CSE 344

AUGUST 15TH

MORE PARALLEL QUERY OPTIMIZATION
AND AN ADVANCED TOPIC
ADMINISTRIVIA

• HW8 due tonight

• Course evaluations!
 • (may help your grade if participation is high)

• Section tomorrow: exam review
 • my notes on what is important
EXAM

• Friday, in class

• Similar to midterm
 • designing for 1 hour
 • can go over if necessary

• Note sheet allowed
 • one page, both sides
 • cost formulas will be provided
EXAM

• Four questions
 1. parallel databases (including today)
 2. database design: E/R & normalization
 3. transactions
 4. multiple choice / short answer
 • references to 1st half material sprinkled throughout

• Preparation
 • practice exams on web
 • lecture videos will be made available tonight
DISTRIBUTED QUERY PROCESSING

Parallel DBs storing data that is partitioned across machines

- OLTP is still easy
- OLAP more difficult

We look at this before in terms of cost of disk I/O

- in general, time multiplied by 1 / #machines (speed up)

Today: network cost

- partially to review for final
- partially because network cost is increasingly relevant in modern systems (disks are too slow)
DISTRIBUTED QUERY PROCESSING

Data is horizontally partitioned on many servers

- ideally, stored in memory
- disk cost ≫ network cost ≫ memory cost ≫ CPU cost
 - if the query hits disk, that likely dominates all other costs
- storing in memory means a huge reduction in cost
 - memory is cheap enough that companies can do this
HORIZONTAL DATA PARTITIONING

Data:

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Servers:

1

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...

P

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Which tuples go to what server?
HORIZONTAL DATA PARTITIONING

Data:

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Servers:

1

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

2

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

... P

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

assume block or hash partitioning
DISTRIBUTED QUERY PROCESSING

Data is horizontally partitioned on many servers
- stored in memory
- main cost is now network cost
 - network cost \gg memory cost \gg CPU cost

Operators may require data reshuffling
- move data to the machines that needs it
- this is the only new element in parallel query processing
- this is also the only part with network cost!
 - everything else is too small to matter

Still measure cost in blocks
- like disk, network cost is proportional to size of data sent
- (blocks have size in bytes, tuples do not)
PARALLEL EXECUTION OF RA OPERATORS: SELECTION

Data: $R(K, A, B, C)$
Query: $\sigma_{A=c}(R)$

No change necessary
- Send query to every machine
- Each sends back its tuples that satisfy selection
- Result is the union of these

Cost: $B(\sigma_{A=c}(R)) / P$

$B(\sigma_{A=c}(R))$ is total size
BUT data is sent in parallel
PARALLEL EXECUTION OF RA OPERATORS: SELECTION

Data: \(R(K, A, B, C) \)

Query: \(\sigma_{A=c}(R) \)

No change necessary

- Send query to every machine
- Each sends back its tuples that satisfy selection
- Result is the union of these

\[\text{Cost: } \frac{B(\text{output})}{P} \]

Simplification write “output” for \(\sigma_{A=c}(R) \)
PARALLEL EXECUTION OF RA OPERATORS: GROUPING

Data: \(R(K,A,B,C) \)

Query: \(\gamma_{A,\text{sum}(C)}(R) \)

\(R \) is block-partitioned or hash-partitioned on \(K \)

Cost: \(\frac{B(R)}{P} + \frac{B(\text{output})}{P} \)

network cost of reshuffle and sending output

Reshuffle \(R \) on attribute \(A \)

Run grouping on reshuffled partitions
PARALLEL EXECUTION OF RA OPERATORS:
GROUPING

Data: $R(K, A, B, C)$

Query: $\gamma_{A, \text{sum}(C)}(R)$

R is block-partitioned or hash-partitioned on A

Cost: $B(\text{output}) / P$
PARALLEL EXECUTION OF RA OPERATORS: PARTITIONED HASH-JOIN

Data: $R(K_1, A, B), S(K_2, B, C)$

Query: $R(K_1, A, B) \bowtie S(K_2, B, C)$

- Initially, both R and S are partitioned on K_1 and K_2

Cost: $\frac{B(R)}{P} + \frac{B(S)}{P} + \frac{B(output)}{P}$

- Reshuffle R on $R.B$ and S on $S.B$

- Each server computes the join locally
DISTRIBUTED QUERY PROCESSING

So far cost is

- $\frac{B(\text{output})}{P}$
 - this is never going away
- plus $\frac{B(R)}{P}$ for any R that needs a reshuffle
 - in a join, only one of the two parts may need a reshuffle

Not every case looks like that...
BROADCAST JOIN

Data: \(R(A, B), S(C, D) \)

Query: \(R(A,B) \bowtie_{B=C} S(C,D) \)

Cost: \(B(S) + B(output) / P \)

- \(R \) does not need to move!
- \(B(S) / P \) becomes \(B(S) \)
 - BUT we drop \(B(R) / P \)
 - \(R \) does not need to move!
BROADCAST JOIN

Data: \(R(A, B), S(C, D) \)

Query: \(R(A, B) \bowtie_{B=C} S(C, D) \)

Cost: \(B(S) + B(output) / P \)

When would that be better?

Diagram:

- \(R_1 \)
- \(R_2 \)
- \(\ldots \)
- \(R_P \)
- \(S \)

\(R_1, S \)
\(R_2, S \)
\(\ldots \)
\(R_P, S \)
Would there ever be a reason not to push selections down?

• common heuristic even in non-distributed query optimization

I can’t see one

• can only reduce the amount of data we need to shuffle
• why didn’t we always do this with disks?
 • can lose our ability to do an indexed selection
 • we have an index on R not $\sigma_{A=c}(R)$
DISTRIBUTED QUERY PROCESSING

What is still missing compared to non-distributed case?

Indexes

• not much of a help here!
• (think about it on your own sometime)

(Things don’t always get more complex in a better system!)
DISTRIBUTED QUERY OPTIMIZATION

Not any harder (maybe easier) than non-distributed case

Still not trivial

- different physical plans: broadcast vs shuffling joins
- different logical plans: join orders
 - e.g., \((R \bowtie S) \bowtie T\) vs \(R \bowtie (S \bowtie T)\)
 - both shuffle R, S, and T
 - but first has extra shuffle of \(R \bowtie S\), the other of \(S \bowtie T\)
 - this is a big part of non-distributed query opt also
EXAMPLE

Compare two logical plans

- \((R \bowtie S) \bowtie T\)
- \(R \bowtie (S \bowtie T)\)

With different physical plans

- first: broadcast \(R\) in first join, reshuffle in second
- second: reshuffles all around

Suppose they are initially partitioned as follows

- \(R\) is partitioned on \(A\)
- \(S\) and \(T\) are block partitioned

\[
\begin{align*}
R & (A, B) \\
S & (B, C) \\
T & (A, C)
\end{align*}
\]
EXAMPLE

Ignore the output cost

- it is the same for both plans
- just look at reshuffling costs

Cost of \((R \bowtie S) \bowtie T\)

- first join: \(R \bowtie S\), broadcasting \(R\)
 - cost is \(B(R)\)
 - no factor of \(1/P\) since each machine gets all of \(R\)
- second join: \((R \bowtie S) \bowtie T\), reshuffling both
 - cost is \(B(R \bowtie S)/P + B(T)/P\)
 - total cost is \(B(R) + B(T)/P + B(R \bowtie S)/P\)
EXAMPLE

Cost of $R \bowtie (S \bowtie T)$

- first join: $S \bowtie T$, reshuffling both
 - cost is $B(S)/P + B(T)/P$
- second join: $R \bowtie (S \bowtie T)$, reshuffling only $S \bowtie T$
 - why? (recall that R is initially partitioned on A)
 - equijoin on A & B...
 - need tuples with the same value of A & B on same machine
 - R is already partitioned by A so...
 - tuples of R with same value of A already on same machine
 - including the ones that also have same value of B
 - cost is $B(S \bowtie T)/P$
- total cost is $B(S)/P + B(T)/P + B(S \bowtie T)/P$
EXAMPLE

Costs

- \((R \bowtie S) \bowtie T\) \quad B(R) + B(T)/P + B(R \bowtie S)/P
- \(R \bowtie (S \bowtie T)\) \quad B(S)/P + B(T)/P + B(S \bowtie T)/P

Which is faster?

Need to estimate sizes of \(R \bowtie S\) and \(S \bowtie T\)

- How do we do that?
 - selectivity (same as before)
 - let \(E\) be the selectivity of \(=\) on \(R.B\)
 - let \(F\) be the selectivity of \(=\) on \(S.C\)
- \(R \bowtie S\) increases size of \(S\) by \(T(R)/E\), so \(T(R)B(S)/E\)
- \(S \bowtie T\) increases size of \(T\) by \(T(S)/F\), so \(T(S)B(T)/F\)
EXAMPLE

Costs

- $(R \bowtie S) \bowtie T$: $B(R) + B(T)/P + T(R)B(S)/PE$
- $R \bowtie (S \bowtie T)$: $B(S)/P + B(T)/P + T(S)B(T)/PF$

Which is faster?

- When is $B(R) + T(R)B(S)/PE > B(S)/P + T(S)B(T)/PF$?
- Plug in the numbers $B(...)$, $T(..)$, E ,and F to find out
- Some observation though...
 - left side uses $B(R)$ and $T(R)$ while right side has neither
 - second plan will be much faster when R is large
 - first plan broadcasts R, so it wants R to be small
 - second plan doesn’t even need to shuffle R, so no cost
EXAMPLE

Costs

- \((R \bowtie S) \bowtie T)\quad \text{B(R)} + \frac{\text{B(T)}}{P} + \frac{T(R)\text{B(S)}}{\text{PE}}
- \(R \bowtie (S \bowtie T)\quad \frac{\text{B(S)}}{P} + \frac{\text{B(T)}}{P} + \frac{T(S)\text{B(T)}}{\text{PF}}

Which is faster?

- When is \(\frac{\text{B(R)} + \frac{T(R)\text{B(S)}}{\text{PE}}}{\text{B(S)}} > \frac{\text{B(S)}}{P} + \frac{T(S)\text{B(T)}}{\text{PF}}\) ?
- Plug in the numbers \(\text{B(...)}, \text{T(..)}, \text{E },\text{and F to find out}
- Some observation though...
 - second plan will be much faster when \(R\) is large
 - first plan broadcasts \(R\), so it wants \(R\) to be small
 - second plan doesn’t even need to shuffle \(R\), so no cost
 - right side uses \(\text{B(T)}\) while left side does not (nor \(\text{T(T)}\))
 - second plan shuffles \(S \bowtie T\), so it wants \(T\) to be small
 - first plan will be much faster when \(T\) is large
NETWORK COST FORMULAS

(All ignore output cost)

\(\sigma \)
free

\(\pi \)
free

\(\gamma \ldots (R) \)
\(B(R) / P \)

\(R \bowtie S \)

- shuffle \(R \) and \(S \)
\(B(R) / P + B(S) / P \)
- shuffle \(R \) only
\(B(R) / P \)
- shuffle \(S \) only
\(B(S) / P \)
- broadcast \(R \)
\(B(R) \)
- broadcast \(S \)
\(B(S) \)

\(Q_1 \cup Q_2 \)
\(\text{cost of } Q_1 + \text{cost of } Q_2 \)

\(R - S \)
exercise!
LAST TOPIC
(ADVANCED)
Imagine a table with rows for individuals. Is there a way to analyze the group while preserving the privacy of individuals?

- e.g., can I determine whether one subset of the individuals differs from another subset without leaking details of any individuals?
Is there a way to analyze the group while preserving the privacy of individuals?

How do we even define this?

- say the analysis is privacy-preserving if changing the tuple for any individual does not change results
 - if the analysis was capturing information about them, then the results would change
- unfortunately, we can’t do this exactly...
DIFFERENTIAL PRIVACY

We can do something similar (in many cases)

• analysis will involve random choices
• want: probability result changes is $< \epsilon$ when any individual record is changed
 • (probability over random choices in analysis)
• this is differential privacy (modulo details)
• randomization is essential here
DIFFERENTIAL PRIVACY: PRACTICAL EXAMPLE

Find fraction of people with bad property P
 • people don’t want it known if they have P

Collect data with this mechanism
 • for each person, flip a coin
 • if heads, answer truthfully
 • if false, answer Yes/No randomly (50/50%)
 • those answering Yes have “plausible deniability”
 • if P percent say yes, true answer is $2P - \frac{1}{4}$
 • adjusts for random Yes’s without property P
DIFFERENTIAL PRIVACY

Invented by Dwork and McSherry (2005)

• fixed problems in earlier work on “anonymization”
 • e.g., people were able to identify Netflix users from the data Netflix made available to researchers
• uses same idea as previous: add randomness to data
• won the Gödel prize (and others)
• works for many but not all types of queries

Could be applied to a wide range of problems

• e.g., an app to analyze usage trends without seeing every detail of user activity