
CSE 344
JUNE 22ND

INTRODUCTION TO JOINS

(2.1-2.3 & 6.1-6.2)

REVIEW
• Data model gives languages for

• describing schema (what data is allowed in the DB)

• writing queries (asking questions & updating data)

• Relational data model

• database is a collection of tables

• schema describes each table
• name of table and columns

• types of all columns

• query language (SQL for now)
• insert, remove, and print rows of table

• more to come…

ADMINISTRIVIA
• Should have access to your gitlab repository

• HW1 starter code is there

• Fill in the .sql files

• Use test script to check that it works
• (we will test more thoroughly)

• Commit, tag, and push to gitlab to turn it in

DEMO 1
• What operations should we expect SQLite (or any DBMS)

to support just on what we know right now?

• create table

• insert into

• select

• delete from

• What sorts of inputs do these functions need to have?

• create table: table name, schema

• insert into: table name, tuple

• select: table name, attributes

• delete from: table name, condition

DEMO 1
• Common Syntax

• CREATE TABLE [tablename]
([att1] [type1],
[att2] [type2]…);

• INSERT INTO [tablename] VALUES ([val1],[val2]…);

• SELECT [att1],[att2],… FROM [tablename]
WHERE [condition]

• DELETE FROM [tablename]
WHERE [condition]

DEMO 1

DISCUSSION
• Two other operations we want to support

• ALTER TABLE: Adds a new attribute to the table

• UPDATE: Change the attribute for a particular tuple in the
table (rather than insert/delete)

• Common Syntax

• ALTER TABLE [tablename] ADD [attname] [atttype]

• UPDATE [tablename] SET [attname]=[value]

DISCUSSION
• Two other operations we want to support

• ALTER TABLE: Adds a new attribute to the table

• UPDATE: Change the attribute for a particular tuple in the
table (rather than insert/delete)

• Common Syntax

• ALTER TABLE [tablename] ADD [attname] [atttype]

• UPDATE [tablename] SET [attname]=[value]
WHERE [condition]

DEMO 2

DISCUSSION
Tables are NOT ordered

• they are sets or multisets (bags)

Tables are FLAT

• No nested attributes

Tables DO NOT prescribe how they are stored on disk

• This is called physical data independence

All three allow DBMSs to be more efficient.

(Last one also simplifies application development.)

DISCUSSION
• Tables may not be ordered, but data can be returned in an

order with the ORDER BY modifier

DISCUSSION
• Tables may not be ordered, but data can be returned in an

order with the ORDER BY modifier

• Whew, today’s been a lot of coding... I know what you’re
thinking…

THEORY BREAK

THEORY BREAK
• We can think of accessing information through queries as

some combination of functions

THEORY BREAK
• We can think of accessing information through queries as

some combination of functions

• Consider a table of UW students (with all relevant info):

THEORY BREAK
• We can think of accessing information through queries as

some combination of functions

• Consider a table of UW students (with all relevant info):
• How would we need to get the birth year of all CSE students

from California?

THEORY BREAK
• We can think of accessing information through queries as

some combination of functions

• Consider a table of UW students (with all relevant info):
• How would we need to get the birth year of all CSE students

from California?

• Think of the file as a set of tuples

THEORY BREAK
• We can think of accessing information through queries as

some combination of functions

• Consider a table of UW students (with all relevant info):
• How would we need to get the birth year of all CSE students

from California?

• Think of the file as a set of tuples

• Find the set of CSE students and the set of students from
California; Find the intersection of these sets, return just the
year from the birthday values of this set

THEORY BREAK
• We can think of accessing information through queries as

some combination of functions

• Consider a table of UW students (with all relevant info):
• How would we need to get the birth year of all CSE students

from California?

• Think of the file as a set of tuples

• Find the set of CSE students and the set of students from
California; Find the intersection of these sets, return just the
year from the birthday values of this set

• What does this return?

THEORY BREAK
• We can think of accessing information through queries as

some combination of functions

• Consider a table of UW students (with all relevant info):
• How would we need to get the birth year of all CSE students

from California?

• Think of the file as a set of tuples

• Find the set of CSE students and the set of students from
California; Find the intersection of these sets, return just the
year from the birthday values of this set

• What does this return?

• Years, but with many duplicates. Even though sets don’t allow
duplicates, the objects are unique.

THEORY BREAK
• If we only want to return unique elements, we can use the

DISTINCT modifier

• Even if we hide some attributes from the output, the data is all
still there.

• When we select a subset of the attributes, this function is
called a projection

• projections usually produce duplicate values

• takes work to remove them, so DBMSs usually leave them

• except on disk, DBMSs work with multisets not sets

THEORY BREAK
• This was all for a single table.

• Data models specify how our data are stored and
how the data are related

• Need to utilize these relations, or the database
was pointless

• This involves a JOIN

THEORY BREAK
• This was all for a single table.

• Data models specify how our data are stored and
how the data are related

• Need to utilize these relations, or the database
was pointless

• This involves a JOIN

• 1NF makes us split up data that belongs together,
so query language must make it easy to put them
back together whenever necessary

• we do this with joins

JOIN: INTRO
• The JOIN is the way we use the relationships

between tables in a query

• Example: if we want all of the products and their
relevant company information, we need to join
those two tables.

• The result of the join is all of the relevant
information from both tables

• Join occurs based on the join condition.

• By default, join produces every combination of
tuples from the two tables as a row

• join condition allows you to restrict to the
combinations that make sense

• DBMSs are very good at joining efficiently

JOINS IN SQL

Retrieve all Japanese products that cost < $150

Product(pname, price, category, manufacturer)
Company(cname, country)

pname price category manufacturer

MultiTouch 199.99 gadget Canon

SingleTouch 49.99 photography Canon

Gizom 50 gadget GizmoWorks

SuperGizmo 250.00 gadget GizmoWorks

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

JOINS IN SQL

Retrieve all Japanese products that cost < $150

Product(pname, price, category, manufacturer)
Company(cname, country)

SELECT pname, price
FROM Product, Company
WHERE ...

pname price category manufacturer

MultiTouch 199.99 gadget Canon

SingleTouch 49.99 photography Canon

Gizom 50 gadget GizmoWorks

SuperGizmo 250.00 gadget GizmoWorks

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

JOINS IN SQL

Retrieve all Japanese products that cost < $150

Product(pname, price, category, manufacturer)
Company(cname, country)

SELECT pname, price
FROM Product, Company
WHERE manufacturer=cname AND

country='Japan' AND price < 150

pname price category manufacturer

MultiTouch 199.99 gadget Canon

SingleTouch 49.99 photography Canon

Gizom 50 gadget GizmoWorks

SuperGizmo 250.00 gadget GizmoWorks

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

JOINS IN SQL

Retrieve all Japanese products that cost < $150

Product(pname, price, category, manufacturer)
Company(cname, country)

SELECT pname, price
FROM Product JOIN Company
WHERE manufacturer=cname AND

country='Japan' AND price < 150

pname price category manufacturer

MultiTouch 199.99 gadget Canon

SingleTouch 49.99 photography Canon

Gizom 50 gadget GizmoWorks

SuperGizmo 250.00 gadget GizmoWorks

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

Alternative
syntax

JOINS IN SQL

Retrieve all Japanese products that cost < $150

Product(pname, price, category, manufacturer)
Company(cname, country)

SELECT pname, price
FROM Product JOIN Company ON manufacturer=cname
WHERE country='Japan' AND price < 150

pname price category manufacturer

MultiTouch 199.99 gadget Canon

SingleTouch 49.99 photography Canon

Gizom 50 gadget GizmoWorks

SuperGizmo 250.00 gadget GizmoWorks

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

Alternative
syntax

JOINS IN SQL

Retrieve all Japanese products that cost < $150

Product(pname, price, category, manufacturer)
Company(cname, country)

SELECT P.pname, P.price
FROM Product P, Company C
WHERE P.manufacturer = C.cname AND

C.country = 'Japan' AND P.price < 150

pname price category manufacturer

MultiTouch 199.99 gadget Canon

SingleTouch 49.99 photography Canon

Gizom 50 gadget GizmoWorks

SuperGizmo 250.00 gadget GizmoWorks

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

Alternative
syntax

P and C

are called

“tuple variables”

JOINS IN SQL

Product(pname, price, category, manufacturer)
Company(cname, country)

Retrieve all USA companies
that manufacture “gadget” products

pname price category manufacturer

MultiTouch 199.99 gadget Canon

SingleTouch 49.99 photography Canon

Gizom 50 gadget GizmoWorks

SuperGizmo 250.00 gadget GizmoWorks

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

JOINS IN SQL

Product(pname, price, category, manufacturer)
Company(cname, country)

pname price category manufacturer

MultiTouch 199.99 gadget Canon

SingleTouch 49.99 photography Canon

Gizom 50 gadget GizmoWorks

SuperGizmo 250.00 gadget GizmoWorks

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

Retrieve all USA companies
that manufacture “gadget” products

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

Why
DISTINCT?

JOINS IN SQL
The standard join in SQL is called an inner join

• Each row in the result must come from both tables in the
join

Sometimes we want to include rows from only one of the two
table: outer join

INNER JOIN
Employee

id name

1 Joe

2 Jack

3 Jill

Sales

employeeID productID

1 344

1 355

2 544

Retrieve employees and their sales

Employee(id, name)
Sales(employeeID, productID)

INNER JOIN
Employee

id name

1 Joe

2 Jack

3 Jill

Sales

employeeID productID

1 344

1 355

2 544

Retrieve employees and their sales

SELECT *
FROM Employee E, Sales S
WHERE E.id = S.employeeID

Employee(id, name)
Sales(employeeID, productID)

INNER JOIN
Employee

id name

1 Joe

2 Jack

3 Jill

Sales

employeeID productID

1 344

1 355

2 544

Retrieve employees and their sales

SELECT *
FROM Employee E, Sales S
WHERE E.id = S.employeeID

Employee(id, name)
Sales(employeeID, productID)

id name employeeID productID

1 Joe 1 344

1 Joe 1 355

2 Jack 2 544

INNER JOIN
Employee

id name

1 Joe

2 Jack

3 Jill

Sales

employeeID productID

1 344

1 355

2 544

Retrieve employees and their sales

SELECT *
FROM Employee E, Sales S
WHERE E.id = S.employeeID

Employee(id, name)
Sales(employeeID, productID)

id name employeeID productID

1 Joe 1 344

1 Joe 1 355

2 Jack 2 544

Jill is
missing

INNER JOIN
Employee

id name

1 Joe

2 Jack

3 Jill

Sales

employeeID productID

1 344

1 355

2 544

Retrieve employees and their sales

SELECT *
FROM Employee E

INNER JOIN
Sales S

ON E.id = S.employeeID

Employee(id, name)
Sales(employeeID, productID)

id name empolyeeID productID

1 Joe 1 344

1 Joe 1 355

2 Jack 2 544

Jill is
missing

Alternative
syntax

OUTER JOIN
Employee

id name

1 Joe

2 Jack

3 Jill

Sales

employeeID productID

1 344

1 355

2 544

Retrieve employees and their sales

SELECT *
FROM Employee E

LEFT OUTER JOIN
Sales S

ON E.id = S.employeeID

Employee(id, name)
Sales(employeeID, productID)

id name empolyeeID productID

1 Joe 1 344

1 Joe 1 355

2 Jack 2 544

3 Jill NULL NULL

Jill is
present

(INNER) JOINS

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

Product(pname, price, category, manufacturer)
Company(cname, country)
-- manufacturer is foreign key to Company

(INNER) JOINS
SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

Product Company

(INNER) JOINS

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

Product Company

(INNER) JOINS

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

Product Company

(INNER) JOINS

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

pname category manufacturer cname country

Gizmo gadget GizmoWorks GizmoWorks USA

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

Product Company

(INNER) JOINS

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

Product Company

(INNER) JOINS

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

Product Company

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

(INNER) JOINS
SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

SELECT DISTINCT cname
FROM Product JOIN Company ON

country = 'USA' AND
category = 'gadget' AND
manufacturer = cname

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

for x1 in R1:
for x2 in R2:

...
for xm in Rm:

if Cond(x1, x2…):
output(x1.a1, x2.a2, … xm.am)

(INNER) JOINS
SELECT x1.a1, x2.a2, … xm.am
FROM R1 as x1, R2 as x2, … Rm as xm
WHERE Cond

This is called nested loop semantics since we are
interpreting what a join means using a nested loop

ANOTHER EXAMPLE
Product(pname, price, category, manufacturer)
Company(cname, country)
-- manufacturer is foreign key to Company

Retrieve all USA companies that
manufacture products in both ‘gadget’ and
‘photography’ categories

ANOTHER EXAMPLE
Product(pname, price, category, manufacturer)
Company(cname, country)
-- manufacturer is foreign key to Company

Retrieve all USA companies that
manufacture products in both ‘gadget’ and
‘photography’ categories

SELECT DISTINCT z.cname
FROM Product x, Company z
WHERE z.country = ’USA’
AND x.manufacturer = z.cname
AND x.category = 'gadget’
AND x.category = 'photography;

Does this
work?

ANOTHER EXAMPLE
Product(pname, price, category, manufacturer)
Company(cname, country)
-- manufacturer is foreign key to Company

Retrieve all USA companies that
manufacture products in both ‘gadget’ and
‘photography’ categories

SELECT DISTINCT z.cname
FROM Product x, Company z
WHERE z.country = ’USA’
AND x.manufacturer = z.cname
AND (x.category = 'gadget’

OR x.category = 'photography);

What about
this?

ANOTHER EXAMPLE
Product(pname, price, category, manufacturer)
Company(cname, country)
-- manufacturer is foreign key to Company

Retrieve all USA companies that
manufacture products in both ‘gadget’ and
‘photography’ categories

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ’USA’
AND x.manufacturer = z.cname
AND y.manufacturer = z.cname
AND x.category = 'gadget’
AND y.category = 'photography;

Need to include
Product twice!

SELF-JOINS AND
TUPLE VARIABLES
Find USA companies that manufacture both
products in the ‘gadgets’ and ‘photo’ category

Joining Product with Company is insufficient:
need to join Product, with Product, and with
Company

When a relation occurs twice in the FROM
clause we call it a self-join; in that case we
must use tuple variables (why?)

SELF-JOINSSELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = z.cname
AND y.manufacturer = z.cname;

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company

SELF-JOINS

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company

x

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = z.cname
AND y.manufacturer = z.cname;

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

SELF-JOINS

Product Company

x

y

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = z.cname
AND y.manufacturer = z.cname;

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

SELF-JOINS

Product Company

x

y

z

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = z.cname
AND y.manufacturer = z.cname;

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

SELF-JOINS

Product Company

x

y

z

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = z.cname
AND y.manufacturer = z.cname;

SELF-JOINS

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company

x

y

z

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = z.cname
AND y.manufacturer = z.cname;

SELF-JOINS

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company

x

y

z

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = z.cname
AND y.manufacturer = z.cname;

SELF-JOINS

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company

x

y

z

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = z.cname
AND y.manufacturer = z.cname;

SELF-JOINS

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company

x.pname x.category x.manufacturer y.pname y.category y.manufacturer z.cname z.country

Gizmo gadget GizmoWorks MultiTouch Photo GizmoWorks GizmoWorks USA

x

y

z

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = z.cname
AND y.manufacturer = z.cname;

SELF-JOINS

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company

x.pname x.category x.manufacturer y.pname y.category y.manufacturer z.cname z.country

Gizmo gadget GizmoWorks MultiTouch Photo GizmoWorks GizmoWorks USA

x

y

z

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = z.cname
AND y.manufacturer = z.cname;

OUTER JOINS

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

We want to include products that are never sold,
but some are not listed! Why?

Product(name, category)
Purchase(prodName, store)

-- prodName is foreign key

OUTER JOINS

SELECT Product.name, Purchase.store
FROM Product LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName

Product(name, category)
Purchase(prodName, store)

-- prodName is foreign key

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Name Store

Gizmo Wiz
Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Name Store

Gizmo Wiz
Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Name Store

Gizmo Wiz
Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Name Store

Gizmo Wiz
Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Product Purchase

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

SELECT Product.name, Purchase.store
FROM Product LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName

Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

Product Purchase

SELECT Product.name, Purchase.store
FROM Product LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName

Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Phone FooName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

NULL Foo

Product Purchase

SELECT Product.name, Purchase.store
FROM Product FULL OUTER JOIN Purchase ON

Product.name = Purchase.prodName

Output

OUTER JOINS

Left outer join:

• Include tuples from tableA even if no match

Right outer join:

• Include tuples from tableB even if no match
Full outer join:

• Include tuples from both even if no match

In all cases:
• Patch tuples without matches using NULL

tableA (LEFT/RIGHT/FULL) OUTER JOIN tableB ON p

