
CSE 344
AUGUST 6TH

LOSS AND VIEWS

ADMINISTRIVIA
• WQ6 due tonight

• HW7 due Wednesday

DATABASE DESIGN
PROCESS

companymakesproduct

name

price name address

Conceptual Model:

Relational Model:
Tables + constraints
And also functional dep.

Normalization:
Eliminates anomalies

Conceptual Schema

Physical Schema
Physical storage details

ELIMINATING ANOMALIES
Main idea:

X à A is OK if X is a (super)key

X à A is bad otherwise
• Need to decompose the table, but how?

Boyce-Codd Normal Form

BOYCE-CODD NORMAL FORM

There are no
“bad” FDs:

Definition. A relation R is in BCNF if:

Whenever Xà B is a non-trivial dependency,
then X is a superkey.

Equivalently: Definition. A relation R is in BCNF if:
" X, either X+ = X or X+ = [all attributes]

BCNF DECOMPOSITION
ALGORITHM

Normalize(R)
find X s.t.: X ≠ X+ and X+ ≠ [all attributes]
if (not found) then “R is in BCNF”
let Y = X+ - X; Z = [all attributes] - X+

decompose R into R1(X ∪ Y) and R2(X ∪ Z)
Normalize(R1); Normalize(R2);

Y X Z

X+

EXAMPLE: BCNF
A à B
B à C

R(A,B,C,D)

R(A,B,C,D)

EXAMPLE: BCNF
A à B
B à C

R(A,B,C,D)

R(A,B,C,D)

Recall: find X s.t.
X ⊊ X+ ⊊ [all-attrs]

EXAMPLE: BCNF
A à B
B à C

R(A,B,C,D)
A+ = ABC ≠ ABCD

R(A,B,C,D)

EXAMPLE: BCNF
A à B
B à C

R(A,B,C,D)
A+ = ABC ≠ ABCD

R(A,B,C,D)

R1(A,B,C) R2(A,D)

EXAMPLE: BCNF
A à B
B à C

R(A,B,C,D)
A+ = ABC ≠ ABCD

R(A,B,C,D)

R1(A,B,C) R2(A,D)

EXAMPLE: BCNF
A à B
B à C

R(A,B,C,D)
A+ = ABC ≠ ABCD

R(A,B,C,D)

R1(A,B,C)
B+ = BC ≠ ABC

R2(A,D)

EXAMPLE: BCNF
A à B
B à C

R(A,B,C,D)
A+ = ABC ≠ ABCD

R(A,B,C,D)

What happens if in R we first pick B+ ? Or AB+ ?]

R1(A,B,C)
B+ = BC ≠ ABC

R2(A,D)

R11(B,C) R12(A,B)

EXAMPLE: BCNF

What are
the keys ?

A à B
B à C

R(A,B,C,D)
A+ = ABC ≠ ABCD

R(A,B,C,D)

R1(A,B,C)
B+ = BC ≠ ABC

R2(A,D)

R11(B,C) R12(A,B)

EXAMPLE: BCNF

What are
the keys ?

A à B
B à C

R(A,B,C,D)
A+ = ABC ≠ ABCD

R(A,B,C,D)

R1(A,B,C)
B+ = BC ≠ ABC

R2(A,D)

R11(B,C) R12(A,B)

EXAMPLE: BCNF

What are
the keys ?

A à B
B à C

R(A,B,C,D)
A+ = ABC ≠ ABCD

R(A,B,C,D)

R1(A,B,C)
B+ = BC ≠ ABC

R2(A,D)

R11(B,C) R12(A,B)

DECOMPOSITIONS IN
GENERAL

S1 = projection of R on A1, ..., An, B1, ..., Bm
S2 = projection of R on A1, ..., An, C1, ..., Cp

and R is a subset of S1 × S2

R(A1, ..., An, B1, ..., Bm, C1, ..., Cp)

S1(A1, ..., An, B1, ..., Bm) S2(A1, ..., An, C1, ..., Cp)

LOSSLESS
DECOMPOSITION

Name Price Category

Gizmo 19.99 Gadget
OneClick 24.99 Camera

Gizmo 19.99 Camera

Name Price

Gizmo 19.99
OneClick 24.99

Gizmo 19.99

Name Category

Gizmo Gadget
OneClick Camera

Gizmo Camera

LOSSY
DECOMPOSITION

Name Price Category

Gizmo 19.99 Gadget
OneClick 24.99 Camera

Gizmo 19.99 Camera

Name Category

Gizmo Gadget
OneClick Camera

Gizmo Camera

Price Category

19.99 Gadget
24.99 Camera
19.99 Camera

What is
lossy here?

LOSSY
DECOMPOSITION

Name Price Category

Gizmo 19.99 Gadget
OneClick 24.99 Camera

Gizmo 19.99 Camera

Name Category

Gizmo Gadget
OneClick Camera

Gizmo Camera

Price Category

19.99 Gadget
24.99 Camera
19.99 Camera

DECOMPOSITION IN
GENERAL

R(A1, ..., An, B1, ..., Bm, C1, ..., Cp)

Fact: If A1, ..., An à B1, ..., Bm then the decomposition is lossless

S1(A1, ..., An, B1, ..., Bm) S2(A1, ..., An, C1, ..., Cp)

It follows that every BCNF decomposition is lossless

The decomposition is called lossless if R = S1 ⋈ S2

S1 = projection of R on A1, ..., An, B1, ..., Bm
S2 = projection of R on A1, ..., An, C1, ..., Cp

Let:

IS THIS LOSSLESS?

If we decompose R into ΠS1(R), ΠS2(R), ΠS3(R), …
Is it true that S1 ⋈ S2 ⋈ S3 ⋈… = R ?

That is true if we can show that:

R ⊆ S1 ⋈ S2 ⋈ S3 ⋈… always holds (why?)

R ⊇ S1 ⋈ S2 ⋈ S3 ⋈… neet to check

THE CHASE TEST FOR
LOSSLESS JOIN

Example from textbook Ch. 3.4.2

R(A,B,C,D) = S1(A,D) ⋈ S2(A,C) ⋈ S3(B,C,D)
R satisfies: AàB, BàC, CDàA

S1 = ΠAD(R), S2 = ΠAC(R), S3 = ΠBCD(R),
hence R⊆ S1 ⋈ S2 ⋈ S3
Need to check: R ⊇ S1 ⋈ S2 ⋈ S3

THE CHASE TEST FOR
LOSSLESS JOIN

Example from textbook Ch. 3.4.2

R(A,B,C,D) = S1(A,D) ⋈ S2(A,C) ⋈ S3(B,C,D)
R satisfies: AàB, BàC, CDàA

S1 = ΠAD(R), S2 = ΠAC(R), S3 = ΠBCD(R),
hence R⊆ S1 ⋈ S2 ⋈ S3
Need to check: R ⊇ S1 ⋈ S2 ⋈ S3
Suppose (a,b,c,d) ∈ S1 ⋈ S2 ⋈ S3 Is it also in R?

THE CHASE TEST FOR
LOSSLESS JOIN

Example from textbook Ch. 3.4.2

R(A,B,C,D) = S1(A,D) ⋈ S2(A,C) ⋈ S3(B,C,D)
R satisfies: AàB, BàC, CDàA

S1 = ΠAD(R), S2 = ΠAC(R), S3 = ΠBCD(R),
hence R⊆ S1 ⋈ S2 ⋈ S3
Need to check: R ⊇ S1 ⋈ S2 ⋈ S3
Suppose (a,b,c,d) ∈ S1 ⋈ S2 ⋈ S3 Is it also in R?
R must contain the following tuples:

A B C D Why ?

a b1 c1 d (a,d) ∈S1 = ΠAD(R)

THE CHASE TEST FOR
LOSSLESS JOIN

Example from textbook Ch. 3.4.2

R(A,B,C,D) = S1(A,D) ⋈ S2(A,C) ⋈ S3(B,C,D)
R satisfies: AàB, BàC, CDàA

S1 = ΠAD(R), S2 = ΠAC(R), S3 = ΠBCD(R),
hence R⊆ S1 ⋈ S2 ⋈ S3
Need to check: R ⊇ S1 ⋈ S2 ⋈ S3
Suppose (a,b,c,d) ∈ S1 ⋈ S2 ⋈ S3 Is it also in R?
R must contain the following tuples:

A B C D Why ?

a b1 c1 d (a,d) ∈S1 = ΠAD(R)
a b2 c d2 (a,c) ∈S2 = ΠBD(R)

THE CHASE TEST FOR
LOSSLESS JOIN

Example from textbook Ch. 3.4.2

R(A,B,C,D) = S1(A,D) ⋈ S2(A,C) ⋈ S3(B,C,D)
R satisfies: AàB, BàC, CDàA

S1 = ΠAD(R), S2 = ΠAC(R), S3 = ΠBCD(R),
hence R⊆ S1 ⋈ S2 ⋈ S3
Need to check: R ⊇ S1 ⋈ S2 ⋈ S3
Suppose (a,b,c,d) ∈ S1 ⋈ S2 ⋈ S3 Is it also in R?
R must contain the following tuples:

A B C D Why ?

a b1 c1 d (a,d) ∈S1 = ΠAD(R)
a b2 c d2 (a,c) ∈S2 = ΠBD(R)

a3 b c d (b,c,d) ∈S3 = ΠBCD(R)

THE CHASE TEST FOR
LOSSLESS JOIN

Example from textbook Ch. 3.4.2

R(A,B,C,D) = S1(A,D) ⋈ S2(A,C) ⋈ S3(B,C,D)
R satisfies: AàB, BàC, CDàA

S1 = ΠAD(R), S2 = ΠAC(R), S3 = ΠBCD(R),
hence R⊆ S1 ⋈ S2 ⋈ S3
Need to check: R ⊇ S1 ⋈ S2 ⋈ S3
Suppose (a,b,c,d) ∈ S1 ⋈ S2 ⋈ S3 Is it also in R?
R must contain the following tuples:

“Chase” them (apply FDs):

A B C D

a b1 c1 d

a b1 c d2

a3 b c d

A B C D Why ?

a b1 c1 d (a,d) ∈S1 = ΠAD(R)
a b2 c d2 (a,c) ∈S2 = ΠBD(R)

a3 b c d (b,c,d) ∈S3 = ΠBCD(R)
AàB

THE CHASE TEST FOR
LOSSLESS JOIN

Example from textbook Ch. 3.4.2

R(A,B,C,D) = S1(A,D) ⋈ S2(A,C) ⋈ S3(B,C,D)
R satisfies: AàB, BàC, CDàA

S1 = ΠAD(R), S2 = ΠAC(R), S3 = ΠBCD(R),
hence R⊆ S1 ⋈ S2 ⋈ S3
Need to check: R ⊇ S1 ⋈ S2 ⋈ S3
Suppose (a,b,c,d) ∈ S1 ⋈ S2 ⋈ S3 Is it also in R?
R must contain the following tuples:

“Chase” them (apply FDs):

A B C D

a b1 c1 d

a b1 c d2

a3 b c d

A B C D

a b1 c d

a b1 c d2

a3 b c d

A B C D Why ?

a b1 c1 d (a,d) ∈S1 = ΠAD(R)
a b2 c d2 (a,c) ∈S2 = ΠBD(R)

a3 b c d (b,c,d) ∈S3 = ΠBCD(R)
AàB BàC

THE CHASE TEST FOR
LOSSLESS JOIN

Example from textbook Ch. 3.4.2

R(A,B,C,D) = S1(A,D) ⋈ S2(A,C) ⋈ S3(B,C,D)
R satisfies: AàB, BàC, CDàA

S1 = ΠAD(R), S2 = ΠAC(R), S3 = ΠBCD(R),
hence R⊆ S1 ⋈ S2 ⋈ S3
Need to check: R ⊇ S1 ⋈ S2 ⋈ S3
Suppose (a,b,c,d) ∈ S1 ⋈ S2 ⋈ S3 Is it also in R?
R must contain the following tuples:

“Chase” them (apply FDs):

A B C D

a b1 c1 d

a b1 c d2

a3 b c d

A B C D

a b1 c d

a b1 c d2

a3 b c d

A B C D

a b1 c d

a b1 c d2

a b c d

Hence R
contains (a,b,c,d)

A B C D Why ?

a b1 c1 d (a,d) ∈S1 = ΠAD(R)
a b2 c d2 (a,c) ∈S2 = ΠBD(R)

a3 b c d (b,c,d) ∈S3 = ΠBCD(R)
AàB BàC CDàA

SCHEMA REFINEMENTS
= NORMAL FORMS

• 1st Normal Form = all tables are flat
• 2nd Normal Form = no FD with ‟non-prime” attributes

• Obsolete
• Prime attributes: attributes part of a key

• Boyce Codd Normal Form = no “bad” FDs
• Are there problems with BCNF?

DEPENDENCY PRESERVATION
• Bookings(title,theatre,city)

• FD:
• theatre -> city
• title,city -> theatre

• What are the keys?

DEPENDENCY PRESERVATION
• Bookings(title,theatre,city)

• FD:
• theatre -> city
• title,city -> theatre

• What are the keys?

• None of the single attributes
• {title,city},{theatre,title}

• BCNF?

DEPENDENCY PRESERVATION
• Bookings(title,theatre,city)

• FD:
• theatre -> city
• title,city -> theatre

• What are the keys?

• None of the single attributes
• {title,city},{theatre,title}

• BCNF?
• No, {theatre} is neither a trivial dependency nor a superkey
• Decompose?

DEPENDENCY PRESERVATION
• Bookings(title,theatre,city)

• FD:
• theatre -> city
• title,city -> theatre

• What are the keys?

• None of the single attributes
• {title,city},{theatre,title}

• BCNF?
• No, {theatre} is neither a trivial dependency nor a superkey
• Decompose? R1(theatre,city) R2(theatre,title)
• What’s wrong? (think of FDs)

DEPENDENCY PRESERVATION
• Bookings(title,theatre,city)

• FD:
• theatre -> city
• title,city -> theatre

• What are the keys?

• None of the single attributes
• {title,city},{theatre,title}

• BCNF?
• No, {theatre} is neither a trivial dependency nor a superkey
• Decompose? R1(theatre,city) R2(theatre,title)
• What’s wrong? (think of FDs)
• We can’t guarantee title,city -> theatre with simple constraints

(now need to join)

NORMAL FORMS
• 3rd Normal form

• Allows tables with BCNF violations if a
decomposition separates an FD

• Can result in redundancy
• 4th Normal form

• Multi-valued dependencies
• Incorporate info about attributes in

neither A nor B
• All MVDs are also FDs

• Apply BCNF alg with MVD and FD

NORMAL FORMS
• 5th Normal Form

• Join dependency
• Lossless/exact joining
• Join independent Tables

• 6th Normal Form
• Only allow trivial join dependencies
• Only need key/tuple constraints to

represent all constraints

KEY POINTS
• Produce and verify FDs, superkeys, keys
• Be able to decompose a table into BCNF
• Flaws of 1NF & BCNF
• Identify loss and be able to apply the

chase test

IMPLEMENTATION
We learned about how to normalize tables to avoid anomalies

How can we implement normalization in SQL if we can’t
modify existing tables?

• This might be due to legacy applications that rely on previous
schemas to run

• Can recover original tables via join on demand and we want
those available to queries

VIEWS
A view in SQL =

• A table computed from other tables, s.t., whenever the base
tables are updated, the view is updated too

More generally:
• A view is derived data that keeps track of changes in the

original data
Compare:

• A function computes a value from other values, but does not
keep track of changes to the inputs

A SIMPLE VIEW

CREATE VIEW StorePrice AS
SELECT DISTINCT x.store, y.price
FROM Purchase x, Product y
WHERE x.product = y.pname

This is like a new table
StorePrice(store,price)

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

Create a view that returns for each store
the prices of products purchased at that store

WE USE A VIEW LIKE ANY TABLE
A "high end" store is a store that sell some
products over 1000.
For each customer, return all the high end stores
that they visit.

SELECT DISTINCT u.customer, u.store
FROM Purchase u, StorePrice v
WHERE u.store = v.store

AND v.price > 1000

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

TYPES OF VIEWS
Virtual views

• Computed only on-demand – slow at runtime
• Always up to date

Materialized views
• Pre-computed offline – fast at runtime
• May have stale data (must recompute or update)

The key components of physical tuning of databases
are the selection of materialized views and indexes

MATERIALIZED VIEWS
CREATE MATERIALIZED VIEW View_name

BUILD [IMMEDIATE/DEFERRED]

REFRESH [FAST/COMPLETE/FORCE]

ON [COMMIT/DEMAND]

AS Sql_query

• Immediate v deferred
• Build immediately, or after a query

• Fast v. Complete v. Force
• Level of refresh – log based v. complete rebuild

• Commit v. Demand
• Commit: after data is added
• Demand: after conditions are set (time is common)

CONCLUSION

Poor schemas can lead to bugs and inefficiency

E/R diagrams are means to structurally visualize and design
relational schemas

Normalization is a principled way of converting schemas into a
form that avoid such problems

BCNF is one of the most widely used normalized form in
practice

