
CSE 344
AUGUST 1ST

ENTITIES

EXAMS
• Will hand back after class
• Quartiles

• 1 0 – 67
• 2 68 – 74
• 3 74 – 82
• 4 82 – 100
• (no one actually got 0 or 100)

ADMINISTRIVIA
• HW6 due Wednesday

• Spark SQL interface much easier to use
• definitely the best choice when doing real work

• BUT important to understand how this works
• SQL query becomes a sequence of calls to other APIs
• multiple calls get grouped into a single job

• only need real splits where “reshuffles” occur
• RDDs are much faster than MapReduce

• no disk means the bottleneck is network cost
• (if we had more time, we’d analyze this more...

only one operation actually has any network cost)

DATABASE DESIGN
What it is:
Starting from scratch, design the database schema: relation,
attributes, keys, foreign keys, constraints etc
Why it’s hard
The database will be in operation for a very long time (years).
Updating the schema while in production is very expensive
(why?)

DATABASE DESIGN
PROCESS

companymakesproduct

name

price name address

Conceptual Model:

Relational Model:
Tables + constraints
And also functional dep.

Normalization:
Eliminates anomalies

Conceptual Schema

Physical Schema
Physical storage details

ENTITY / RELATIONSHIP
DIAGRAMS

Entity set = a class
• An entity = an object

Attribute

Relationship

Product

city

makes

MODELING
SUBCLASSES

Some objects in a class may be special
• define a new class
• better: define a subclass

Products

Software
products

Educational
products

So --- we define subclasses in E/R

REVIEW
• Last time, we covered

• keys
• one-to-one, many-to-one, and many-to-many relationships
• multi-way relationships
• design principles

• include all the important entities
• don’t include the unnecessary ones (e.g. Dates)
• (lack of) constraints should match reality

• mapping to tables
• entity sets become tables
• many-to-many relationships become tables
• *-to-one relationships become simple FK references

Product

name category

price

isa isa

Educational ProductSoftware Product

Age Groupplatforms

MODELING
SUBCLASSES

Product

name category

price

isa isa

Educational ProductSoftware Product

Age Groupplatforms

Name Price Category

Gizmo 99 gadget

Camera 49 photo

Toy 39 gadget

Name platforms

Gizmo unix

Product

Sw.Product

Ed.Product

Other ways to convert are possible...

Name Age
Group

Gizmo toddler

Toy retired

MODELING
SUBCLASSES

Is this representation subclassing in Java sense?

MODELING UNION TYPES
WITH SUBCLASSES

FurniturePiece

Person
Company

Say: each piece of furniture is owned
either by a person or by a company

MODELING UNION TYPES
WITH SUBCLASSES

Say: each piece of furniture is owned either by a person or by a
company
Solution 1. Acceptable but imperfect (What’s wrong ?)

FurniturePiecePerson Company

ownedByPerson ownedByComp.

MODELING UNION TYPES
WITH SUBCLASSES

Solution 2: better, more laborious

isa

FurniturePiece

Person Company
ownedBy

Owner

isa

WEAK ENTITY SETS
Entity sets are weak when their key comes from other
classes to which they are related.

UniversityTeam affiliation

numbersport name

Team(sport, number, universityName)
University(name)

WHAT ARE THE KEYS OF R ?

R

A

B

S

T

V

Q

UW

V

Z

C

D
E G

K

H

F
L

INTEGRITY
CONSTRAINTS
MOTIVATION

ICs help prevent entry of incorrect information
How? DBMS enforces integrity constraints

• Allows only legal database instances (i.e., those that satisfy all
constraints) to exist

• Ensures that all necessary checks are always performed and
avoids duplicating the verification logic in each application

An integrity constraint is a condition specified on a database schema
that restricts the data that can be stored in an instance of the
database.

CONSTRAINTS IN E/R DIAGRAMS
Finding constraints is part of the modeling process.
Commonly used constraints:

Keys: social security number uniquely identifies a person.

Single-value constraints: a person can have only one biological father.

Referential integrity constraints: if you work for a company, it
must exist in the database.

Other constraints: peoples’ ages are between 0 and 120

KEYS IN E/R DIAGRAMS

address name student_id

Person

Product

name category

price

No formal way
to specify multiple
keys in E/R diagrams

Underline:

SINGLE VALUE
CONSTRAINTS

makes

makes

vs.

REFERENTIAL
INTEGRITY
CONSTRAINTS

CompanyProduct makes

CompanyProduct makes

Each product made by at most one company.
Some products made by no company

Each product made by exactly one company.

OTHER CONSTRAINTS

CompanyProduct makes
<100

Q: What does this mean ?
A: A Company entity cannot be connected
by relationship to more than 99 Product entities

CONSTRAINTS IN SQL
Constraints in SQL:
Keys, foreign keys
Attribute-level constraints
Tuple-level constraints
Global constraints: assertions

The more complex the constraint, the harder it is to
check and to enforce

simplest

Most
complex

KEY CONSTRAINTS

OR:

CREATE TABLE Product (
name CHAR(30) PRIMARY KEY,
category VARCHAR(20))

CREATE TABLE Product (
name CHAR(30),
category VARCHAR(20),
PRIMARY KEY (name))

Product(name, category)

KEYS WITH MULTIPLE
ATTRIBUTES

CREATE TABLE Product (
name CHAR(30),
category VARCHAR(20),
price INT,
PRIMARY KEY (name, category))

Name Category Price

Gizmo Gadget 10

Camera Photo 20

Gizmo Photo 30

Gizmo Gadget 40

Product(name, category, price)

OTHER KEYS
CREATE TABLE Product (

productID CHAR(10),
name CHAR(30),
category VARCHAR(20),
price INT,
PRIMARY KEY (productID),
UNIQUE (name, category))

There is at most one PRIMARY KEY
There can be many UNIQUE

• probably want to add NOT NULL
(already implied by PRIMARY KEY)

FOREIGN KEY CONSTRAINTS

CREATE TABLE Purchase (
prodName CHAR(30)

REFERENCES Product(name),
date DATETIME)

prodName is a foreign key to Product(name)
name must be a key in Product

Referential
integrity

constraints

May write
just Product

if name is PK

FOREIGN KEY
CONSTRAINTS

Example with multi-attribute primary key

(name, category) must be a KEY in Product

CREATE TABLE Purchase (
prodName CHAR(30),
category VARCHAR(20),
date DATETIME,
FOREIGN KEY (prodName, category)

REFERENCES Product(name, category)

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

WHAT HAPPENS WHEN
DATA CHANGES?

Types of updates:
In Purchase: insert/update
In Product: delete/update

SQL has three policies for maintaining referential integrity:
NO ACTION reject violating modifications (default)
CASCADE after delete/update do delete/update
SET NULL set foreign-key field to NULL
SET DEFAULT set foreign-key field to default value

• need to be declared with column, e.g.,
CREATE TABLE Product (pid INT DEFAULT 42)

WHAT HAPPENS WHEN DATA
CHANGES?

MAINTAINING REFERENTIAL
INTEGRITY

CREATE TABLE Purchase (
prodName CHAR(30),
category VARCHAR(20),
date DATETIME,
FOREIGN KEY (prodName, category)

REFERENCES Product(name, category)
ON UPDATE CASCADE
ON DELETE SET NULL)

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Category

Gizmo Gizmo

Snap Camera

EasyShoot Camera

Product Purchase

CONSTRAINTS ON
ATTRIBUTES AND
TUPLES

Constraints on attributes:
NOT NULL -- obvious meaning...
CHECK condition -- any condition !

Constraints on tuples
CHECK condition

CONSTRAINTS ON
ATTRIBUTES AND
TUPLES

CREATE TABLE R (
A int NOT NULL,
B int CHECK (B > 50 and B < 100),
C varchar(20),

D int,
CHECK (C >= 'd' or D > 0))

Attribute constraints are only checked when that attribute changes
Tuple constraint is checked when any attribute changes.

CREATE TABLE Purchase (
prodName CHAR(30)

CHECK (prodName IN
(SELECT Product.name
FROM Product),

date DATETIME NOT NULL)

Constraints on
Attributes and Tuples

What
is the difference from

Foreign-Key ?

What does this constraint do?

GENERAL
ASSERTIONS

CREATE ASSERTION myAssert CHECK
(NOT EXISTS(

SELECT Product.name
FROM Product, Purchase
WHERE Product.name = Purchase.prodName
GROUP BY Product.name
HAVING count(*) > 200))

But most DBMSs do not implement assertions
Because it is hard to support them efficiently
Instead, they provide triggers

NORMALIZATION

RELATIONAL SCHEMA
DESIGN

Name StudentID PhoneNumber City
Fred 123456789 206-555-1234 Seattle
Fred 123456789 206-555-6543 Seattle
Joe 987654321 908-555-2121 Westfield

One person may have multiple phones, but lives in only one city

Primary key is thus (StudentID, PhoneNumber)

There are problems with this schema...

RELATIONAL SCHEMA
DESIGN

Anomalies:
• Redundancy = repeat data
• Update anomalies = what if Fred moves to “Bellevue”?
• Deletion anomalies = what if Joe deletes his phone number?

Name StudentID PhoneNumber City
Fred 123456789 206-555-1234 Seattle
Fred 123456789 206-555-6543 Seattle
Joe 987654321 908-555-2121 Westfield

RELATION
DECOMPOSITION

Break the relation into two:

Name StudentID City
Fred 123456789 Seattle
Joe 987654321 Westfield

StudentID PhoneNumber
123456789 206-555-1234
123456789 206-555-6543
987654321 908-555-2121Anomalies have gone:

• No more repeated data
• Easy to move Fred to “Bellevue” (how ?)
• Easy to delete all Joe’s phone numbers (how ?)

Name StudentID PhoneNumber City
Fred 123456789 206-555-1234 Seattle
Fred 123456789 206-555-6543 Seattle
Joe 987654321 908-555-2121 Westfield

Recover as natural join of
the two tables below

RELATIONAL SCHEMA DESIGN
(OR LOGICAL DESIGN)

How do we do this systematically?

Start with some relational schema

Find out its functional dependencies (FDs)

Use FDs to normalize the relational schema

FUNCTIONAL
DEPENDENCIES (FDS)

Definition

If two tuples agree on the attributes

then they must also agree on the attributes

Formally:

A1, A2, …, An à B1, B2, …, Bm

A1, A2, …, An

B1, B2, …, Bm

A1…An determines B1..Bm

FUNCTIONAL
DEPENDENCIES (FDS)

Definition A1, ..., Am à B1, ..., Bn holds in R if:
∀t, t’ ∈ R,
(t.A1 = t’.A1∧...∧ t.Am = t’.Am à t.B1 = t’.B1∧ ... ∧ t.Bn = t’.Bn)

A1 ... Am B1 ... Bn

if t, t’ agree here then t, t’ agree here

t

t’

R

FUNCTIONAL
DEPENDENCIES (FDS)

Definition A1, ..., Am à B1, ..., Bn holds in R if:
∀ t, t’ ∈ R,
(t.A1 = t’.A1∧...∧ t.Am = t’.Am à t.B1 = t’.B1∧ ... ∧ t.Bn = t’.Bn)

Logically equivalent:
¬∃ t, t’ ∈ R,
(t.A1 = t’.A1 ∧...∧ t.Am = t’.Am) ∧ ¬(t.B1 = t’.B1∧ ... ∧ t.Bn = t’.Bn)

EXAMPLE

EmpID à Name, Phone, Position
Position à Phone
but not Phone à Position

An FD holds, or does not hold on an instance:

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 Lawyer

EXAMPLE

Position à Phone

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 ß Salesrep
E1111 Smith 9876 ß Salesrep
E9999 Mary 1234 Lawyer

EXAMPLE

But not Phone à Position

EmpID Name Phone Position
E0045 Smith 1234 à Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 à Lawyer

EXAMPLE

Do all the FDs hold on this instance?

name à color
category à department
color, category à price

name category color department price

Gizmo Gadget Green Toys 49

Tweaker Gadget Green Toys 99

EXAMPLE

name category color department price

Gizmo Gadget Green Toys 49

Tweaker Gadget Green Toys 49

Gizmo Stationary Green Office-supp. 59

What about this one ?

name à color
category à department
color, category à price

BUZZWORDS
FD holds or does not hold on an instance

If we can be sure that every instance of R will be one in which a
given FD is true, then we say that R satisfies the FD

If we say that R satisfies an FD, we are stating a constraint on R

WHY BOTHER WITH
FDS?

Anomalies:
• Redundancy = repeat data
• Update anomalies = what if Fred moves to “Bellevue”?
• Deletion anomalies = what if Joe deletes his phone number?

Name StudentID PhoneNumber City
Fred 123456789 206-555-1234 Seattle
Fred 123456789 206-555-6543 Seattle
Joe 987654321 908-555-2121 Westfield

