES

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Find Movies made in 1940

DATALOG: FACTS AND
RULES

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
Movie(x,y,’1940’).

DATALOG: FACTS AND
RULES

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
Movie(x,y,’1940’).

Find Actors who acted in Movies made in 1940

DATALOG: FACTS AND
RULES

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
Movie(x,y,’1940’).

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910),
Casts(z,x2), Movie(x2,y2,1940)

DATALOG: FACTS AND
RULES

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
Movie(x,y,’1940’).

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910),
Casts(z,x2), Movie(x2,y2,1940)

Find Actors who acted in a Movie in 1940 and in one in 1910

DATALOG: FACTS AND
RULES

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
Movie(x,y,’1940’).

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910),
Casts(z,x2), Movie(x2,y2,1940)

Extensional Database Predicates = EDB = Actor, Casts, Movie
Intensional Database Predicates = IDB = Q1, Q2, Q3

