
CSE 344
AUGUST 15TH

MORE PARALLEL QUERY OPTIMIZATION

AND AN ADVANCED TOPIC



ADMINISTRIVIA
• HW8 due tonight

• Course evaluations!
• (may help your grade if participation is high)

• Section tomorrow: exam review
• my notes on what is important



EXAM
• Friday, in class

• Similar to midterm
• designing for 1 hour
• can go over if necessary

• Note sheet allowed
• one page, both sides
• cost formulas will be provided



EXAM
• Four questions

1. parallel databases (including today)
2. database design: E/R & normalization
3. transactions
4. multiple choice / short answer
• references to 1st half material sprinkled throughout

• Preparation
• practice exams on web
• lecture videos will be made available tonight



DISTRIBUTED QUERY 
PROCESSING
Parallel DBs storing data that is partitioned across machines

• OLTP is still easy
• OLAP more difficult

We look at this before in terms of cost of disk I/O
• in general, time multiplied by 1 / #machines (speed up)

Today: network cost
• partially to review for final
• partially because network cost is increasingly relevant in 

modern systems (disks are too slow)



DISTRIBUTED QUERY 
PROCESSING
Data is horizontally partitioned on many servers

• ideally, stored in memory
• disk cost ≫ network cost ≫ memory cost ≫ CPU cost

• if the query hits disk, that likely dominates all other costs
• storing in memory means a huge reduction in cost

• memory is cheap enough that companies can do this



HORIZONTAL DATA 
PARTITIONING

K A B
… …

1 2 P .  .  .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Which tuples
go to what server?



HORIZONTAL DATA 
PARTITIONING

K A B
… …

1 2 P .  .  .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

assume block or
hash partitioning



DISTRIBUTED QUERY 
PROCESSING
Data is horizontally partitioned on many servers

• stored in memory
• main cost is now network cost

• network cost ≫ memory cost ≫ CPU cost

Operators may require data reshuffling
• move data to the machines that needs it
• this is the only new element in parallel query processing
• this is also the only part with network cost!

• everything else is too small to matter

Still measure cost in blocks
• like disk, network cost is proportional to size of data sent
• (blocks have size in bytes, tuples do not)



PARALLEL EXECUTION 
OF RA OPERATORS:
SELECTION

Data: R(K,A,B,C)
Query: σA=c(R)

No change necessary
• Send query to every machine
• Each sends back its tuples that satisfy selection
• Result is the union of these

R1 R2 RP .  .  .

Cost:  B(σA=c(R)) / P

B(σA=c(R)) is total size
BUT data is sent in parallel



PARALLEL EXECUTION 
OF RA OPERATORS:
SELECTION

Data: R(K,A,B,C)
Query: σA=c(R)

No change necessary
• Send query to every machine
• Each sends back its tuples that satisfy selection
• Result is the union of these

R1 R2 RP .  .  .

Cost:  B(output) / P

simplification write
“output” for σA=c(R)



PARALLEL EXECUTION 
OF RA OPERATORS:
GROUPING

Data: R(K,A,B,C)
Query: γA,sum(C)(R)
R is block-partitioned or hash-partitioned on K

R1 R2 RP .  .  .

R1’ R2’ RP’
.  .  .

Reshuffle R
on attribute A

Run grouping 
on reshuffled

partitions

Cost:  B(R) / P + B(output) / P

network cost of reshuffle
and sending output



PARALLEL EXECUTION 
OF RA OPERATORS:
GROUPING

Data: R(K,A,B,C)
Query: γA,sum(C)(R)
R is block-partitioned or hash-partitioned on A

Cost:  B(output) / P

R1 R2 RP .  .  .



PARALLEL EXECUTION 
OF RA OPERATORS:
PARTITIONED HASH-JOIN
Data: R(K1, A, B), S(K2, B, C)
Query: R(K1, A, B) ⋈ S(K2, B, C)

• Initially, both R and S are partitioned on K1 and K2

R1, S1 R2, S2 RP, SP .  .  .

R’1, S’1 R’2, S’2 R’P, S’P .  .  .

Reshuffle R on R.B
and S on S.B

Each server computes
the join locally

Cost:  B(R) / P + B(S) / P + B(output) / P



DISTRIBUTED QUERY 
PROCESSING
So far cost is

• B(output) / P
• this is never going away

• plus B(R) / P for any R that needs a reshuffle
• in a join, only one of the two parts may need a reshuffle

Not every case looks like that...



BROADCAST JOIN

Data: R(A, B), S(C, D)
Query: R(A,B) ⋈B=C S(C,D)

R1 R2 RP.  .  .

R1, S R2, S RP, S.  .  .

S

Cost:  B(S) + B(output) / P

B(S) / P becomes B(S)
BUT we drop B(R) / PR does not need to move!



BROADCAST JOIN

Data: R(A, B), S(C, D)
Query: R(A,B) ⋈B=C S(C,D)

R1 R2 RP.  .  .

R1, S R2, S RP, S.  .  .

S

Cost:  B(S) + B(output) / P

When would that be better?



DISTRIBUTED QUERY 
PROCESSING
Would there ever be a reason not to push selections down?

• common heuristic even in non-distributed query optimization

I can’t see one
• can only reduce the amount of data we need to shuffle
• why didn’t we always do this with disks?

• can lose our ability to do an indexed selection
• we have an index on R not σA=c(R)



DISTRIBUTED QUERY 
PROCESSING
What is still missing compared to non-distributed case?

Indexes
• not much of a help here!
• (think about it on your own sometime)

(Things don’t always get more complex in a better system!)



DISTRIBUTED QUERY 
OPTIMIZATION
Not any harder (maybe easier) than non-distributed case

Still not trivial
• different physical plans: broadcast vs shuffling joins
• different logical plans: join orders

• e.g., (R ⋈ S) ⋈ T vs R ⋈ (S ⋈ T)
• both shuffle R, S, and T
• but first has extra shuffle of R ⋈ S, the other of S ⋈ T

• this is a big part of non-distributed query opt also



EXAMPLE
Compare two logical plans

• (R ⋈ S) ⋈ T
• R ⋈ (S ⋈ T)

With different physical plans
• first: broadcast R in first join, reshuffle in second
• second: reshuffles all around

Suppose they are initially partitioned as follows
• R is partitioned on A
• S and T are block partitioned

R(A, B)
S(B, C)
T(A, C)



EXAMPLE
Ignore the output cost

• it is the same for both plans
• just look at reshuffling costs

Cost of (R ⋈ S) ⋈ T
• first join: R ⋈ S, broadcasting R

• cost is B(R)
• no factor of 1/P since each machine gets all of R

• second join: (R ⋈ S) ⋈ T, reshuffling both
• cost is B(R ⋈ S)/P + B(T)/P

• total cost is B(R) + B(T)/P + B(R ⋈ S)/P

R(A, B)
S(B, C)
T(A, C)



EXAMPLE
Cost of R ⋈ (S ⋈ T)

• first join: S ⋈ T, reshuffling both
• cost is B(S)/P + B(T)/P

• second join: R ⋈ (S ⋈ T), reshuffling only S ⋈ T
• why? (recall that R is initially partitioned on A)

• equijoin on A & B...
• need tuples with the same value of A & B on same machine
• R is already partitioned by A so...

tuples of R with same value of A already on same machine
• including the ones that also have same value of B

• cost is B(S ⋈ T)/P
• total cost is B(S)/P + B(T)/P + B(S ⋈ T)/P

R(A, B)
S(B, C)
T(A, C)



EXAMPLE
Costs

• (R ⋈ S) ⋈ T B(R) + B(T)/P + B(R ⋈ S)/P
• R ⋈ (S ⋈ T) B(S)/P + B(T)/P + B(S ⋈ T)/P

Which is faster?

Need to estimate sizes of R ⋈ S and S ⋈ T
• How do we do that?

• selectivity (same as before)
• let E be the selectivity of = on R.B
• let F be the selectivity of = on S.C

• R ⋈ S increases size of S by T(R)/E, so T(R)B(S)/E
• S ⋈ T increases size of T by T(S)/F, so T(S)B(T)/F

R(A, B)
S(B, C)
T(A, C)



EXAMPLE
Costs

• (R ⋈ S) ⋈ T B(R) + B(T)/P + T(R)B(S)/PE
• R ⋈ (S ⋈ T) B(S)/P + B(T)/P + T(S)B(T)/ PF

Which is faster?
• When is B(R) + T(R)B(S) / PE > B(S)/P + T(S)B(T) / PF ?
• Plug in the numbers B(...), T(..), E ,and F to find out
• Some observation though...

• left side uses B(R) and T(R) while right side has neither
• second plan will be much faster when R is large

• first plan broadcasts R, so it wants R to be small
• second plan doesn’t even need to shuffle R, so no cost

R(A, B)
S(B, C)
T(A, C)



EXAMPLE
Costs

• (R ⋈ S) ⋈ T B(R) + B(T)/P + T(R)B(S)/PE
• R ⋈ (S ⋈ T) B(S)/P + B(T)/P + T(S)B(T)/ PF

Which is faster?
• When is B(R) + T(R)B(S) / PE > B(S)/P + T(S)B(T) / PF ?
• Plug in the numbers B(...), T(..), E ,and F to find out
• Some observation though...

• second plan will be much faster when R is large
• first plan broadcasts R, so it wants R to be small
• second plan doesn’t even need to shuffle R, so no cost

• right side uses B(T) while left side does not (nor T(T))
• second plan shuffles S ⋈ T, so it wants T to be small
• first plan will be much faster when T is large

R(A, B)
S(B, C)
T(A, C)



NETWORK COST FORMULAS
(all ignore output cost)

σ free

π free

Ɣ...(R) B(R) / P

R ⋈ S
• shuffle R and S B(R) / P + B(S) / P
• shuffle R only B(R) / P
• shuffle S only B(S) / P
• broadcast R B(R)
• broadcast S B(S)

Q1∪Q2 cost of Q1 + cost of Q2

R – S exercise!



LAST TOPIC
(ADVANCED)



PRIVACY-PRESERVING
DATA ANALYSIS
Imagine a table with rows for individuals

Is there a way to analyze the group
while preserving the privacy of individuals?

• e.g., can I determine whether one subset of the 
individuals differs from another subset without 
leaking details of any individuals



PRIVACY-PRESERVING
DATA ANALYSIS
Is there a way to analyze the group
while preserving the privacy of individuals?

How do we even define this?
• say the analysis is privacy-preserving if changing the 

tuple for any individual does not change results
• if the analysis was capturing information about them,

then the results would change
• unfortunately, we can’t do this exactly...



DIFFERENTIAL PRIVACY
We can do something similar (in many cases)

• analysis will involve random choices
• want: probability result changes is < ϵ when any 

individual record is changed
• (probability over random choices in analysis)

• this is differential privacy (modulo details)
• randomization is essential here



DIFFERENTIAL PRIVACY:
PRACTICAL EXAMPLE
Find fraction of people with bad property P

• people don’t want it known if they have P

Collect data with this mechanism
• for each person, flip a coin

• if heads, answer truthfully
• if false, answer Yes/No randomly (50/50%)

• those answering Yes have “plausible deniability”
• if P percent say yes, true answer is 2P – 1/4

• adjusts for random Yes’s without property P



DIFFERENTIAL PRIVACY
Invented by Dwork and McSherry (2005)

• fixed problems in earlier work on “anonymization”
• e.g., people were able to identify Netflix users from 

the data Netflix made available to researchers
• uses same idea as previous: add randomness to data
• won the Gödel prize (and others)
• works for many but not all types of queries

Could be applied to a wide range of problems
• e.g., an app to analyze usage trends without seeing 

every detail of user activity


