CSE 344

AUGUST 15TH MORE PARALLEL QUERY OPTIMIZATION AND AN ADVANCED TOPIC

ADMINISTRIVIA

- HW8 due tonight
- Course evaluations!
 - (may help your grade if participation is high)
- Section tomorrow: exam review
 - *my* notes on what is important

• Friday, in class

Similar to midterm

- designing for 1 hour
- can go over if necessary

Note sheet allowed

- one page, both sides
- cost formulas will be provided

Four questions

- 1. parallel databases (including today)
- 2. database design: E/R & normalization
- 3. transactions
- 4. multiple choice / short answer
- references to 1st half material sprinkled throughout

Preparation

- practice exams on web
- lecture videos will be made available tonight

DISTRIBUTED QUERY PROCESSING

Parallel DBs storing data that is partitioned across machines

- OLTP is still easy
- OLAP more difficult

We look at this before in terms of cost of disk I/O

• in general, time multiplied by 1 / #machines (speed up)

Today: network cost

- partially to review for final
- partially because network cost is increasingly relevant in modern systems (disks are too slow)

DISTRIBUTED QUERY PROCESSING

Data is horizontally partitioned on many servers

- ideally, stored *in memory*
- disk cost ≫ network cost ≫ memory cost ≫ CPU cost
 - if the query hits disk, that likely dominates all other costs
- storing in memory means a huge reduction in cost
 - memory is cheap enough that companies can do this

HORIZONTAL DATA PARTITIONING

HORIZONTAL DATA PARTITIONING

DISTRIBUTED QUERY PROCESSING

Data is horizontally partitioned on many servers

- stored *in memory*
- main cost is now <u>network cost</u>
 - network cost >> memory cost >> CPU cost

Operators may require data reshuffling

- move data to the machines that needs it
- this is the only new element in parallel query processing
- this is also the <u>only</u> part with network cost!
 - everything else is too small to matter

Still measure cost in blocks

- like disk, network cost is proportional to size of data sent
- (blocks have size in bytes, tuples do not)

PARALLEL EXECUTION OF RA OPERATORS: SELECTION

Data: R(<u>K</u>,A,B,C)

Query: $\sigma_{A=c}(R)$

No change necessary

- Send query to every machine
- Each sends back its tuples that satisfy selection
- Result is the union of these

• • •

PARALLEL EXECUTION OF RA OPERATORS: SELECTION

Data: R(<u>K</u>,A,B,C)

Query: σ_{A=c}(R)

<u>Cost</u>: B(output) / P simplification write "output" for $\sigma_{A=c}(R)$

No change necessary

- Send query to every machine
- Each sends back its tuples that satisfy selection
- Result is the union of these

PARALLEL EXECUTION OF RA OPERATORS: GROUPING

Cost: B(R) / P + B(output) / P

Data: R(<u>K</u>,A,B,C)

Query: γ_{A,sum(C)}(R)

R is block-partitioned or hash-partitioned on K

PARALLEL EXECUTION OF RA OPERATORS: GROUPING

Cost: B(output) / P

Data: R(K,A,B,C)

Query: γ_{A,sum(C)}(R)

R is block-partitioned or hash-partitioned on A

PARALLEL EXECUTION OF RA OPERATORS: PARTITIONED HASH-JOIN

Data: R(<u>K1</u>, A, B), S(<u>K2</u>, B, C) Query: R(<u>K1</u>, A, B) ⋈ S(<u>K2</u>, B, C)

Cost:
$$B(R) / P + B(S) / P + B(output) / P$$

Initially, both R and S are partitioned on K1 and K2

DISTRIBUTED QUERY PROCESSING

So far cost is

- B(output) / P
 - this is never going away
- plus B(R) / P for any R that needs a reshuffle
 - in a join, only one of the two parts may need a reshuffle

Not every case looks like that...

BROADCAST JOIN

BROADCAST JOIN

Data: R(A, B), S(C, D) Query: R(A,B) ⋈_{B=C} S(C,D)

Cost: B(S) + B(output) / P

When would that be better?

DISTRIBUTED QUERY PROCESSING

Would there ever be a reason not to push selections down?

• common heuristic even in non-distributed query optimization

I can't see one

- can only reduce the amount of data we need to shuffle
- why didn't we always do this with disks?
 - can lose our ability to do an indexed selection
 - we have an index on R not $\sigma_{A=c}(R)$

DISTRIBUTED QUERY PROCESSING

What is still missing compared to non-distributed case?

Indexes

- not much of a help here!
- (think about it on your own sometime)

(Things don't always get more complex in a better system!)

DISTRIBUTED QUERY OPTIMIZATION

Not any harder (maybe easier) than non-distributed case

Still not trivial

- different physical plans: broadcast vs shuffling joins
- different logical plans: join orders
 - e.g., $(R \bowtie S) \bowtie T vs R \bowtie (S \bowtie T)$
 - both shuffle R, S, and T
 - but first has extra shuffle of $R \bowtie S$, the other of $S \bowtie T$
 - this is a big part of non-distributed query opt also

EXAMPLE

Compare two logical plans

- (R ⋈ S) ⋈ T
- R ⋈ (S ⋈ T)

With different physical plans

- first: broadcast R in first join, reshuffle in second
- second: reshuffles all around

Suppose they are initially partitioned as follows

- R is partitioned on A
- S and T are block partitioned

EXAMPLE

Ignore the output cost

- it is the same for both plans
- just look at reshuffling costs

Cost of (R ⋈ S) ⋈ T

- first join: R ⋈ S, broadcasting R
 - cost is B(R)
 - no factor of 1/P since each machine gets all of R
- second join: $(R \bowtie S) \bowtie T$, reshuffling both
 - cost is B(R ⋈ S)/P + B(T)/P
- total cost is B(R) + B(T)/P + B(R ⋈ S)/P

EXAMPLE

Cost of R ⋈ (S ⋈ T)

- first join: S ⋈ T, reshuffling both
 - cost is B(S)/P + B(T)/P
- second join: $R \bowtie (S \bowtie T)$, reshuffling *only* $S \bowtie T$
 - why? (recall that R is initially partitioned on A)
 - equijoin on A & B...
 - need tuples with the same value of A & B on same machine
 - R is already partitioned by A so... tuples of R with same value of A already on same machine
 - including the ones that also have same value of B
 - cost is B(S ⋈ T)/P
- total cost is B(S)/P + B(T)/P + B(S ⋈ T)/P

EXAMPLE

Costs

- (R ⋈ S) ⋈ T B(R) + B(T)/P + B(R ⋈ S)/P
- R ⋈ (S ⋈ T)
 B(S)/P + B(T)/P + B(S ⋈ T)/P

Which is faster?

Need to estimate sizes of $R \bowtie S$ and $S \bowtie T$

- How do we do that?
 - selectivity (same as before)
 - let E be the selectivity of = on R.B
 - let F be the selectivity of = on S.C
- $R \bowtie S$ increases size of S by T(R)/E, so T(R)B(S)/E
- $S \bowtie T$ increases size of T by T(S)/F, so T(S)B(T)/F

EXAMPLE

Costs

- $(R \bowtie S) \bowtie T$ B(R) + B(T)/P + T(R)B(S)/PE
- R ⋈ (S ⋈ T)
 B(S)/P + B(T)/P + T(S)B(T)/ PF

Which is faster?

- When is B(R) + T(R)B(S) / PE > B(S)/P + T(S)B(T) / PF ?
- Plug in the numbers B(...), T(..), E ,and F to find out
- Some observation though...
 - left side uses B(R) and T(R) while right side has neither
 - second plan will be much faster when R is large
 - first plan broadcasts R, so it wants R to be small
 - second plan doesn't even need to shuffle R, so no cost

EXAMPLE

Costs

- $(R \bowtie S) \bowtie T$ B(R) + B(T)/P + T(R)B(S)/PE
- R ⋈ (S ⋈ T)
 B(S)/P + B(T)/P + T(S)B(T)/ PF

Which is faster?

- When is B(R) + T(R)B(S) / PE > B(S)/P + T(S)B(T) / PF ?
- Plug in the numbers B(...), T(..), E ,and F to find out
- Some observation though...
 - second plan will be much faster when R is large
 - first plan broadcasts R, so it wants R to be small
 - second plan doesn't even need to shuffle R, so no cost
 - right side uses B(T) while left side does not (nor T(T))
 - second plan shuffles $S \bowtie T$, so it wants T to be small
 - first plan will be much faster when T is large

NETWORK COST FORMULAS

	(all ignore output cost)
σ	free
π	free
¥(R)	B(R) / P
R ⋈ S	
 shuffle R and S 	B(R) / P + B(S) / P
 shuffle R only 	B(R) / P
 shuffle S only 	B(S) / P
 broadcast R 	B(R)
 broadcast S 	B(S)
$\mathbf{Q_1} \cup \mathbf{Q_2}$	cost of Q_1 + cost of Q_2
R – S	exercise!

LAST TOPIC (ADVANCED)

PRIVACY-PRESERVING DATA ANALYSIS

Imagine a table with rows for individuals

Is there a way to analyze the group while preserving the privacy of individuals?

 e.g., can I determine whether one subset of the individuals differs from another subset without leaking details of any individuals

PRIVACY-PRESERVING DATA ANALYSIS

Is there a way to analyze the group while preserving the privacy of individuals?

How do we even define this?

- say the analysis is privacy-preserving if changing the tuple for any individual does not change results
 - if the analysis was capturing information about them, then the results would change
- unfortunately, we can't do this exactly...

DIFFERENTIAL PRIVACY

We can do something similar (in many cases)

- analysis will involve random choices
- want: probability result changes is < ε when any individual record is changed
 - (probability over random choices in analysis)
- this is differential privacy (modulo details)
- randomization is essential here

DIFFERENTIAL PRIVACY: PRACTICAL EXAMPLE

Find fraction of people with bad property P

people don't want it known if they have P

Collect data with this mechanism

- for each person, flip a coin
 - if heads, answer truthfully
 - if false, answer Yes/No randomly (50/50%)
- those answering Yes have "plausible deniability"
- if P percent say yes, true answer is 2P 1/4
 - adjusts for random Yes's without property P

DIFFERENTIAL PRIVACY

Invented by Dwork and McSherry (2005)

- fixed problems in earlier work on "anonymization"
 - e.g., people were able to identify Netflix users from the data Netflix made available to researchers
- uses same idea as previous: add randomness to data
- won the Gödel prize (and others)
- works for many but not all types of queries

Could be applied to a wide range of problems

 e.g., an app to analyze usage trends without seeing every detail of user activity