
CSE 344
JUNE 29TH

RELATIONAL ALGEBRA



ADMINISTRIVIA
• WQ2 due tonight

• HW2 out (Due Wednesday)
• git pull upstream master

• Canvas page published
• only grades there… all else on usual web site



REVIEW

• SQL: complete query language
• inner & outer joins (FROM & WHERE clauses)
• group by: replaces rows with groups of rows

• from then on, only group-by columns and aggregation
• having filter on groups (vs where on rows)
• order by
• select is processed last
• subqueries can appear in from (no worries), select, where

• in select, result must be 1 row, 1 column (i.e. single value)
• in principle, should unnest

• in where, can be single value or use EXISTS, IN, ANY/ALL
• in principle, existential (exists, in, any) should unnest

• Where we left off: can all queries be unnested?



QUESTION FOR 
DATABASE THEORY FANS
AND THEIR FRIENDS

Can we unnest universal quantifier query?

We first need the concept of monotonicity



MONOTONE QUERIES
Definition A query Q is monotone if:

• Whenever we add tuples to one or more input tables, the 
answer to the query will not lose any of the tuples

Product (pname,  price, cid)
Company (cid, cname, city)



MONOTONE QUERIES
Definition A query Q is monotone if:

• Whenever we add tuples to one or more input tables, the 
answer to the query will not lose any of the tuples

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c004

Camera 149.99 c003

Product (pname,  price, cid)
Company (cid, cname, city)

cid cname city

c002 Sunworks Bonn

c001 DB Inc. Lyon

c003 Builder Lodtz

Product Company

Q pname city

Gizmo Lyon

Camera Lodtz



MONOTONE QUERIES
Definition A query Q is monotone if:

• Whenever we add tuples to one or more input tables, the 
answer to the query will not lose any of the tuples

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c004

Camera 149.99 c003

Product (pname,  price, cid)
Company (cid, cname, city)

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c004

Camera 149.99 c003

iPad 499.99 c001

cid cname city

c002 Sunworks Bonn

c001 DB Inc. Lyon

c003 Builder Lodtz

Product Company
pname city

Gizmo Lyon

Camera Lodtz

pname city

Gizmo Lyon

Camera Lodtz

iPad Lyon

Product Company

Q

Qcid cname city

c002 Sunworks Bonn

c001 DB Inc. Lyon

c003 Builder Lodtz

So far it looks monotone...



MONOTONE QUERIES
Definition A query Q is monotone if:

• Whenever we add tuples to one or more input tables, the 
answer to the query will not lose any of the tuples

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c004

Camera 149.99 c003

Product (pname,  price, cid)
Company (cid, cname, city)

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c004

Camera 149.99 c003

iPad 499.99 c001

cid cname city

c002 Sunworks Bonn

c001 DB Inc. Lyon

c003 Builder Lodtz

Product Company
pname city

Gizmo Lyon

Camera Lodtz

pname city

Gizmo Lodtz

Camera Lodtz

iPad Lyon

Product Company

Q

Qcid cname city

c002 Sunworks Bonn

c001 DB Inc. Lyon

c003 Builder Lodtz

c004 Crafter Lodtz

Q is not monotone!



MONOTONE QUERIES
Theorem:  If Q is a SELECT-FROM-WHERE query 
(i.e., Q has no subqueries and no aggregation),  
then Q is monotone.



MONOTONE QUERIES
Theorem:  If Q is a SELECT-FROM-WHERE query 
(i.e., Q has no subqueries and no aggregation),  
then Q is monotone.

Proof.  We use the nested loop semantics: if we 
insert a tuple in a relation Ri, this will not remove 
any tuples from the answer
SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE  Conditions

for x1 in R1 do
for x2 in R2 do

…
for xn in Rn do
if Conditions
output (a1,…,ak)



MONOTONE QUERIES
The query: 

is not monotone

Find all companies s.t. all their products have price < 200

Product (pname,  price, cid)
Company (cid, cname, city)



MONOTONE QUERIES
The query: 

is not monotone

Product (pname,  price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

pname price cid

Gizmo 19.99 c001

cid cname city

c001 Sunworks Bonn

cname

Sunworks



MONOTONE QUERIES
The query: 

is not monotone

Consequence: If a query is not monotonic, then we 
cannot write it as a SELECT-FROM-WHERE query 
without grouping or nested subqueries

pname price cid

Gizmo 19.99 c001

cid cname city

c001 Sunworks Bonn

cname

Sunworks

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c001

cid cname city

c001 Sunworks Bonn

cname

Product (pname,  price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200



GROUP BY V.S. 
NESTED QUERIES
SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

SELECT DISTINCT x.product, (SELECT Sum(y.quantity)
FROM Purchase y
WHERE x.product = y.product
AND y.price > 1)

AS TotalSales
FROM Purchase x
WHERE x.price > 1

Why twice ?

Purchase(pid, product, quantity, price)



MORE UNNESTING

Author(login,name)
Wrote(login,url)

Find authors who wrote ≥ 10 documents:



MORE UNNESTING

SELECT DISTINCT Author.name
FROM Author
WHERE (SELECT count(Wrote.url)

FROM Wrote
WHERE Author.login=Wrote.login)

>= 10

This is
SQL by
a novice

Attempt 1: with nested queries

Author(login,name)
Wrote(login,url)

Find authors who wrote ≥ 10 documents:



MORE UNNESTING

Attempt 1: with nested queries

Author(login,name)
Wrote(login,url)

Find authors who wrote ≥ 10 documents:

SELECT Author.name
FROM Author, Wrote
WHERE Author.login=Wrote.login
GROUP BY Author.name
HAVING count(wrote.url) >= 10

This is
SQL  by

an expert

Attempt 2: using GROUP BY and HAVING



FINDING WITNESSES

Product (pname,  price, cid)
Company (cid, cname, city)

For each city, find the most expensive product made in that city



FINDING WITNESSES

SELECT x.city, max(y.price)
FROM Company x, Product y
WHERE x.cid = y.cid
GROUP BY x.city;

Finding the maximum price is easy…

But we need the witnesses, i.e., the products with max price

For each city, find the most expensive product made in that city

Product (pname,  price, cid)
Company (cid, cname, city)



FINDING WITNESSES
To find the witnesses, compute the maximum price
in a subquery (in FROM or in WITH)

Product (pname,  price, cid)
Company (cid, cname, city)

WITH CityMax AS 
(SELECT x.city, max(y.price) as maxprice
FROM Company x, Product y
WHERE x.cid = y.cid
GROUP BY x.city) 

SELECT DISTINCT u.city, v.pname, v.price
FROM Company u, Product v, CityMax w
WHERE u.cid = v.cid

and u.city = w.city
and v.price = w.maxprice;



FINDING WITNESSES
To find the witnesses, compute the maximum price
in a subquery (in FROM or in WITH)

SELECT DISTINCT u.city, v.pname, v.price
FROM Company u, Product v,

(SELECT x.city, max(y.price) as maxprice
FROM Company x, Product y
WHERE x.cid = y.cid
GROUP BY x.city) w

WHERE u.cid = v.cid
and u.city = w.city
and v.price = w.maxprice;

Product (pname,  price, cid)
Company (cid, cname, city)



FINDING WITNESSES

Or we can use a subquery in where clause

SELECT u.city, v.pname, v.price
FROM Company u, Product v
WHERE u.cid = v.cid

and v.price >= ALL (SELECT y.price
FROM Company x, Product y 
WHERE u.city=x.city
and x.cid=y.cid);

Product (pname,  price, cid)
Company (cid, cname, city)



FINDING WITNESSES

There is a more concise solution here:

SELECT u.city, v.pname, v.price
FROM Company u, Product v, Company x, Product y
WHERE u.cid = v.cid and u.city = x.city
and x.cid = y.cid
GROUP BY u.city, v.pname, v.price
HAVING v.price = max(y.price)

Product (pname,  price, cid)
Company (cid, cname, city)

Why do we need v.price here?
(It doesn’t change groups!)



REVIEW

• SQL: complete query language
• inner & outer joins
• group by: replaces rows with groups of rows

• from then on, only group-by columns and aggregation
• having filter on groups (vs where on rows)
• order by
• select is processed last
• subqueries

• SQL is used everywhere for relational data



RELATIONAL 
ALGEBRA
• Remember from last week

• SQL queries are combinations of functions on tables
• joins: (R1, R2, …, Rk) ~> R
• where: R ~> R’ 

• Each one receives tables as input and has a table 
as an output



RELATIONAL 
ALGEBRA
Set-at-a-time algebra, which manipulates relations

In SQL we say what we want (“declarative”)
In RA we can express how to get it (“imperative”)

An RA expression is also called a query plan
Every DBMS implementations converts a SQL query to RA in 
order to execute it



BASICS

• Relations and attributes
• Functions that are applied to relations

– Return relations
– Can be composed together
– Often displayed using a tree rather than linearly
– Use Greek symbols: σ, p, δ, etc



SETS V.S. BAGS
Sets: {a,b,c}, {a,d,e,f}, { }, . . .
Bags: {a, a, b, c}, {b, b, b, b, b}, . . .

Relational Algebra has two flavors:
Set semantics  = standard Relational Algebra
Bag semantics = extended Relational Algebra

DB systems implement bag semantics (Why?)



RELATIONAL ALGEBRA OPERATORS
Union ∪, intersection ∩, difference -
Selection σ
Projection π
Cartesian product X, join ⨝
(Rename ρ)
Duplicate elimination δ
Grouping and aggregation ɣ
Sorting 𝛕

RA

Extended RA

All operators take in 1 or more relations as inputs 
and return another relation



UNION AND DIFFERENCE

What do they mean over bags ?

R1 ∪ R2
R1 – R2

Only make sense if R1, R2 have the same schema



WHAT ABOUT INTERSECTION ?

Derived operator using minus

Derived using join

R1 ∩ R2 = R1 – (R1 – R2)

R1 ∩ R2 = R1 ⨝ R2



SELECTION
Returns all tuples which satisfy a condition

Examples
• σSalary > 40000 (Employee)
• σname = “Smith” (Employee)

The condition c can be =, <, <=, >, >=, <>
combined with AND, OR, NOT

σc(R)



σSalary > 40000 (Employee)

SSN Name Salary
1234545 John 20000
5423341 Smith 60000
4352342 Fred 50000

SSN Name Salary
5423341 Smith 60000
4352342 Fred 50000

Employee



PROJECTION
Eliminates columns

Example: project social-security number and names:
• πSSN, Name (Employee) à Answer(SSN, Name)

π A1,…,An (R)

Different semantics over sets or bags!  Why?



π Name,Salary (Employee)

SSN Name Salary
1234545 John 20000
5423341 John 60000
4352342 John 20000

Name Salary
John 20000
John 60000
John 20000

Employee

Name Salary
John 20000
John 60000

Bag semantics Set semantics

Which is more efficient?



COMPOSING RA 
OPERATORS

no name zip disease
1 p1 98125 flu
2 p2 98125 heart
3 p3 98120 lung
4 p4 98120 heart

Patient

σdisease=‘heart’(Patient)

no name zip disease
2 p2 98125 heart
4 p4 98120 heart

zip disease
98125 flu
98125 heart
98120 lung
98120 heart

πzip,disease(Patient)

πzip,disease(σdisease=‘heart’(Patient))

zip disease
98125 heart
98120 heart



CARTESIAN PRODUCT
Each tuple in R1 with each tuple in R2

Rare in practice; mainly used to express 
joins

R1 × R2



Name SSN
John 999999999
Tony 777777777

Employee

EmpSSN DepName
999999999 Emily
777777777 Joe

Dependent

Employee X Dependent

Name SSN EmpSSN DepName
John 999999999 999999999 Emily
John 999999999 777777777 Joe
Tony 777777777 999999999 Emily
Tony 777777777 777777777 Joe

CROSS-PRODUCT 
EXAMPLE



NATURAL JOIN

Meaning:  R1⨝R2 = PA(sq (R1 × R2))

Where:
• Selection sq checks equality of all common attributes (i.e., 

attributes with same names)
• Projection PA eliminates duplicate common attributes

R1 ⨝R2



NATURAL JOIN EXAMPLE
A B
X Y
X Z
Y Z
Z V

B C
Z U
V W
Z V

A B C
X Z U
X Z V
Y Z U
Y Z V
Z V W

R S

R ⨝ S =
PABC(sR.B=S.B(R × S))



NATURAL JOIN 
EXAMPLE 2

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

P     V

name age zip
Alice 54 98125
Bob 20 98120

age zip disease name

54 98125 heart Alice

20 98120 flu Bob



THETA JOIN
A join that involves a predicate

Here q can be any condition
No projection in this case!
For our voters/patients example: 

R1 ⨝q R2   =  sq (R1 X R2)

P ⨝ P.zip = V.zip and P.age >= V.age -1 and P.age <= V.age +1 V

AnonPatient (age, zip, disease)
Voters (name, age, zip)



EQUIJOIN
A theta join where q is an equality predicate

By far the most used variant of join in practice
What is the relationship with natural join?

R1 ⨝q R2   = sq (R1 × R2)



EQUIJOIN EXAMPLE

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

P    P.age=V.age V

name age zip
p1 54 98125
p2 20 98120

P.age P.zip P.disease V.name V.age V.zip

54 98125 heart p1 54 98125

20 98120 flu p2 20 98120



JOIN SUMMARY
Theta-join: R ⨝q S = σq (R × S)

• Join of R and S with a join condition θ
• Cartesian product followed by selection θ
• No projection

Equijoin: R ⨝θ S = σθ (R × S)
• Join condition θ consists only of equalities
• No projection

Natural join: R ⨝S = πA (σθ (R × S))
• Equality on all fields with same name in R and in S
• Projection πA drops all redundant attributes



SO WHICH JOIN IS IT ?
When we write R ⨝S we usually mean an 
equijoin, but we often omit the equality 
predicate when it is clear from the context


