
CSE 344
JUNE 25TH

GROUPING/AGGREGATION

CH. 6.3-6.4

ADMINISTRIVIA
• WQ1 due tonight

• HW1 due Wednesday

• can leave out sqlite-specific (.e.g., .mode commands)
• grader uses JDBC (covered later) to check results

• alternatively: pull a new copy of Grader from upstream

• run the script to tag and push your assignment
• check on gitlab after submitting

• run grader on attu to make sure it passes

REVIEW
• Relational data model

• database is a collection of tables

• table has a set of named & typed columns

• table contains a list of (unordered) rows

• query results can be ordered and/or include duplicates

• Joins

• put related tables back together to answer questions

• SELECT ... FROM A, B ...

• SELECT ... FROM A JOIN B ...

• SELECT ... FROM A JOIN B ON ...

• with no join condition, result is the Cartesian product

• outer join adds match with NULLs when no other matches

for x1 in R1:
for x2 in R2:

...
for xm in Rm:

if Cond(x1, x2…):
output(x1.a1, x2.a2, … xm.am)

(INNER) JOINS
SELECT x1.a1, x2.a2, … xm.am
FROM R1 as x1, R2 as x2, … Rm as xm
WHERE Cond

This is called nested loop semantics since we are
interpreting what a join means using a nested loop

ANOTHER EXAMPLE
Product(pname, price, category, manufacturer)
Company(cname, country)
-- manufacturer is foreign key to Company

Retrieve all USA companies that
manufacture products in both ‘gadget’ and
‘photography’ categories

ANOTHER EXAMPLE
Product(pname, price, category, manufacturer)
Company(cname, country)
-- manufacturer is foreign key to Company

Retrieve all USA companies that
manufacture products in both ‘gadget’ and
‘photography’ categories

SELECT DISTINCT z.cname
FROM Product x, Company z
WHERE z.country = ’USA’
AND x.manufacturer = z.cname
AND x.category = 'gadget’
AND x.category = 'photography;

Does this
work?

ANOTHER EXAMPLE
Product(pname, price, category, manufacturer)
Company(cname, country)
-- manufacturer is foreign key to Company

Retrieve all USA companies that
manufacture products in both ‘gadget’ and
‘photography’ categories

SELECT DISTINCT z.cname
FROM Product x, Company z
WHERE z.country = ’USA’
AND x.manufacturer = z.cname
AND (x.category = 'gadget’

OR x.category = 'photography);

What about
this?

ANOTHER EXAMPLE
Product(pname, price, category, manufacturer)
Company(cname, country)
-- manufacturer is foreign key to Company

Retrieve all USA companies that
manufacture products in both ‘gadget’ and
‘photography’ categories

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ’USA’
AND x.manufacturer = z.cname
AND y.manufacturer = z.cname
AND x.category = 'gadget’
AND y.category = 'photography;

Need to include
Product twice!

SELF-JOINS AND
TUPLE VARIABLES
Find USA companies that manufacture both
products in the ‘gadgets’ and ‘photo’ category

Joining Product with Company is insufficient:
need to join Product, with Product, and with
Company

When a relation occurs twice in the FROM
clause we call it a self-join; in that case we
must use tuple variables (why?)

SELF-JOINSSELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = z.cname
AND y.manufacturer = z.cname;

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company

SELF-JOINS

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company

x

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = z.cname
AND y.manufacturer = z.cname;

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

SELF-JOINS

Product Company

x

y

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = z.cname
AND y.manufacturer = z.cname;

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

SELF-JOINS

Product Company

x

y

z

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = z.cname
AND y.manufacturer = z.cname;

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

SELF-JOINS

Product Company

x

y

z

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = z.cname
AND y.manufacturer = z.cname;

SELF-JOINS

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company

x

y

z

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = z.cname
AND y.manufacturer = z.cname;

SELF-JOINS

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company

x

y

z

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = z.cname
AND y.manufacturer = z.cname;

SELF-JOINS

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company

x

y

z

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = z.cname
AND y.manufacturer = z.cname;

SELF-JOINS

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company

x.pname x.category x.manufacturer y.pname y.category y.manufacturer z.cname z.country

Gizmo gadget GizmoWorks MultiTouch Photo GizmoWorks GizmoWorks USA

x

y

z

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = z.cname
AND y.manufacturer = z.cname;

OUTER JOINS

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

We want to include products that are never sold,
but some are not listed! Why?

Product(name, category)
Purchase(prodName, store)

-- prodName is foreign key

OUTER JOINS

SELECT Product.name, Purchase.store
FROM Product LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName

Product(name, category)
Purchase(prodName, store)

-- prodName is foreign key

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Name Store

Gizmo Wiz
Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Name Store

Gizmo Wiz
Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Name Store

Gizmo Wiz
Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Name Store

Gizmo Wiz
Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Product Purchase

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

SELECT Product.name, Purchase.store
FROM Product LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName

Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

Product Purchase

SELECT Product.name, Purchase.store
FROM Product LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName

Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Phone FooName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

NULL Foo

Product Purchase

SELECT Product.name, Purchase.store
FROM Product FULL OUTER JOIN Purchase ON

Product.name = Purchase.prodName

Output

OUTER JOINS

Left outer join:

• Include tuples from tableA even if no match

Right outer join:

• Include tuples from tableB even if no match
Full outer join:

• Include tuples from both even if no match

In all cases:
• Patch tuples without matches using NULL

tableA (LEFT/RIGHT/FULL) OUTER JOIN tableB ON p

QUERY COMPLEXITY
• As the information we want gets more complex,

we need to utilize more elements of the RDBMS

• Multi-table queries -> join

• Data statistics -> grouping

QUERY COMPLEXITY
• As the information we want gets more complex,

we need to utilize more elements of the RDBMS

• Multi-table queries -> join

• Data statistics -> grouping

• Whatever you can do in SQL, you should

• (DBMSs are good at their job!)

• Query optimization

• Basic analysis tools
• Sum, min, average, max, count

GROUPING AND
AGGREGATION
Purchase(product, price, quantity)

Find total quantities for all sales over $1, by product.

GROUPING AND AGGREGATION

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product TotalSales

Bagel 40

Banana 20

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

OTHER EXAMPLES

SELECT product,
sum(quantity) AS SumQuantity,
max(price) AS MaxPrice

FROM Purchase
GROUP BY product

What does
it return?

SELECT product, count(*)
FROM Purchase
GROUP BY product

SELECT month, count(*)
FROM Purchase
GROUP BY month

Compare these
two queries:

NEED TO BE
CAREFUL…

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT product,
max(quantity)

FROM Purchase
GROUP BY product

NEED TO BE
CAREFUL…

SELECT product, quantity
FROM Purchase
GROUP BY product
-- what does this mean?

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT product,
max(quantity)

FROM Purchase
GROUP BY product

NEED TO BE
CAREFUL…

SELECT product, quantity
FROM Purchase
GROUP BY product
-- what does this mean?

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT product,
max(quantity)

FROM Purchase
GROUP BY product

Product Max(quantity)

Bagel 20

Banana 50

NEED TO BE
CAREFUL…

SELECT product, quantity
FROM Purchase
GROUP BY product
-- what does this mean?

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT product,
max(quantity)

FROM Purchase
GROUP BY product

Product Max(quantity)

Bagel 20

Banana 50

Product Quantity

Bagel 20

Banana ??

NEED TO BE
CAREFUL…

SELECT product, quantity
FROM Purchase
GROUP BY product
-- what does this mean?

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT product,
max(quantity)

FROM Purchase
GROUP BY product

Product Max(quantity)

Bagel 20

Banana 50

Product Quantity

Bagel 20

Banana ??

Everything in SELECT must be
either a GROUP-BY attribute, or an aggregate

GROUPING AND
AGGREGATION
Purchase(product, price, quantity)

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

How is this query processed?

Find total quantities for all sales over $1, by product.

GROUPING AND
AGGREGATION
Purchase(product, price, quantity)

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Find total quantities for all sales over $1, by product.

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
GROUP BY product

Do these queries return the same number of rows? Why?

GROUPING AND
AGGREGATION
Purchase(product, price, quantity)

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Find total quantities for all sales over $1, by product.

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
GROUP BY product

Do these queries return the same number of rows? Why?

Empty groups are removed, hence
first query may return fewer groups

GROUPING AND
AGGREGATION

1. Compute the FROM and WHERE clauses.

2. Group by the attributes in the GROUPBY

3. Compute the SELECT clause:
grouped attributes and aggregates.

FWGS
TM

1,2: FROM, WHERE

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

FWGS

WHERE price > 1

3,4. GROUPING, SELECT

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product TotalSales

Bagel 40

Banana 20

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

FWGS

ORDERING RESULTS

SELECT product, sum(price*quantity) as rev
FROM Purchase
GROUP BY product
ORDER BY rev desc

FWGOS

Purchase(pid, product, price, quantity, month)

Note: some SQL engines
want you to say ORDER BY sum(price*quantity) desc

TM

HAVING CLAUSE

SELECT product, sum(price*quantity)
FROM Purchase
WHERE price > 1
GROUP BY product
HAVING sum(quantity) > 30

Same query as before, except that we consider only products
that had at least 30 sales.

HAVING clause contains conditions on aggregates.

Purchase(pid, product, price, quantity, month)

GENERAL FORM OF
GROUPING
AND AGGREGATION

S = may contain attributes a1,…,ak and/or any
aggregates but NO OTHER ATTRIBUTES

C1 = is any condition on the attributes in R1,…,Rn

C2 = is any condition on aggregate expressions
and on attributes a1,…,ak

Why ?

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

SEMANTICS OF SQL
WITH GROUP-BY

CSE 344 - 2017au

Evaluation steps:

1. Evaluate FROM-WHERE using Nested Loop Semantics

2. Group by the attributes a1,…,ak

3. Apply condition C2 to each group (may have aggregates)

4. Compute aggregates in S and return the result

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

FWGHOS

EXERCISE
Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

Purchase(pid, product, price, quantity, month)

EXERCISE

FROM Purchase

Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

Purchase(pid, product, price, quantity, month)

EXERCISE
Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

FROM Purchase
GROUP BY month

Purchase(pid, product, price, quantity, month)

EXERCISE
Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

FROM Purchase
GROUP BY month
HAVING sum(quantity) < 10

Purchase(pid, product, price, quantity, month)

EXERCISE
Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

SELECT month, sum(price*quantity),
sum(quantity) as TotalSold

FROM Purchase
GROUP BY month
HAVING sum(quantity) < 10

Purchase(pid, product, price, quantity, month)

EXERCISE
Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

SELECT month, sum(price*quantity),
sum(quantity) as TotalSold

FROM Purchase
GROUP BY month
HAVING sum(quantity) < 10
ORDER BY sum(quantity)

Purchase(pid, product, price, quantity, month)

WHERE VS HAVING

WHERE condition is applied to individual rows
• The rows may or may not contribute to the aggregate
• No aggregates allowed here
• Occasionally, some groups become empty and are

removed

HAVING condition is applied to the entire group
• Entire group is returned, or removed
• May use aggregate functions on the group

