
CSE 344
AUGUST 8TH

TRANSACTIONS

ADMINISTRIVIA
• HW7 due today

• HW8 out already
• writing a DB application
• puts together some different pieces

• DB design, queries, transactions
• start early (has many parts)

• WQ7 due Monday

TECH INTERVIEWS
• Guest lecture in CSE 331

• Friday at 1:10pm in GUG 220

• Topic is tech interviews

CLASS OVERVIEW
Unit 1: Intro
Unit 2: Relational Data Models and Query Languages
Unit 3: Non-relational data
Unit 4: RDMBS internals and query optimization
Unit 5: Parallel query processing
Unit 6: DBMS usability, conceptual design
Unit 7: Transactions

• Locking and schedules (internals), SQL transactions
• Important for writing DB applications

APPLICATION
Examples

• Bank $$$ transfers
• Online shopping
• Signing up for classes

Work consists of a large set of tasks to complete for users
• Most tasks are independent of the others
• But some are not...

• two users trying to withdraw from the same account at once
• (if insufficient funds are available for both, only one is allowed)

• users trying to buy the last copy of an item for sale
• students trying to get the last spot in a class

CHALLENGES
Want to execute many apps concurrently

• All these apps read and write data to the same DB

Simple solution: only execute one task at a time
• What’s the problem?

Want: multiple operations run simultaneously on the same DBMS

TRANSACTIONS
We use database transactions everyday

• Bank $$$ transfers
• Online shopping
• Signing up for classes

For this class, a transaction is a series of DB queries & updates
• Read / Write / Update / Delete / Insert
• Unit of work issued by a user that is independent from others
• (Note: we won’t talk about rows much here...

transactions are a broader concept than databases)

WHAT CAN GO WRONG?
Manager: balance budgets among projects

• Remove $10k from project A
• Add $7k to project B
• Add $3k to project C

CEO: check company’s total balance
• SELECT SUM(money) FROM budget;

This is called a dirty / inconsistent read
aka a WRITE-READ conflict

WHAT CAN GO WRONG?
App 1:
SELECT inventory FROM products WHERE pid = 1

App 2:
UPDATE products SET inventory = 0 WHERE pid = 1

App 1:
SELECT inventory * price FROM products
WHERE pid = 1

This is known as an unrepeatable read
aka READ-WRITE conflict

WHAT CAN GO WRONG?
Account 1 = $100
Account 2 = $100

Total = $200
• App 1:

– Set Account 1 = $200
– Set Account 2 = $0

• App 2:
– Set Account 2 = $200
– Set Account 1 = $0

• At the end:
– Total = $200

• App 1: Set Account 1 = $200

• App 2: Set Account 2 = $200

• App 1: Set Account 2 = $0

• App 2: Set Account 1 = $0

• At the end:
– Total = $0

This is called the lost update aka WRITE-WRITE conflict

WHAT CAN GO WRONG?
Paying for Tuition...

• Fill up form with your mailing address
• Put in debit card number (because you don’t trust the gov’t)
• Click submit
• Screen shows money deducted from your account
• [Your browser crashes]

Lesson:
Changes to the database
should be ALL or NOTHING

TRANSACTIONS
Collection of statements that are executed atomically (logically
speaking)

12

BEGIN TRANSACTION
[SQL statements]

COMMIT or ROLLBACK (=ABORT)

[single SQL statement]

If BEGIN… missing,
then TXN consists

of a single instruction

KNOW YOUR
TRANSACTIONS: ACID
Atomic

• State shows either all the effects of txn, or none of them
Consistent

• Txn moves from a DBMS state where integrity holds, to
another where integrity holds

• remember integrity constraints?
Isolated

• Effect of txns is the same as txns running one after another
(i.e., looks like batch mode)

Durable
• Once a txn has committed, its effects remain in the database

ATOMIC
Definition: A transaction is ATOMIC if all its updates must
happen or not at all.
Example: move $100 from A to B

• UPDATE accounts SET bal = bal – 100
WHERE acct = A;

• UPDATE accounts SET bal = bal + 100
WHERE acct = B;

• BEGIN TRANSACTION;
UPDATE accounts SET bal = bal – 100 WHERE acct = A;
UPDATE accounts SET bal = bal + 100 WHERE acct = B;
COMMIT;

ISOLATED
• Definition:

• An execution ensures that transactions are isolated, if the
effect of each transaction is as if it were the only
transaction running on the system.

CONSISTENT
Recall: integrity constraints govern how values in tables are
related to each other

• Can be enforced by the DBMS, or ensured by the app

How consistency is achieved by the app:
• App programmer ensures that txns only takes a consistent DB state

to another consistent state
• DB makes sure that txns are executed atomically

Can defer checking the validity of constraints until the end of a
transaction

DURABLE
A transaction is durable if its effects continue to exist after
the transaction and even after the program has terminated

How?
• By writing to disk

• or multiple disks
• By writing to memory of multiple servers

• geographically separated

ROLLBACK
TRANSACTIONS
If the app gets to a state where it cannot complete the
transaction successfully, execute ROLLBACK

The DB returns to the state prior to the transaction
• remove the effects of any WRITEs that occurred

ACID
Atomic
Consistent
Isolated
Durable

Again: by default each statement is its own txn
• Unless auto-commit is off then each statement starts a

new txn

A schedule is a sequence
of interleaved actions
from all transactions

SCHEDULES

SERIAL SCHEDULE

A serial schedule is one in which transactions are executed one after
the other, in some sequential order

Fact: nothing can go wrong if the system executes txns serially
• (rather, whatever does go wrong is the app’s fault)
• But DBMS don’t do that because we want better overall system

performance

EXAMPLE

T1 T2
READ(A, t) READ(A, s)
t := t+100 s := s*2
WRITE(A, t) WRITE(A,s)
READ(B, t) READ(B,s)
t := t+100 s := s*2
WRITE(B,t) WRITE(B,s)

A and B are elements
in the database

t and s are variables
in txn source code

EXAMPLE OF A
(SERIAL) SCHEDULE

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

Ti
m

e

Starting with A=0 B=0
End with A=200 B=200

ANOTHER SERIAL
SCHEDULE

T1 T2
READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

Ti
m

e

Starting with A=0 B=0
End with A=100 B=100

SERIALIZABLE SCHEDULE

A schedule is serializable if it is
equivalent to a serial schedule

Not necessarily serial
BUT equally good from app’s perspective

A SERIALIZABLE
SCHEDULE

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

This is a serializable schedule.
This is NOT a serial schedule

Starting with A=0 B=0
End with A=200 B=200

A NON-SERIALIZABLE
SCHEDULE

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t) Starting with A=0 B=0

End with A=200 B=100

HOW DO WE KNOW IF A
SCHEDULE IS SERIALIZABLE?

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

Notation:

Key Idea: Focus on conflicting operations
(I.e., where changing order can change result)

CONFLICTS

Write-Read – WR
Read-Write – RW
Write-Write – WW
Read-Read?

CONFLICT
SERIALIZABILITY

Conflicts: (i.e., swapping will change program behavior)

ri(X); wi(Y)Two actions by same transaction Ti:

wi(X); wj(X)Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)

CONFLICT
SERIALIZABILITY

A schedule is conflict serializable if it can be transformed into a serial
schedule by a series of swaps of adjacent non-conflicting actions

Every conflict-serializable schedule is serializable
The converse is not true (why?)

CONFLICT
SERIALIZABILITY

Example:
r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

CONFLICT
SERIALIZABILITY

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

CONFLICT
SERIALIZABILITY

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

CONFLICT
SERIALIZABILITY

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

CONFLICT
SERIALIZABILITY

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B)

….

TESTING FOR CONFLICT-
SERIALIZABILITY

Precedence graph:
• A node for each transaction Ti,
• An edge from Ti to Tj whenever an action

in Ti conflicts with, and comes before an
action in Tj

The schedule is conflict-serializable iff the
precedence graph is acyclic

EXAMPLE 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

EXAMPLE 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

AB

EXAMPLE 2

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

EXAMPLE 2

1 2 3

This schedule is NOT conflict-serializable

A

B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

